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Abstract
This paper is concerned with the minimal wave speed in a nonlocal dispersal
predator–prey system with delays. We define a threshold. By presenting the existence
and nonexistence of traveling wave solutions, we confirm that the threshold is the
minimal wave speed, which completes the known results.

Keywords: Upper-lower solutions; Asymptotic spreading; Contracting rectangle;
Nonmonotone system

1 Introduction
Spatial propagation dynamics of parabolic type systems has been widely investigated in
the literature. In the past decades, some important results were established for monotone
semiflows; see [1–6] and a survey paper by Zhao [7]. In particular, there are some im-
portant thresholds that have been widely and intensively studied, and one is the minimal
wave speed of traveling wave solutions, which plays an important role modeling biological
processes and chemical kinetic [8, 9]. Here, the minimal wave speed implies the existence
(nonexistence) of a desired traveling wave solution if the wave speed is not less (is less)
than the threshold.

It is well known that energy transfer is one basic law in nature and one typical model
on the topic is the predator–prey system, and the spatial distribution of individuals is also
important to understand the evolutionary process [10–13]. Since the work of Dunbar [14–
16], much attention has been paid to traveling wave solutions of reaction–diffusion sys-
tems with predator–prey nonlinearities to model the transmission of energy. However, the
dynamics of predator–prey systems is a very field of research since they do not generate
monotone semiflows, and there are many open problems on the minimal wave speed of
traveling wave solutions.

In this paper, we shall investigate the following nonmonotone system:

⎧
⎨

⎩

∂u1(x,t)
∂t = d1[J1 ∗ u1](x, t) + r1u1(x, t)F1(u1, u2)(x, t),

∂u2(x,t)
∂t = d2[J2 ∗ u2](x, t) + r2u2(x, t)F2(u1, u2)(x, t),

(1.1)
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in which x ∈ R, t > 0, (u1, u2) ∈ R
2, r1, r2, d1 and d2 are positive constants, F1 and F2 are

defined by

F1(u1, u2)(x, t) = 1 – a1u1(x, t)

– b1

∫ 0

–τ

u1(x, t + s) dη11(s) – c1

∫ 0

–τ

u2(x, t + s) dη12(s),

F2(u1, u2)(x, t) = 1 – a2u2(x, t)

– b2

∫ 0

–τ

u2(x, t + s) dη22(s) + c2

∫ 0

–τ

u1(x, t + s) dη21(s),

hereafter, a1 > 0, a2 > 0, b1 ≥ 0, b2 ≥ 0, c1 ≥ 0, c2 ≥ 0, τ > 0 are constants such that

ηij(s) is nondecreasing on [–τ , 0] and ηij(0) – ηij(–τ ) = 1, i, j = 1, 2.

Moreover, [J1 ∗ u1](x, t) and [J2 ∗ u2](x, t) formulate the spatial dispersal of individuals (see
Bates [17], Fife [18] and Hopf [19] for the backgrounds and applications of dispersal mod-
els) and are illustrated by

[J1 ∗ u1](x, t) =
∫

R

J1(x – y)
[
u1(y, t) – u1(x, t)

]
dy,

[J2 ∗ u2](x, t) =
∫

R

J2(x – y)
[
u2(y, t) – u2(x, t)

]
dy,

where J1, J2 are probability kernel functions formulating the random dispersal of individ-
uals and satisfy the following assumptions:

(J1) Ji is nonnegative and continuous for each i = 1, 2;
(J2) for any λ ∈ R,

∫

R
Ji(y)eλy dy < ∞, i = 1, 2;

(J3)
∫

R
Ji(y) dy = 1, Ji(y) = Ji(–y), y ∈ R, i = 1, 2.

Clearly, (1.1) is a predator–prey system and does not generate monotone semiflows. In
Yu and Yuan [20], Zhang et al. [21], if a1 = a2 = 0 with small delay or b1 = b2 = 0, the
authors obtained a threshold. If the wave speed is larger than the threshold, they proved
the existence of traveling wave solutions, which formulates that both the predator and the
prey invade a new habitat. But the question remains open of the existence or nonexistence
of traveling wave solution if the wave speed is not larger than the threshold. Our main
purpose of this paper is to answer the question.

The rest of this paper is organized as follows. In Sect. 2, we recall some known results.
Section 3 is concerned with the existence of nonconstant traveling wave solutions. In
Sect. 4, the asymptotic behavior and nonexistence of traveling wave solutions are pre-
sented. Finally, we give a discussion of the methods and results in this paper.

2 Preliminaries
In this part, we shall give some preliminaries. Since a1 > 0, a2 > 0 are positive constants,
we assume that a1 = a2 = 1 due to the scaling recipe. Let

(
u1(x, t), u2(x, t)

)
=

(
φ1(ξ ),φ2(ξ )

)
, ξ = x + ct,
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be a traveling wave solution of (1.1). Then (φ1(ξ ),φ2(ξ )) and c satisfy

⎧
⎨

⎩

d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1φ1(ξ )F1(φ1,φ2)(ξ ) = 0, ξ ∈R,

d2[J2 ∗ φ2](ξ ) – cφ′
2(ξ ) + r2φ2(ξ )F2(φ1,φ2)(ξ ) = 0, ξ ∈R,

(2.1)

with

[J1 ∗ φ1](ξ ) =
∫

R

J1(y)φ1(ξ – y) dy – φ1(ξ ),

[J2 ∗ φ21](ξ ) =
∫

R

J2(y)φ2(ξ – y) dy – φ2(ξ ),

and

F1(φ1,φ2)(ξ ) = 1 – φ1(ξ )

– b1

∫ 0

–τ

φ1(ξ + cs) dη11(s) – c1

∫ 0

–τ

φ2(ξ + cs) dη12(s),

F2(φ1,φ2)(ξ ) = 1 – φ2(ξ )

– b2

∫ 0

–τ

φ2(ξ + cs) dη22(s) + c2

∫ 0

–τ

φ1(ξ + cs) dη21(s).

Similar to [20, 22], we shall focus on the positive (φ1,φ2) satisfying

lim
ξ→–∞φi(ξ ) = 0, lim

ξ→∞φi(ξ ) = ki, i = 1, 2, (2.2)

where (k1, k2) is the unique spatial homogeneous steady state of (1.1) and

k1 =
1 + b2 – c1

(1 + b1)(1 + b2) + c1c2
, k2 =

1 + b1 + c2

(1 + b1)(1 + b2) + c1c2

provided that

1 + b2 > c1. (2.3)

When the scalar equation is concerned, Jin and Zhao [23] studied a periodic equation
with dispersal. Their results remain true for the following equation with constant coeffi-
cients:

⎧
⎨

⎩

∂u(x,t)
∂t = d[J ∗ u](x, t) + ru(x, t)[1 – u(x, t)],

u(x, 0) = χ (x), x ∈R,
(2.4)

where J satisfies (J1)–(J3), d > 0 and r > 0 are constants, and the initial value χ (x) is uni-
formly continuous and bounded. By [23], Theorem 2.3, we have the following comparison
principle of (2.4).
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Lemma 2.1 Assume that 0 ≤ χ (x) ≤ 1. Then (2.4) admits a solution for all x ∈ R, t > 0. If
w(x, 0) is uniformly continuous and bounded, and w(x, t) satisfies

⎧
⎨

⎩

∂w(x,t)
∂t ≥ (≤)d[J ∗ w](x, t) + rw(x, t)[1 – w(x, t)], x ∈R, t > 0,

w(x, 0) ≥ (≤)χ (x), x ∈R,

then

w(x, t) ≥ (≤)u(x, t), x ∈R, t > 0.

For λ > 0, define

c′ = inf
λ>0

d[
∫

R
J(y)eλy dy – 1] + r

λ
.

Then c′ > 0 holds. Moreover, it also admits the following property [23].

Lemma 2.2 Assume that χ (x) > 0. Then, for any c < c′, we have

lim inf
t→∞ inf|x|<ct

u(x, t) = lim sup
t→∞

sup
|x|<ct

u(x, t) = 1.

If χ (x) has nonempty compact support, then

lim
t→∞ sup

|x|>ct
u(x, t) = 0, c > c′.

For λ > 0, c > 0, we further define c∗ = max{c∗
1, c∗

2} with

c∗
1 = inf

λ>0

d1[
∫

R
J1(y)eλy dy – 1] + r1

λ
,

c∗
2 = inf

λ>0

d2[
∫

R
J2(y)eλy dy – 1] + r2

λ
,

and

	1(λ, c) = d1

[∫

R

J1(y)eλy dy – 1
]

– cλ + r1,

	2(λ, c) = d2

[∫

R

J2(y)eλy dy – 1
]

– cλ + r2.

By the convexity, we have the following conclusion.

Lemma 2.3 Assume that c∗, 	1(λ, c), 	2(λ, c) are defined as the above.
(1) c∗

i > 0 holds and 	i(λ, c) = 0 has two distinct positive roots λc
i < λc

i+2 for any c > c∗ and
each i = 1, 2. Moreover, for each i = 1, 2, and c > c∗

i , if λi ∈ (λc
i ,λc

i+2), then 	i(λi, c) < 0.
(2) If c ∈ (0, c∗

i ), then 	i(λ, c) > 0 for any λ > 0 and i = 1, 2.
(3) If c = c∗

i , then 	i(λ, c∗) ≥ 0 for any λ > 0 and 	i(λ, c∗) = 0 has a unique positive root
λ∗

i , where i = 1, 2.
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For convenience, we use the following notation:

H1(φ1,ψ1,φ2)(ξ ) = 1 – φ1(ξ )

– b1

∫ 0

–τ

ψ1(ξ + cs) dη11(s) – c1

∫ 0

–τ

φ2(ξ + cs) dη12(s),

H2(φ1,ψ1,φ2)(ξ ) = 1 – φ2(ξ )

– b2

∫ 0

–τ

ψ1(ξ + cs) dη22(s) + c2

∫ 0

–τ

φ1(ξ + cs) dη21(s),

for any positive bounded continuous functions φ1(ξ ), ψ1(ξ ), φ2(ξ ), ξ ∈R.
Similar to Pan [24], Theorem 3.2, we can prove the following conclusions.

Lemma 2.4 Assume that φ1(ξ ), φ1(ξ ), φ2(ξ ), φ2(ξ ) are continuous functions satisfying
(A1) 0 ≤ φ1(ξ ) ≤ φ1(ξ ) ≤ 1, 0 ≤ φ2(ξ ) ≤ φ2(ξ ) ≤ 1 + c2, ξ ∈R;
(A2) there exists a set E containing finite points of R such that they are differentiable and

their derivatives are bounded if ξ ∈R\E;
(A3) they satisfies the following inequalities:

d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1φ1(ξ )H1(φ1,φ1,φ2)(ξ ) ≤ 0, (2.5)

d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1φ1(ξ )H1(φ1,φ1,φ2)(ξ ) ≥ 0, (2.6)

d2[J2 ∗ φ2](ξ ) – cφ′
2(ξ ) + r2φ2(ξ )H2(φ1,φ2,φ2)(ξ ) ≤ 0, (2.7)

d2[J2 ∗ φ2](ξ ) – cφ′
2(ξ ) + r2φ2(ξ )H2(φ1,φ2,φ2)(ξ ) ≥ 0, (2.8)

for ξ ∈R\E.
Then (2.1) has a positive solution (φ1(ξ ),φ2(ξ )) such that

φ1(ξ ) ≤ φ1(ξ ) ≤ φ1(ξ ), φ2(ξ ) ≤ φ2(ξ ) ≤ φ2(ξ ), ξ ∈R.

Remark 2.5 Here, (φ1(ξ ),φ2(ξ )), (φ1(ξ ),φ2(ξ )) are a pair of generalized upper and lower
solutions of (2.1). Therefore, the existence of traveling wave solutions is deduced to the
existence of generalized upper and lower solutions, of which the recipe has been earlier
utilized in delayed reaction–diffusion systems by Ma [25] and Wu and Zou [26] for quasi-
monotone systems, and by Huang and Zou [27] for predator–prey systems. When the
dispersal models are involved, we also refer to [20, 21, 28–31].

3 Existence of traveling wave solutions
In this section, we shall present the existence of traveling wave solutions for any c ≥ c∗.
When the wave speed is large, there exists a positive traveling wave solution.

Theorem 3.1 If c > c∗, then (2.1) has a positive solution (φ1(ξ ),φ2(ξ )) such that

0 < φ1(ξ ) < 1, 0 < φ2(ξ ) < 1 + c2, ξ ∈R (3.1)

and

lim
ξ→–∞

(
φ1(ξ ),φ2(ξ )

)
= (0, 0), lim

ξ→–∞
(
φ1(ξ )e–λc

1ξ ,φ2(ξ )e–λc
2ξ

)
= (1, 1).
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Proof We shall prove it by Lemma 2.4, and first construct generalized upper and lower
solutions. For convenience, we denote λc

i by λi for simplicity, and we prove the result for
any fixed c > c∗.

Define continuous functions

φ1(ξ ) = max
{

eλ1ξ – qeηλ1ξ , 0
}

, φ2(ξ ) = max
{

eλ2ξ – qeηλ2ξ , 0
}

and

φ1(ξ ) = min
{

eλ1ξ , 1
}

, φ2(ξ ) = min
{

eλ2ξ + peηλ2ξ , 1 + c2
}

,

where

η ∈
(

1, min

{
λ3

λ1
,
λ4

λ2
,
λ1 + λ2

λ1
,
λ1 + λ2

λ2

})

and p > 1, q > 1 are constants, of which the definitions will be clarified later. We now show
these functions satisfy (2.5)–(2.8) if they are differentiable.

If φ1(ξ ) = 1 < eλ1ξ , then H1(φ1,φ1,φ2)(ξ ) ≤ 0 such that (2.5) is clear. Otherwise, φ1(ξ ) =
eλ1ξ < 1 implies that

d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1φ1(ξ )H1(φ1,φ1,φ2)(ξ )

≤ d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1φ1(ξ )

= d1

[∫

R

J1(y)φ1(ξ – y) dy – eλ1ξ

]

– cλ1eλ1ξ + r1eλ1ξ

≤ d1

[∫

R

J1(y)eλ1(ξ–y) dy – eλ1ξ

]

– cλ1eλ1ξ + r1eλ1ξ

= eλ1ξ

{

d1

[∫

R

J1(y)eλ1y dy – 1
]

– cλ1 + r1

}

= 0,

which implies what we wanted.
If φ2(ξ ) = 1 + c2 < eλ2ξ + peηλ2ξ , then H2(φ1,φ2,φ2)(ξ ) ≤ 0 such that (2.7) is clear. Other-

wise, φ2(ξ ) = eλ2ξ + peηλ2ξ < 1 + c2 such that

r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

= r2φ2(ξ )
[

1 – φ2(ξ ) – b2

∫ 0

–τ

φ2(ξ + cs) dη22(s) + c2

∫ 0

–τ

φ1(ξ + cs) dη21(s)
]

≤ r2φ2(ξ )
[

1 + c2

∫ 0

–τ

φ1(ξ + cs) dη21(s)
]

≤ r2φ2(ξ )
[
1 + c2eλ1ξ

]

= r2
[
eλ2ξ + peηλ2ξ

][
1 + c2eλ1ξ

]

= r2
[
eλ2ξ + peηλ2ξ

]
+ r2c2eλ1ξ

[
eλ2ξ + peηλ2ξ

]
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and

d2[J2 ∗ φ2](ξ ) – cφ′
2(ξ ) + r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

= d2

[∫

R

J2(y)φ2(ξ – y) dy –
(
eλ2ξ + peηλ2ξ

)
]

– c
(
λ2eλ2ξ + pηλ2eηλ2ξ

)
+ r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

≤ d2

[∫

R

J2(y)
[
eλ2(ξ–y) + peηλ2(ξ–y)]dy –

(
eλ2ξ + peηλ2ξ

)
]

– c
(
λ2eλ2ξ + pηλ2eηλ2ξ

)
+ r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

≤ d2

[∫

R

J2(y)
[
eλ2(ξ–y) + peηλ2(ξ–y)]dy –

(
eλ2ξ + peηλ2ξ

)
]

– c
(
λ2eλ2ξ + pηλ2eηλ2ξ

)
+ r2

[
eλ2ξ + peηλ2ξ

]
+ r2c2eλ1ξ

[
eλ2ξ + peηλ2ξ

]

= p
{

d2

[∫

R

J2(y)eηλ2(ξ–y) dy – eηλ2ξ

]

– cηλ2eηλ2ξ + r2eηλ2ξ

}

+ r2c2eλ1ξ
[
eλ2ξ + peηλ2ξ

]

= p	2(ηλ2, c)eηλ2ξ + r2c2eλ1ξ
[
eλ2ξ + peηλ2ξ

]

= eηλ2ξ
[
p	2(ηλ2, c)/2 + r2c2e(λ1+λ2–ηλ2)ξ ] + peηλ2ξ

[
	2(ηλ2, c)/2 + r2c2eλ1ξ

]
.

Note that

ηλ2ξ < ln
1 + c2

p
,

then there exists p1 > 1 + c2 such that p = p1 leads to

p	2(ηλ2, c)/2 + r2c2e(λ1+λ2–ηλ2)ξ < 0, 	2(ηλ2, c)/2 + r2c2eλ1ξ < 0

since λ1 + λ2 – ηλ2 > 0, ξ < 0 and 	2(ηλ2, c) < 0 is a constant.
When φ1(ξ ) = 0 > eλ1ξ – qeηλ1ξ , then H1(φ1,φ1,φ2)(ξ ) = 0 such that (2.6) is clear. Other-

wise, φ1(ξ ) = eλ1ξ – qeηλ1ξ > 0. Firstly, let q > q1 > 1 such that eλ1ξ – q1eηλ1ξ > 0 implies ξ < 0
and

φ2(ξ ) < 2eλ2ξ ,

which is admissible once p is fixed. Therefore, the monotonicity and q > q1 indicate

r1φ1(ξ )H1(φ1,ψ1,φ2)(ξ )

= r1φ1(ξ )
[

1 – φ1(ξ ) – b1

∫ 0

–τ

φ1(ξ + cs) dη11(s) – c1

∫ 0

–τ

φ2(ξ + cs) dη12(s)
]

≥ r1φ1(ξ ) – r1φ
2
1(ξ ) – r1b1φ1(ξ )φ1(ξ ) – 2r1c1eλ2ξφ1(ξ )

≥ r1φ1(ξ ) – r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ2)ξ

= r1eλ1ξ – r1q1eηλ1ξ – r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ2)ξ .
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By what we have done, (2.6) is true once

d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1eλ1ξ – r1q1eηλ1ξ – r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ2)ξ

≥ d1

[∫

R

J1(y)
(
eλ1(ξ–y) – qeηλ1(ξ–y))dy –

(
eλ1ξ – qeηλ1ξ

)
]

–
(
cλ1eλ1ξ – cqηλ1eηλ1ξ

)
+ r1eλ1ξ – r1qeηλ1ξ

– r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ2)ξ

= –qeηλ1ξ

{

d1

[∫

R

J1(y)eηλ1y dy – 1
]

– cηλ1 + r1

}

– r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ2)ξ

= –q	1(ηλ1, c)eηλ1ξ – r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ2)ξ

≥ 0. (3.2)

Let

q > –
r1(1 + b1) + 2r1c1

	1(ηλ1, c)
+ q1 := q2,

then (3.2) holds since ξ < 0 and

eηλ1ξ > e2λ1ξ > 0, eηλ1ξ > e(λ1+λ2)ξ > 0.

The verification of (2.6) is finished.
We now consider (2.8), which is clear if φ2(ξ ) = 0 > eλ2ξ – qeηλ2ξ . If φ2(ξ ) = eλ2ξ – qeηλ2ξ >

0, we first select q3 ≥ q2 implies

φ2(ξ ) < 2eλ2ξ

for any q ≥ q3, which is admissible for fixed p = p1. Then

r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

= r2φ2(ξ )
[

1 – φ2(ξ ) – b2

∫ 0

–τ

φ2(ξ + cs) dη22(s) + c2

∫ 0

–τ

φ1(ξ + cs) dη21(s)
]

≥ r2φ2(ξ )
[

1 – φ2(ξ ) – b2

∫ 0

–τ

φ2(ξ + cs) dη22(s)
]

≥ r2φ2(ξ )
[
1 – eλ2ξ – 2b2eλ2ξ

]

= r2φ2(ξ ) – r2(1 + 2b2)φ2(ξ )eλ2ξ

≥ r2
(
eλ2ξ – qeηλ2ξ

)
– r2(1 + 2b2)e2λ2ξ .

Therefore, if

q > q3 –
r2(1 + 2b2)
	2(ηλ2, c)

:= q4,
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then (2.8) holds since

d2[J2 ∗ φ2](ξ ) – cφ′
2(ξ ) + r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

≥ d2

[∫

R

J2(y)
[
eλ2(ξ–y) – qeηλ2(ξ–y)]dy –

(
eλ2ξ – qeηλ2ξ

)
]

– c
(
λ2eλ2ξ – qηλ2eηλ2ξ

)
+ r2

(
eλ2ξ – qeηλ2ξ

)
– r2(1 + 2b2)e2λ2ξ

= –qeηλ2ξ

{

d2

[∫

R

J2(y)eηλ2y dy – 1
]

– cηλ2 + r2

}

– r2(1 + 2b2)e2λ2ξ

= –q	2(ηλ2, c)eηλ2ξ – r2(1 + 2b2)e2λ2ξ

≥ 0, ξ < 0.

Summarizing what we have done, it suffices to verify that (3.1) is true. We now show
φ1(ξ ) > 0, ξ ∈ R. If φ1(ξ0) = 0, then it arrives the minimal and so φ′

1(ξ0) = 0, which further
implies that

∫

R

J1(y)φ1(ξ0 – y) dy = 0.

Therefore, φ1(ξ ) = 0 on an interval. Repeating the process, we see that φ1(ξ ) = 0, ξ ∈ R.
A contradiction occurs since φ1(ξ ) > 0 if –ξ is large. Similarly, we can verify (3.1). The
proof is complete. �

Theorem 3.2 Assume that c∗ = c∗
1 > c∗

2. Further suppose that k1(y) admits compact sup-
port. Then (2.1) with c = c∗ has a positive solution (φ1(ξ ),φ2(ξ )) such that

0 < φ1(ξ ) < 1, 0 < φ2(ξ ) < 1 + c2, ξ ∈ R, lim
ξ→–∞

(
φ1(ξ ),φ2(ξ )

)
= (0, 0)

and

φ1(ξ ) ∼O
(
–ξeλ∗

1ξ
)
, φ2(ξ ) ∼O

(
eλ2ξ

)
, ξ → –∞.

Proof By Lemma 2.3, 	1(λ, c∗) arrives at its minimum when λ = λ∗
1, and so

d1

∫

R

J1(y)yeλ∗
1y dy = c∗.

Let S > 0 be a constant such that k1(y) = 0, |y| > S. Moreover, let η > 1 such that

λ∗
1/2 + λ2 – ηλ2 > 0, 	2

(
ηλ2, c∗) < 0.

Consider the continuous function –Lξeλ∗
1ξ , ξ < 0, where L > 0 is a constant. Clearly, if

L > 1 is large, then

max
ξ<0

{
–Lξeλ∗

1ξ
}

> 1, ξ2 – ξ1 > 2S + c∗τ , (3.3)
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where ξ2, ξ1 with ξ2 – ξ1 > 0 are two roots of –Lξeλ∗
1ξ = 1. Moreover, let q > L be a constant

clarified later, then there exists ξ3 = –q2/L2 < –1 such that

(–Lξ – q
√

–ξ )eλ∗
1ξ > 0, ξ < ξ3.

By the above constants, define the continuous functions

φ1(ξ ) =

⎧
⎨

⎩

(–Lξ – q
√

–ξ )eλ∗
1ξ , ξ < ξ3,

0, ξ ≥ ξ3,

φ1(ξ ) =

⎧
⎨

⎩

–Lξeλ∗
1ξ , ξ < ξ1,

1, ξ ≥ ξ1,

and

φ2(ξ ) = max
{

eλ2ξ – qeηλ2ξ , 0
}

, φ2(ξ ) = min
{

eλ2ξ + peηλ2ξ , 1 + c2
}

,

where p > 1, q > 1 are constants, of which the definition will be further illustrated later. We
now show these functions satisfy (2.5)–(2.8) if they are differentiable.

If φ1(ξ ) = 1, then H1(φ1,φ1,φ2)(ξ ) ≤ 0 such that (2.5) is clear. Otherwise, φ1(ξ ) =
–Lξeλ∗

1ξ < 1 implies that

r1φ1(ξ )H1(φ1,φ1,φ2)(ξ ) ≤ r1φ1(ξ ) = –r1Lξeλ∗
1ξ , ξ < ξ1,

and (3.3) indicates that

d1[J1 ∗ φ1](ξ ) – c∗φ′
1(ξ ) + r1φ1(ξ )H1(φ1,φ1,φ2)(ξ )

≤ d1[J1 ∗ φ1](ξ ) – c∗φ′
1(ξ ) + r1φ1(ξ )

≤ –d1L
[∫

R

J1(y)(ξ – y)eλ∗
1(ξ–y) dy – ξeλ∗

1ξ

]

+ c∗Leλ∗
1ξ + c∗λ∗

1Lξeλ∗
1ξ – r1Lξeλ∗

1ξ

= –d1L
[

ξ

∫

R

J1(y)eλ∗
1(ξ–y) dy – ξeλ∗

1ξ –
∫

R

J1(y)yeλ∗
1(ξ–y) dy

]

+ c∗Leλ∗
1ξ + c∗λ∗

1Lξeλ∗
1ξ – r1Lξeλ∗

1ξ

= –Lξeλ∗
1ξ

{

d1

[∫

R

J1(y)eλ∗
1y dy – 1

]

– c∗λ∗
1 + r1

}

+ d1Leλ∗
1ξ

[∫

R

J1(y)ye–λ∗
1y dy

]

+ c∗Leλ∗
1ξ

= 0,

which implies what we wanted.
If φ2(ξ ) = 1 + c2 < eλ2ξ + peηλ2ξ , then H2(φ1,φ2,φ2)(ξ ) ≤ 0 such that (2.7) is clear. Other-

wise, let p2 > 0 such that φ2(ξ ) = eλ2ξ + peηλ2ξ < 1 + c2 with p ≥ p2 implies that

φ1(ξ ) < eλ∗
1ξ /2,
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which is evident by simple limit analysis. Thus, the monotonicity implies

r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

= r2φ2(ξ )
[

1 – φ2(ξ ) – b2

∫ 0

–τ

φ2

(
ξ + c∗s

)
dη22(s) + c2

∫ 0

–τ

φ1
(
ξ + c∗s

)
dη21(s)

]

≤ r2φ2(ξ )
[

1 + c2

∫ 0

–τ

φ1
(
ξ + c∗s

)
dη21(s)

]

≤ r2φ2(ξ )
[
1 + c2eλ∗

1ξ /2]

= r2
[
eλ2ξ + peηλ2ξ

][
1 + c2eλ∗

1ξ /2]

= r2
[
eλ2ξ + peηλ2ξ

]
+ r2c2eλ∗

1ξ /2[eλ2ξ + peηλ2ξ
]

and

d2[J2 ∗ φ2](ξ ) – c∗φ′
2(ξ ) + r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

= d2

[∫

R

J2(y)φ2(ξ – y) dy –
(
eλ2ξ + peηλ2ξ

)
]

– c∗(λ2eλ2ξ + pηλ2eηλ2ξ
)

+ r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

≤ d2

[∫

R

J2(y)
[
eλ2(ξ–y) + peηλ2(ξ–y)]dy –

(
eλ2ξ + peηλ2ξ

)
]

– c∗(λ2eλ2ξ + pηλ2eηλ2ξ
)

+ r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

≤ d2

[∫

R

J2(y)
[
eλ2(ξ–y) + peηλ2(ξ–y)]dy –

(
eλ2ξ + peηλ2ξ

)
]

– c∗(λ2eλ2ξ + pηλ2eηλ2ξ
)

+ r2
[
eλ2ξ + peηλ2ξ

]
+ r2c∗

2eλ∗
1ξ /2[eλ2ξ + peηλ2ξ

]

= peηλ2ξ

{

d2

[∫

R

J2(y)eηλ2y dy – 1
]

– c∗ηλ2 + r2

}

+ r2c2eλ∗
1ξ /2[eλ2ξ + peηλ2ξ

]

= p	2
(
ηλ2, c∗)eηλ2ξ + r2c2eλ∗

1ξ /2[eλ2ξ + peηλ2ξ
]

= eηλ2ξ
[
p	2

(
ηλ2, c∗)/2 + r2c2e(λ∗

1/2+λ2–ηλ2)ξ ]

+ peηλ2ξ
[
	2

(
ηλ2, c∗)/2 + r2c2eλ∗

1ξ /2].

Note that

ηλ2ξ < ln
1 + c2

p
,

then there exists p3 > p2 + 1 + c2 such that p ≥ p3 leads to

p	2
(
ηλ2, c∗)/2 + r2c2e(λ1/2+λ2–ηλ2)ξ < 0,

	2
(
ηλ2, c∗)/2 + r2c2eλ∗

1ξ /2 < 0

since λ∗
1/2 + λ2 – ηλ2 > 0, ξ < 0 and 	2(ηλ2, c∗) < 0 is a constant. Now, we fix it by p = p3.
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When φ1(ξ ) = 0 with ξ < ξ3, then H1(φ1,φ1,φ2)(ξ ) = 0 such that (2.6) is clear. Otherwise,
if ξ ≥ ξ3, then φ1(ξ ) = (–Lξ –q

√
–ξ )eλ∗

1ξ > 0. Firstly, let q > q1 > 1 such that –Lξ –q
√

–ξ > 0
implies ξ < 0 and

φ2(ξ ) < 2eλ2ξ , φ1(ξ ) ≤ φ1(ξ ) < eθλ∗
1ξ

for some θ ∈ [ 2
3 , 1) with θλ∗

1 +λ2 > λ∗
1, which is admissible once p is fixed. Therefore, q > q1

indicates

r1φ1(ξ )H1(φ1,φ1,φ2)(ξ )

= r1φ1(ξ )
[

1 – φ1(ξ ) – b1

∫ 0

–τ

φ1
(
ξ + c∗s

)
dη11(s) – c1

∫ 0

–τ

φ2
(
ξ + c∗s

)
dη12(s)

]

≥ r1φ1(ξ ) – r1φ
2
1(ξ ) – r1b1φ1(ξ )φ1(ξ ) – 2r1c1eλ2ξφ1(ξ )

≥ r1φ1(ξ ) – r1(1 + b1)e2θλ∗
1ξ – 2r1c1e(θλ∗

1+λ2)ξ

= r1(–Lξ – q
√

–ξ )eλ∗
1ξ – r1(1 + b1)e2θλ∗

1ξ – 2r1c1e(θλ∗
1+λ2)ξ .

Moreover, (3.3) leads to

d1[J1 ∗ φ1](ξ ) – c∗φ′
1(ξ )

= d1

[∫

R

J1(y)φ1(ξ – y) dy – φ1(ξ )
]

– c∗φ′
1(ξ )

≥ d1

{∫

R

J1(y)
[(

–L(ξ – y) – q
√

–(ξ – y)
)
eλ∗

1(ξ–y)]dy

– (–Lξ – q
√

–ξ )eλ∗
1ξ

}

– c∗[(–Lξ – q
√

–ξ )eλ∗
1ξ

]′

= d1eλ∗
1ξ

[∫

R

J1(y)
[(

–L(ξ – y)
)
e–λ∗

1y]dy + Lξ

]

– qd1eλ∗
1ξ

[∫

R

J1(y)
√

–(ξ – y)e–λ∗
1y dy –

√
–ξ

]

+ c∗L
(
1 + λ∗

1ξ
)
eλ∗

1ξ + c∗q
(

λ∗
1
√

–ξ –
1

2
√

–ξ

)

eλ∗
1ξ .

By what we have done, (2.6) is true if

d1[J1 ∗ φ1](ξ ) – c∗φ′
1(ξ ) + r1φ1(ξ )H1(φ1,φ1,φ2)(ξ )

≥ d1eλ∗
1ξ

[∫

R

J1(y)
[(

–L(ξ – y)
)
e–λ∗

1y]dy + Lξ

]

– qd1eλ∗
1ξ

[∫

R

J1(y)
√

–(ξ – y)e–λ∗
1y dy –

√
–ξ

]

+ c∗L
(
1 + λ∗

1ξ
)
eλ∗

1ξ + c∗q
(

λ∗
1
√

–ξ –
1

2
√

–ξ

)

eλ∗
1ξ

+ r1(–Lξ – q
√

–ξ )eλ∗
1ξ – r1(1 + b1)e2θλ∗

1ξ – 2r1c1e(θλ∗
1+λ2)ξ
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= –Lξeλ∗
1ξ

{

d1

[∫

R

J1(y)e–λ∗
1y dy – 1

]

– c∗λ∗
1 + r1

}

+ d1Leλ∗
1ξ

[∫

R

J1(y)ye–λ∗
1y dy + c∗

]

– qd1eλ∗
1ξ

[∫

R

J1(y)
√

–(ξ – y)e–λ∗
1y dy –

√
–ξ

]

+ c∗q
(

λ∗
1
√

–ξ –
1

2
√

–ξ

)

eλ∗
1ξ – r1q

√
–ξeλ∗

1ξ – r1(1 + b1)e2θλ∗
1ξ – 2r1c1e(θλ∗

1+λ2)ξ

= –qd1eλ∗
1ξ

[∫

R

J1(y)
√

–(ξ – y)e–λ∗
1y dy –

√
–ξ

]

+ c∗q
(

λ∗
1
√

–ξ –
1

2
√

–ξ

)

eλ∗
1ξ

– r1q
√

–ξeλ∗
1ξ – r1(1 + b1)e2θλ∗

1ξ – 2r1c1e(θλ∗
1+λ2)ξ

= eλ∗
1ξ

{

–qd1

[∫

R

J1(y)
√

–(ξ – y)e–λ∗
1y dy –

√
–ξ

]

+ c∗q
(

λ∗
1
√

–ξ –
1

2
√

–ξ

)

– r1q
√

–ξ – r1(1 + b1)e(2θ–1)λ∗
1ξ – 2r1c1e(θλ∗

1+λ2–λ∗
1)ξ

}

≥ 0

or

q
{

–d1

[∫

R

J1(y)
√

–(ξ – y)e–λ∗
1y dy –

√
–ξ

]

+ c∗
(

λ∗
1
√

–ξ –
1

2
√

–ξ

)

– r1
√

–ξ

}

≥ r1(1 + b1)e(2θ–1)λ∗
1ξ + 2r1c1e(θλ∗

1+λ2–λ∗
1)ξ .

We first analyze the left of the above inequality

–d1

[∫

R

J1(y)
√

–(ξ – y)e–λ∗
1y dy –

√
–ξ

]

+ c∗
(

λ∗
1
√

–ξ –
1

2
√

–ξ

)

– r1
√

–ξ

= –d1

{∫

R

J1(y)
[√

–ξ +
√

–(ξ – y) –
√

–ξ
]
e–λ∗

1y dy –
√

–ξ

}

+ c∗
(

λ∗
1
√

–ξ –
1

2
√

–ξ

)

– r1
√

–ξ

= –d1

{∫

R

J1(y)
[√

–(ξ – y) –
√

–ξ
]
e–λ∗

1y dy
}

– c∗ 1
2
√

–ξ

= d1

{∫

R

J1(y)
[√

–ξ –
√

–(ξ – y)
]
e–λ∗

1y dy
}

–
d1

2
√

–ξ

∫

R

J1(y)yeλ∗
1y dy

= d1

∫

R

J1(y)
[

y
2
√

–ξ
+

√
–ξ –

√
–(ξ – y)

]

e–λ∗
1y dy

= d1

∫

R

J1(y)
[

y
2
√

–ξ
–

y√
–ξ +

√
–(ξ – y)

]

e–λ∗
1y dy

= d1

∫

R

J1(y)
[

y
2
√

–ξ
–

y√
–ξ +

√
–(ξ – y)

]

e–λ∗
1y dy

= d1

∫

R

J1(y)
[

y[
√

–(ξ – y) –
√

–ξ ]
2
√

–ξ [
√

–ξ +
√

–(ξ – y)]

]

e–λ∗
1y dy

= d1

∫

R

J1(y)
[

y2

2
√

–ξ [
√

–ξ +
√

–(ξ – y)]2

]

e–λ∗
1y dy
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≥ d1

∫

R

J1(y)
[

y2

2
√

–(ξ – S)[
√

–(ξ – S) +
√

–(ξ – S)]2

]

e–λ∗
1y dy

=
d1

8[–(ξ – S)]3/2

∫

R

J1(y)y2e–λ∗
1y dy.

Let

q ≥ maxξ<0{8[–(ξ – S)]3/2[r1(1 + b1)e(2θ–1)λ∗
1ξ + 2r1c1e(θλ1+λ2–λ∗

1)ξ ]}
d1

∫

R
J1(y)y2e–λ∗

1y dy
+ q1 := q2,

then (3.2) holds since ξ < 0 and

(2θ – 1)λ∗
1 > 0, θλ∗

1 + λ2 – λ∗
1 > 0.

The verification of (2.7) is finished.
We now consider (2.8), which is clear if φ2(ξ ) = 0 > eλ2ξ – qeηλ2ξ . If φ2(ξ ) = eλ2ξ – qeηλ2ξ >

0, we first select q3 ≥ q2 such that φ2(ξ ) > 0 implies

φ2(ξ ) < 2eλ2ξ

for any q ≥ q3, which is admissible for fixed p = p1. Then

r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

= r2φ2(ξ )
[

1 – φ2(ξ ) – b2

∫ 0

–τ

φ2
(
ξ + c∗s

)
dη22(s) + c2

∫ 0

–τ

φ1

(
ξ + c∗s

)
dη21(s)

]

≥ r2φ2(ξ )
[

1 – φ2(ξ ) – b2

∫ 0

–τ

φ2
(
ξ + c∗s

)
dη22(s)

]

≥ r2φ2(ξ )
[
1 – eλ2ξ – 2b2eλ2ξ

]

= r2φ2(ξ ) – r2φ2(ξ )
[
eλ2ξ + 2b2eλ2ξ

]

≥ r2
(
eλ2ξ – qeηλ2ξ

)
– r2eλ2ξ

[
eλ2ξ + 2b2eλ2ξ

]
.

Therefore, if

q > q3 –
r2(1 + 2b2)
	2(ηλ2, c∗)

:= q4,

then (2.8) holds since

d2[J2 ∗ φ2](ξ ) – c∗φ′
2(ξ ) + r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

≥ d2

[∫

R

J2(y)
[
eλ2(ξ–y) – qeηλ2(ξ–y)]dy –

(
eλ2ξ – qeηλ2ξ

)
]

– c∗(λ2eλ2ξ – qηλ2eηλ2ξ
)

+ r2
(
eλ2ξ – qeηλ2ξ

)
– r2eλ2ξ

[
eλ2ξ + 2b2eλ2ξ

]

= –qeηλ2ξ

{

d2

[∫

R

J2(y)eηλ2y dy – 1
]

– c∗ηλ2 + r2

}

– r2eλ2ξ
[
eλ2ξ + 2b2eλ2ξ

]

≥ 0, ξ < 0.

By Lemma 2.4 and a discussion similar to (3.1), we complete the proof. �
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Theorem 3.3 If c∗ = c∗
2 > c∗

1. Further suppose that k2(y) admits compact support. Then
(2.1) with c = c∗ has a positive solution (φ1(ξ ),φ2(ξ )) such that

0 < φ1(ξ ) < 1, 0 < φ2(ξ ) < 1 + c2, ξ ∈ R, lim
ξ→–∞

(
φ1(ξ ),φ2(ξ )

)
= (0, 0),

and

φ1(ξ ) ∼O
(
eλ1ξ

)
, φ2(ξ ) ∼O

(
–ξeλ∗

2ξ
)
, ξ → –∞.

Proof Under the assumption, we see that

d2

∫

R

J2(y)yeλ∗
2y dy = c∗

by Lemma 2.3. Let S > 0 be a constant such that k2(y) = 0, |y| > S. Select a constant η > 1
such that

λ∗
2/2 + λ1 – ηλ1 > 0, 	1

(
ηλ1, c∗) < 0.

Let L > 1 be large enough such that

–Lξeλ∗
2ξ = 1 + c2

has two real roots ξ5 < ξ6 and ξ6 – ξ5 > 2S.
We now define

φ1(ξ ) = max
{

eλ1ξ – qeηλ1ξ , 0
}

, φ1(ξ ) = min
{

eλ1ξ , 1
}

and

φ2(ξ ) =

⎧
⎨

⎩

(–Lξ – q
√

–ξ )eλ∗
2ξ , ξ < ξ3,

0, ξ ≥ ξ3,

φ2(ξ ) =

⎧
⎨

⎩

(–Lξ + p
√

–ξ )eλ∗
2ξ , ξ < ξ4,

1 + c2, ξ ≥ ξ4,

where ξ3 = L2/q2 and ξ4 < ξ5 such that φ2(ξ ) is continuous.
For φ1(ξ ), the verification is similar to that in Theorem 3.1 and we omit it here. If φ2(ξ ) =

1 + c2, then H2(φ1,φ2,φ2)(ξ ) ≤ 0 such that (2.7) is clear. Otherwise, let p2 > 0 such that

φ2(ξ ) ≥ φ2(ξ ), ξ ∈R.

Thus,

r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

= r2φ2(ξ )
[

1 – φ2(ξ ) – b2

∫ 0

–τ

φ2

(
ξ + c∗s

)
dη22(s) + c2

∫ 0

–τ

φ1
(
ξ + c∗s

)
dη21(s)

]
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≤ r2φ2(ξ )
[

1 + c2

∫ 0

–τ

φ1
(
ξ + c∗s

)
dη21(s)

]

≤ r2φ2(ξ )
[
1 + c2eλ1ξ

]

= r2eλ∗
2ξ (–Lξ + p

√
–ξ )

[
1 + c2eλ1ξ

]

and

d2[J2 ∗ φ2](ξ ) – c∗φ′
2(ξ ) + r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

≤ d2

{∫

R

J2(y)
[(

–L(ξ – y) + p
√

–(ξ – y)
)
eλ∗

2(ξ–y)]dy

–
[
(–Lξ + p

√
–ξ )eλ∗

2ξ
]
}

– c∗λ∗
2(–Lξ + p

√
–ξ )eλ∗

2ξ – c∗
(

–L –
p

2
√

–ξ

)

eλ∗
2ξ

+ r2eλ∗
2ξ (–Lξ + p

√
–ξ ) + r2c2eλ∗

2ξ eλ1ξ (–Lξ + p
√

–ξ )

= –Lξeλ∗
2ξ

{

d2

[∫

R

J2(y)e–λ∗
2y dy – 1

]

– c∗λ∗
2 + r2

}

+ d2L
[∫

R

J2(y)ye–λ∗
2y dy + c∗

]

+ d2peλ∗
2ξ

{[∫

R

J2(y)
√

–(ξ – y)e–λ∗
2y dy –

√
–ξ

]

– c∗λ∗
2
√

–ξ + r
√

–ξ

}

+
c∗p

2
√

–ξ
eλ∗

2ξ + r2c2eλ∗
2ξ eλ1ξ (–Lξ + p

√
–ξ )

= d2peλ∗
2ξ

{[∫

R

J2(y)
√

–(ξ – y)e–λ∗
2y dy –

√
–ξ

]

– c∗λ∗
2
√

–ξ + r
√

–ξ

}

+
c∗p

2
√

–ξ
eλ∗

2ξ + r2c2eλ∗
2ξ eλ1ξ (–Lξ + p

√
–ξ )

= d2peλ∗
2ξ

∫

R

J2(y)
[√

–(ξ – y) –
√

–ξ
]
e–λ∗

2y dy

+
c∗p

2
√

–ξ
eλ∗

2ξ + r2c2eλ∗
2ξ eλ1ξ (–Lξ + p

√
–ξ )

= d2peλ∗
2ξ

∫

R

J2(y)
[

y
√

–(ξ – y) +
√

–ξ

]

e–λ∗
2y dy

+
c∗p

2
√

–ξ
eλ∗

2ξ + r2c2eλ∗
2ξ eλ1ξ (–Lξ + p

√
–ξ )

= d2peλ∗
2ξ

∫

R

J2(y)
[

y
√

–(ξ – y) +
√

–ξ
–

y
2
√

–ξ

]

e–λ∗
2y dy

+ r2c2eλ∗
2ξ eλ1ξ (–Lξ + p

√
–ξ )

= d2peλ∗
2ξ

∫

R

J2(y)
y[

√
–ξ –

√
–(ξ – y)]

2
√

–ξ [
√

–(ξ – y) +
√

–ξ ]
e–λ∗

2y dy

+ r2c2eλ∗
2ξ eλ1ξ (–Lξ + p

√
–ξ )
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= d2peλ∗
2ξ

∫

R

J2(y)
–y2

2
√

–ξ [
√

–(ξ – y) +
√

–ξ ]2
e–λ∗

2y dy

+ r2c2eλ∗
2ξ eλ1ξ (–Lξ + p

√
–ξ )

≤ –d2peλ∗
2ξ

8(|ξ | + S) 3
2

∫

R

J2(y)y2e–λ∗
2y dy + r2c2eλ∗

2ξ eλ1ξ (–Lξ + p
√

–ξ )

≤ 0

if

p ≥ maxξ<0{8r2c2(|ξ | + S) 3
2 eλ1ξ (–Lξ + p

√
–ξ )}

d2
∫

R
J2(y)y2e–λ∗

2y dy
.

When φ1(ξ ) = 0 with ξ < ξ3, then H1(φ1,φ1,φ2)(ξ ) = 0 such that (2.6) is clear. Otherwise,
if ξ ≥ ξ3, then φ1(ξ ) = eλ1ξ – qeηλ1ξ > 0. Firstly, let q > q1 > 1 such that eλ1ξ – qeηλ1ξ > 0
implies ξ < 0 and

φ2(ξ ) < 2eλ∗
2ξ , φ1(ξ ) ≤ φ1(ξ ) ≤ eλ1ξ ,

which is admissible once p is fixed. Therefore, q > q1 indicates

r1φ1(ξ )H1(φ1,φ1,φ2)(ξ )

= r1φ1(ξ )
[

1 – φ1(ξ ) – b1

∫ 0

–τ

φ1
(
ξ + c∗s

)
dη11(s) – c1

∫ 0

–τ

φ2
(
ξ + c∗s

)
dη12(s)

]

≥ r1φ1(ξ ) – r1φ
2
1(ξ ) – r1b1φ1(ξ )φ1(ξ ) – 2r1c1eλ∗

2ξφ1(ξ )

≥ r1φ1(ξ ) – r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ∗
2)ξ

= r1
(
eλ1ξ – qeηλ1ξ

)
– r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ∗

2)ξ .

Moreover, (3.3) leads to

d1[J1 ∗ φ1](ξ ) – c∗φ′
1(ξ ) + r1φ1(ξ )H1(φ1,φ1,φ2)(ξ )

≥ d1

[∫

R

J1(y)φ1(ξ – y) dy – φ1(ξ )
]

– c∗φ′
1(ξ )

+ r1
(
eλ1ξ – qeηλ1ξ

)
– r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ∗

2)ξ

≥ d1

[∫

R

J1(y)
[(

eλ1(ξ–y) – qeηλ1(ξ–y))]dy –
(
eλ1ξ – qeηλ1ξ

)
]

– c∗(λ1eλ1ξ – qηλ1eηλ1ξ
)

+ r1
(
eλ1ξ – qeηλ1ξ

)

– r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ∗
2)ξ

= –q	1
(
ηλ1, c∗)eηλ1ξ – r1(1 + b1)e2λ1ξ – 2r1c1e(λ1+λ∗

2)ξ

≥ 0
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provided that

q >
r1(1 + b1) – 2r1c1

–	1(ηλ1, c∗)
+ q1 := q2.

Let q3 ≥ q2 such that q > q3 indicates

φ2(ξ ) < φ2(ξ ), ξ ∈ R,

and q > q3, (–Lξ – q
√

–ξ ) > 0, imply

(–Lξ + q
√

–ξ )eλ∗
2ξ < e2λ∗

2ξ /3

and so

r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

= r2φ2(ξ )
[

1 – φ2(ξ ) – b2

∫ 0

–τ

φ2
(
ξ + c∗s

)
dη22(s) + c2

∫ 0

–τ

φ1

(
ξ + c∗s

)
dη21(s)

]

≥ r2φ2(ξ )
[

1 – φ2(ξ ) – b2

∫ 0

–τ

φ2
(
ξ + c∗s

)
dη22(s)

]

≥ r2φ2(ξ )
[
1 – (1 + b2)e2λ∗

2ξ /3]

= r2(–Lξ – q
√

–ξ )eλ∗
2ξ – r2(1 + b2)e4λ∗

2ξ /3.

By direct calculations, we see

d2[J2 ∗ φ2](ξ ) – c∗φ′
2(ξ ) + r2φ2(ξ )H2(φ1,φ2,φ2)(ξ )

≥ d2

[∫

R

J2(y)
[(

–L(ξ – y) – q
√

–(ξ – y)
)
eλ∗

2(ξ–y)]dy – (–Lξ – q
√

–ξ )eλ∗
2ξ

]

+ c∗L
(
1 + λ∗

2ξ
)
eλ∗

2ξ + c∗q
(

λ∗
2
√

–ξ –
1

2
√

–ξ

)

eλ∗
2ξ

+ r2(–Lξ – q
√

–ξ )eλ∗
2ξ – r2(1 + b2)e4λ∗

2ξ /3

= d2

[∫

R

J2(y)
(
–L(ξ – y)

)
eλ∗

2(ξ–y) dy + Lξeλ∗
2ξ

]

+ c∗L
(
1 + λ∗

2ξ
)
eλ∗

2ξ – r2Lξeλ∗
2ξ

– q
√

–ξd2

∫

R

J2(y)eλ∗
2(ξ–y) dy + q

√
–ξeλ∗

2ξ

+ c∗qλ∗
2
√

–ξeλ∗
2ξ + r2(–Lξ – q

√
–ξ )eλ∗

2ξ

+ d2q
∫

R

J2(y)
[√

–ξ –
√

–(ξ – y)
]
eλ∗

2(ξ–y) dy –
c∗q

2
√

–ξ
eλ∗

2ξ – r2(1 + b2)e4λ∗
2ξ /3

= d2q
∫

R

J2(y)
[√

–ξ –
√

–(ξ – y)
]
eλ∗

2(ξ–y) dy –
c∗q

2
√

–ξ
eλ∗

2ξ – r2(1 + b2)e4λ∗
2ξ /3

= d2q
∫

R

J2(y)
[

–y√
–ξ –

√
–(ξ – y)

]

eλ∗
2(ξ–y) dy –

c∗q
2
√

–ξ
eλ∗

2ξ – r2(1 + b2)e4λ∗
2ξ /3

= d2q
∫

R

J2(y)
[

y
2
√

–ξ
–

y√
–ξ +

√
–(ξ – y)

]

eλ∗
2(ξ–y) dy – r2(1 + b2)e4λ∗

2ξ /3
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= d2q
∫

R

J2(y)
[

y2

2
√

–ξ [
√

–ξ +
√

–(ξ – y)]

]

eλ∗
2(ξ–y) dy – r2(1 + b2)e4λ∗

2ξ /3

= d2q
∫

R

J2(y)
y2eλ∗

2(ξ–y)

2
√

–ξ [
√

–ξ +
√

–(ξ – y)]2
dy – r2(1 + b2)e4λ∗

2ξ /3

= eλ∗
2ξ

{

d2q
∫

R

J2(y)
y2eλ∗

2y

2
√

–ξ [
√

–ξ +
√

–(ξ – y)]2
dy – r2(1 + b2)eλ∗

2ξ /3
}

≥ eλ∗
2ξ

{

d2q
∫

R

J2(y)
y2eλ∗

2y

8(|ξ | + S)3/2 dy – r2(1 + b2)eλ∗
2ξ /3

}

≥ 0

if

q ≥ sup
ξ<0

8eλ∗
2ξ /3(S + |ξ |)3/2r2(1 + b2)
d2

∫

R
J2(y)y2eλ∗

2y dy
+ q4 := q5.

Fix q = q5, we complete the proof by Lemma 2.4 and a discussion similar to (3.1). �

Theorem 3.4 Assume that c∗
1 = c∗

2. Further suppose that k1, k2 have compact supports.
Then (2.1) with c = c∗ has a positive solution (φ1(ξ ),φ2(ξ )) such that

0 < φ1(ξ ) < 1, 0 < φ2(ξ ) < 1 + c2, ξ ∈ R, lim
ξ→–∞

(
φ1(ξ ),φ2(ξ )

)
= (0, 0)

and

φ1(ξ ) ∼O
(
–ξeλ∗

1ξ
)
, φ2(ξ ) ∼O

(
–ξeλ∗

2ξ
)
, ξ → –∞.

Proof Using the notation in Theorems 3.2–3.3, we define

φ1(ξ ) =

⎧
⎨

⎩

(–Lξ – q
√

–ξ )eλ∗
1ξ , ξ < ξ1,

0, ξ ≥ ξ1,

φ1(ξ ) =

⎧
⎨

⎩

–Lξeλ∗
1ξ , ξ < ξ2,

1, ξ ≥ ξ2,

and

φ2(ξ ) =

⎧
⎨

⎩

(–Lξ – q
√

–ξ )eλ∗
2ξ , ξ < ξ3,

0, ξ ≥ ξ3,

φ2(ξ ) =

⎧
⎨

⎩

(–Lξ + p
√

–ξ )eλ∗
2ξ , ξ < ξ4,

1 + c2, ξ ≥ ξ4,

where p, q > 1 are large enough, ξ1, ξ2, ξ3, ξ4 are similar to above. Then we can obtain a pair
of upper and lower solutions. Since the verification is similar to those in Theorems 3.2–3.3,
we omit it here. �
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4 Asymptotic behavior and nonexistence of traveling wave solutions
In the previous section, we obtain the existence of nonconstant traveling wave solutions of
(1.1). In this part, we shall first consider the behavior if ξ → ∞ by the idea of contracting
rectangle [32] in Lin and Ruan [33]. For s ∈ [0, 1], define the continuous functions

a1(s) = sk1, b1(s) = sk1 + (1 – s)(1 + ε)

and

a2(s) = (1 – s) + sk2, b2(s) = sk2 + (1 – s)(1 + c2)(1 + ε)

with ε ∈ (0, 1) such that

1 – b1(1 + ε) – c1(1 + c2)(1 + ε) > 0, 1 – b2(1 + c2)(1 + ε) > 0.

Then they satisfy
(C1) 1 – a1(s) – b1b1(s) – c1b2(s) > 0,
(C2) 1 – a2(s) – b2b2(s) + c2a1(s) > 0,
(C3) 1 – b1(s) – b1a1(s) – c1a2(s) < 0,
(C4) 1 – b2(s) – b2a2(s) + c2b1(s) < 0,

for any s ∈ (0, 1), we now verify them [34]. In (C1), we have

1 – a1(s) – b1b1(s) – c1b2(s)

= 1 – sk1 – b1
[
sk1 + (1 – s)(1 + ε)

]

– c1
[
sk2 + (1 – s)(1 + c2)(1 + ε)

]

= (1 – s)
[
1 – b1(1 + ε) – c1(1 + c2)(1 + ε)

]

> 0.

(C2) is true since

1 – a2(s) – b2b2(s) + c2a1(s)

= 1 – sk2 – b2
[
sk2 + (1 – s)(1 + c2)(1 + ε)

]
+ c2sk1

= (1 – s)
[
1 – b2(1 + c2)(1 + ε)

]

> 0.

On (C3), we have

1 – b1(s) – b1a1(s) – c1a2(s)

= 1 –
[
sk1 + (1 – s)(1 + ε)

]
– b1sk1 – c1

[
(1 – s) + sk2

]

< 1 –
[
sk1 + (1 – s)

]
– b1sk1 – c1

[
(1 – s) + sk2

]

= –c1(1 – s)

≤ 0.
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Finally, (C4) is true since

1 – b2(s) – b2a2(s) + c2b1(s)

= 1 –
[
sk2 + (1 – s)(1 + c2)(1 + ε)

]

– b2
[
(1 – s) + sk2

]
+ c2

[
sk1 + (1 – s)(1 + ε)

]

< 1 –
[
sk2 + (1 – s)(1 + c2)

]

– b2
[
(1 – s) + sk2

]
+ c2

[
sk1 + (1 – s)

]

= (1 – s)
[
1 – (1 + c2) – b2 + c2

]

= –b2(1 – s)

≤ 0.

Remark 4.1 In Pan [34], we proved the stability of positive steady state by (C1)–(C4) of
the corresponding kinetic system. Moreover, Faria [35] gave some sharp conditions on the
general Lotka–Volterra systems with delays.

Theorem 4.2 Assume that c ≥ c∗. Further suppose that (φ1(ξ ),φ2(ξ )) is a solution of (2.1)
and satisfies

0 < φ1(ξ ) < 1, 0 < φ2(ξ ) < 1 + c2, ξ ∈ R, lim
ξ→–∞

(
φ1(ξ ),φ2(ξ )

)
= (0, 0). (4.1)

If

b1 + c1(1 + c2) < 1, b2(1 + c2) < 1, (4.2)

then

lim
ξ→∞φi(ξ ) = ki, i = 1, 2. (4.3)

Proof We first verify that

lim inf
ξ→∞ φi(ξ ) > 0, i = 1, 2.

By (4.1), we see that

d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1φ1(ξ )F1(φ1,φ2)(ξ )

≥ d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1φ1(ξ )

[
1 – b1 – c1(1 + c2) – φ1(ξ )

]

for any ξ ∈R. Then u1(x, t) = φ1(x + ct) satisfies

⎧
⎨

⎩

∂u1(x,t)
∂t ≥ d1[J1 ∗ u1](x, t) + r1u1(x, t)[1 – b1 – c1(1 + c2) – u1(x, t)],

u1(x, 0) = φ1(x),
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for x ∈R, t > 0. By Lemmas 2.1 and 2.2, we have

lim inf
t→∞ u1(0, t) ≥ 1 – b1 – c1(1 + c2) > 0

and so

lim inf
ξ→∞ φ1(ξ ) ≥ 1 – b1 – c1(1 + c2) > 0

by the definition of traveling wave solutions.
Similarly, we have

⎧
⎨

⎩

∂u2(x,t)
∂t ≥ d2[J2 ∗ u2](x, t) + r2u2(x, t)[1 – b2(1 + c2) – a2u2(x, t)],

u2(x, 0) = φ2(x),

for x ∈R, t > 0. Then Lemmas 2.1 and 2.2 imply that

lim inf
t→∞ u2(0, t) ≥ 1 – b2(1 + c2) > 0

and so

lim inf
ξ→∞ φ2(ξ ) ≥ 1 – b2(1 + c2) > 0.

Define

lim inf
ξ→∞ φ1(ξ ) = φ–

1 , lim inf
ξ→∞ φ2(ξ ) = φ–

2 ,

lim sup
ξ→∞

φ1(ξ ) = φ+
1 , lim sup

ξ→∞
φ2(ξ ) = φ+

2 .

Then there exists s′ ∈ (0, 1] such that

a1
(
s′) ≤ φ–

1 ≤ φ+
1 ≤ b1

(
s′),

a2
(
s′) ≤ φ–

2 ≤ φ+
2 ≤ b2

(
s′).

Define s = sup s′. If s = 1, then the result is true. Otherwise, s < 1 and at least one of the
following is true:

a1(s) = φ–
1 , φ+

1 = b1(s), a2(s) = φ–
2 , φ+

2 = b2(s).

If a1(s) = φ–
1 , then there exists {ξm}∞m=1 such that

lim
m→∞ ξm = ∞, lim

m→∞φ1(ξm) = a1(s)

and

lim inf
m→∞

[
d1[J1 ∗ φ1](ξm) – cφ′

1(ξm)
] ≥ 0.
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By (C1), we see that

lim inf
m→∞

[

1 – φ1(ξm) – b1

∫ 0

–τ

φ1(ξm + cs) dη11(s) – c1

∫ 0

–τ

φ2(ξm + cs) dη12(s)
]

≥ 1 – a1(s) – b1b1(s) – c1b2(s)

> 0,

which implies a contradiction by the definition of φ1(ξ ), φ2(ξ ).
By a similar discussion of

φ+
1 = b1(s), a2(s) = φ–

2 , φ+
2 = b2(s),

we complete the proof. �

We now present the nonexistence of (2.1) with (2.2) if c < c∗.

Theorem 4.3 If c < c∗, then there is not a positive solution of (2.1) with (2.2).

Proof Were the statement false, then, for some c′ ∈ (0, c∗), there is a positive solution
(φ1(ξ ),φ2(ξ )) of (2.1) with (2.2). Firstly, it is easy to confirm that

0 < φ1(ξ ) < 1, 0 < φ2(ξ ) < 1 + c2, ξ ∈R.

If c∗ = c∗
1, then there exists ε > 0 such that

inf
λ>0

d1[
∫

R
J1(y)eλy dy – 1] + r1(1 – ε)

λ
> c′.

Let ξ ′ ∈R such that

sup
x≤ξ ′

[

b1

∫ 0

–τ

φ1
(
x + c′s

)
dη11(s) + c1

∫ 0

–τ

φ2
(
x + c′s

)
dη12(s)

]

= ε,

then

d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1φ1(ξ )

[
1 – ε – φ1(ξ )

] ≥ 0, ξ ≤ ξ ′.

Define infx≥ξ ′ φ1(ξ ) = φ1, then φ1 > 0 by the positivity and limit behavior. Let M ≥ 1 such
that

M – 1 ≥ b1 + c1(1 + c2)
φ1

,

then

d1[J1 ∗ φ1](ξ ) – cφ′
1(ξ ) + r1φ1(ξ )

[
1 – ε – Mφ1(ξ )

] ≥ 0, ξ ∈R.
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Therefore, φ1(ξ ) = φ1(x + c′t) = u1(x, t) satisfies

⎧
⎨

⎩

∂u1(x,t)
∂t ≥ d1[J1 ∗ u1](x, t) + r1u1(x, t)[1 – ε – Mu1(x, t)], x ∈R, t > 0,

u1(x, 0) = φ1(x), x ∈R.

By Lemma 2.1, we see that if

–2x =
[

inf
λ>0

d1[
∫

R
J1(y)eλy dy – 1] + r1(1 – ε)

λ
+ c′

]

t,

then

lim inf
t→∞ u1(x, t) ≥ 1 – ε

M
> 0,

which also implies that x + c′t → –∞, t → ∞ and

lim
ξ→–∞φ1(ξ ) = lim sup

t→∞
u1(x, t) = 0,

a contradiction occurs.
Similarly, we can prove the result if c∗ = c∗

2. The proof is complete. �

5 Conclusion and discussion
In this paper, we firstly show the existence and nonexistence of traveling wave solutions
for all positive wave speed, and thus obtain the minimal wave speed. In [20, 21], the au-
thors studied the existence of traveling wave solutions when c > c∗, and the traveling wave
solutions decay exponentially. In this paper, if c = c∗, these traveling wave solutions do not
decay exponentially, the asymptotic behavior coincides with the conclusions in [36, 37]
when b1 = b2 = c1 = c2. That is, for the minimal wave speed, the corresponding traveling
wave solutions may have different properties. Moreover, there are also some results on the
minimal wave speed of nonmonotone coupled systems with time delay, which was proved
by constructing upper and lower solutions, part of recent results can be found in Fu [38],
Lin [39] and Yang and Li [40].

In mathematical biology, the spreading speed is also an important threshold [41]. For
monotone systems, see Liang and Zhao [3], Lui [4, 42], Weinberger [5], Weinberger et al.
[6]. Recently, Pan [43] estimated the invasion speed of the predator in a predator–prey sys-
tem, which equals the minimal invasion wave speed in Lin [44]. It is a challenging question
to estimate the spreading speeds of (1.1), of which the corresponding undelayed system
with classical Laplacian diffusion were studied by Lin [45], Pan [46], Wang and Zhang [47],
Wang and Zhao [48].

Funding
The first author was partially supported by Scientific Research Project of High Education of Gansu Province of China
(2016B-080) and Lanzhou City University (LZCU-QN20). The second author was partially supported by NSF of China
(11461040, 11471149). The third author was partially supported by Natural Science Foundation of Jiangsu Province
(BK20151288).

Competing interests
The authors declare that they have no competing interests.



Li et al. Boundary Value Problems  (2018) 2018:49 Page 25 of 26

Authors’ contributions
All authors read and approved the final manuscript.

Author details
1School of Mathematics, Lanzhou City University, Lanzhou, People’s Republic of China. 2School of Science, Lanzhou
University of Technology, Lanzhou, People’s Republic of China. 3School of Mathematical Science, Huaiyin Normal
University, Huaian, People’s Republic of China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 24 January 2018 Accepted: 22 March 2018

References
1. Fang, J., Zhao, X.Q.: Bistable travelling waves for monotone semiflows with application. J. Eur. Math. Soc. 17,

3678–3704 (2015)
2. Kumar, S., Kumar, D., Singh, J.: Fractional modelling arising in unidirectional propagation of long waves in dispersive

media. Adv. Nonlinear Anal. 5, 383–394 (2016)
3. Liang, X., Zhao, X.Q.: Asymptotic speeds of spread and traveling waves for monotone semiflows with applications.

Commun. Pure Appl. Math. 60, 1–40 (2007)
4. Lui, R.: Biological growth and spread modeled by systems of recursions. I. Mathematical theory. Math. Biosci. 93,

269–295 (1989)
5. Weinberger, H.F.: Long-time behavior of a class of biological model. SIAM J. Math. Anal. 13, 353–396 (1982)
6. Weinberger, H.F., Lewis, M.A., Li, B.: Analysis of linear determinacy for spread in cooperative models. J. Math. Biol. 45,

183–218 (2002)
7. Zhao, X.-Q.: Spatial dynamics of some evolution systems in biology. In: Du, Y., Ishii, H., Lin, W.Y. (eds.) Recent Progress

on Reaction-Diffusion Systems and Viscosity Solutions, pp. 332–363. World Scientific, Singapore (2009)
8. Murray, J.D.: Mathematical Biology, II. Spatial Models and Biomedical Applications, 3rd edn. Interdisciplinary Applied

Mathematics, vol. 18. Springer, New York (2003)
9. Shigesada, N., Kawasaki, K.: Biological Invasions: Theory and Practice. Oxford University Press, Oxford (1997)
10. Du, Y., Shi, J.: Some recent results on diffusive predator–prey models in spatially heterogeneous environment. In:

Nonlinear Dynamics and Evolution Equations. Fields Inst. Commun., vol. 48, pp. 95–135. Am. Math. Soc., Providence
(2006)

11. Ghergu, M., Radulescu, V.: A singular Gierer–Meinhardt system with different source terms. Proc. R. Soc. Edinb., Sect. A
138, 1215–1234 (2008)

12. Ghergu, M., Radulescu, V.: Turing patterns in general reaction–diffusion systems of Brusselator type. Commun.
Contemp. Math. 12, 661–679 (2010)

13. Ghergu, M., Radulescu, V.: Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics.
Springer Monographs in Mathematics. Springer, Heidelberg (2012)

14. Dunbar, S.R.: Travelling wave solutions of diffusive Lotka–Volterra equations. J. Math. Biol. 17, 11–32 (1983)
15. Dunbar, S.R.: Traveling wave solutions of diffusive Lotka–Volterra equations: a heteroclinic connection in R

4 . Trans.
Am. Math. Soc. 286, 557–594 (1984)

16. Dunbar, S.R.: Traveling waves in diffusive predator–prey equations: periodic orbits and pointto-periodic heteroclic
orbits. SIAM J. Appl. Math. 46, 1057–1078 (1986)

17. Bates, P.W.: On some nonlocal evolution equations arising in materials science. In: Brunner, H., Zhao, X., Zou, X. (eds.)
Nonlinear Dynamics and Evolution Equations. Fields Inst. Commun., vol. 48, pp. 13–52. AMS, Providence (2006)

18. Fife, P.: Some nonclassical trends in parabolic and parabolic-like evolutions. In: Kirkilionis, M., Krömker, S., Rannacher,
R., Tomi, F. (eds.) Trends in Nonlinear Analysis, pp. 153–191. Springer, Berlin (2003)

19. Hopf, L.: Introduction to Differential Equations of Physics. Dover, New York (1948)
20. Yu, Z., Yuan, R.: Travelling wave solutions in non-local convolution diffusive competitive-cooperative systems. IMA J.

Appl. Math. 76, 493–513 (2011)
21. Zhang, G., Li, W.T., Lin, G.: Traveling waves in delayed predator–prey systems with nonlocal diffusion and stage

structure. Math. Comput. Model. 49, 1021–1029 (2009)
22. Zhang, G., Li, W.T., Wang, Z.C.: Spreading speeds and traveling waves for nonlocal dispersal equations with

degenerate monostable nonlinearity. J. Differ. Equ. 252, 5096–5124 (2012)
23. Jin, Y., Zhao, X.Q.: Spatial dynamics of a periodic population model with dispersal. Nonlinearity 22, 1167–1189 (2009)
24. Pan, S.: Traveling wave solutions in nonlocal dispersal models with nonlocal delays. J. Korean Math. Soc. 51, 703–719

(2014)
25. Ma, S.: Traveling wavefronts for delayed reaction–diffusion systems via a fixed point theorem. J. Differ. Equ. 171,

294–314 (2001)
26. Wu, J., Zou, X.: Traveling wave fronts of reaction–diffusion systems with delay. J. Dyn. Differ. Equ. 13, 651–687 (2001)
27. Huang, J., Zou, X.: Traveling wave solutions in delayed reaction diffusion systems with partial monotonicity. Acta

Math. Appl. Sin. 22, 243–256 (2006)
28. Pan, S.: Traveling wave fronts of delayed non-local diffusion systems without quasimonotonicity. J. Math. Anal. Appl.

346, 415–424 (2008)
29. Pan, S., Li, W.T., Lin, G.: Travelling wave fronts in nonlocal delayed reaction–diffusion systems and applications.

Z. Angew. Math. Phys. 60, 377–392 (2009)
30. Sun, Y., Li, W.T., Wang, Z.C.: Traveling waves for a nonlocal anisotropic dispersal equation with monostable

nonlinearity. Nonlinear Anal. TMA 74, 814–826 (2011)
31. Wu, S., Liu, S.: Traveling waves for delayed non-local diffusion equations with crossing-monostability. Appl. Math.

Comput. 217, 1435–1444 (2010)



Li et al. Boundary Value Problems  (2018) 2018:49 Page 26 of 26

32. Smith, H.L.: Monotone Dynamical Systems: An Introduction to the Theory of Competitive and Cooperative Systems.
AMS, Providence (1995)

33. Lin, G., Ruan, S.: Traveling wave solutions for delayed reaction–diffusion systems and applications to Lotka–Volterra
competition-diffusion models with distributed delays. J. Dyn. Differ. Equ. 26, 583–605 (2014)

34. Pan, S.: Convergence and traveling wave solutions for a predator–prey system with distributed delays. Mediterr. J.
Math. 14, Article ID 103 (2017)

35. Faria, T.: Sharp conditions for global stability of Lotka–Volterra systems with distributed delays. J. Differ. Equ. 246,
4391–4404 (2009)

36. Carr, J., Chmaj, A.: Uniqueness of travelling waves for nonlocal monostable equations. Proc. Am. Math. Soc. 132,
2433–2439 (2004)

37. Li, W.T., Sun, Y., Wang, Z.C.: Entire solutions in the Fisher-KPP equation with nonlocal dispersal. Nonlinear Anal., Real
World Appl. 11, 2302–2313 (2010)

38. Fu, S.C.: Traveling waves for a diffusive SIR model with delay. J. Math. Anal. Appl. 435(1), 20–37 (2016)
39. Lin, G.: Minimal wave speed of competitive diffusive systems with time delays. Appl. Math. Lett. 76, 164–169 (2018)
40. Yang, F.-Y., Li, W.-T.: Traveling waves in a nonlocal dispersal SIR model with critical wave speed. J. Math. Anal. Appl. 458,

1131–1146 (2018)
41. Aronson, D.G., Weinberger, H.F.: Nonlinear diffusion in population genetics, combustion, and nerve pulse

propagation. In: Goldstein, J.A. (ed.) Partial Differential Equations and Related Topics. Lecture Notes in Mathematics,
vol. 446, pp. 5–49. Springer, Berlin (1975)

42. Lui, R.: Biological growth and spread modeled by systems of recursions. II. Biological theory. Math. Biosci. 107,
255–287 (1991)

43. Pan, S.: Invasion speed of a predator–prey system. Appl. Math. Lett. 74, 46–51 (2017)
44. Lin, G.: Invasion traveling wave solutions of a predator–prey system. Nonlinear Anal. 96, 47–58 (2014)
45. Lin, G.: Spreading speeds of a Lotka–Volterra predator–prey system: the role of the predator. Nonlinear Anal. 74,

2448–2461 (2011)
46. Pan, S.: Asymptotic spreading in a Lotka–Volterra predator–prey system. J. Math. Anal. Appl. 407, 230–236 (2013)
47. Wang, M., Zhang, Y.: Dynamics for a diffusive prey-predator model with different free boundaries. J. Differ. Equ. 264,

3527–3558 (2018)
48. Wang, M., Zhao, J.: A free boundary problem for the predator–prey model with double free boundaries. Dyn. Partial

Differ. Equ. 29, 957–979 (2017)


	Minimal wave speed in a dispersal predator-prey system with delays
	Abstract
	Keywords

	Introduction
	Preliminaries
	Existence of traveling wave solutions
	Asymptotic behavior and nonexistence of traveling wave solutions
	Conclusion and discussion
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


