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Abstract
This paper focuses on the following modified quasilinear fourth-order elliptic
equation:

{
�2u – (a + b

∫
R3 |∇u|2 dx)�u + λV(x)u – 1

2�(u2)u = f (x,u), in R
3,

u(x) ∈ H2(R3),

where �2 =�(�) is the biharmonic operator, a > 0, b ≥ 0, λ ≥ 1 is a parameter,
V ∈ C(R3,R), f (x,u) ∈ C(R3 ×R,R). V(x) and f (x,u)u are both allowed to be

sign-changing. Under the weaker assumption lim|t|→∞
∫ t
0 f (x,s)ds

|t|3 =∞ uniformly in

x ∈ R
3, a sequence of high energy weak solutions for the above problem are

obtained.

MSC: 35J25; 35J20; 35J60; 35J61

Keywords: Super-quadratic; High energy solutions; Sign-changing potential;
Fountain theorem

1 Introduction and main results
In this paper, we consider the following elliptic equation:

⎧⎨
⎩�2u – (a + b

∫
R3 |∇u|2 dx)�u + λV (x)u – 1

2�(u2)u = f (x, u), in R
3,

u(x) ∈ H2(R3),
(1.1)

where �2 = �(�) is the biharmonic operator, the constants a > 0, b ≥ 0, and λ ≥ 1 is a
parameter. V (x) : R3 →R and f : R3 ×R →R satisfies the following assumptions:

(V ) V ∈ C(R3,R), infR3 V > –∞ and there exists a constant r > 0 such that

lim|y|→∞ meas
{

x ∈ R
3 : |x – y| ≤ r, V (x) ≤ M

}
= 0, ∀M > 0;

(F1) f ∈ C(R3 ×R,R) and there exists positive constant C0 and p > 4 such that

∣∣f (x, t)
∣∣ ≤ C0

(|t| + |t|p–1), ∀(x, t) ∈R
3 ×R.

(F2) lim|t|→∞ F(x,t)
|t|3 = ∞ uniformly in x ∈R

3, where F(x, t) =
∫ t

0 f (x, s) ds.
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(F3) There exists a constant α ≥ 0 such that

f (x, t)t – 4F(x, t) ≥ –αt2, ∀(x, t) ∈ R
3 ×R.

(F4) f (x, –t) = –f (x, t) for all (x, t) ∈R
3 ×R.

The Kirchhoff’s model considers the changes in length of the string produced by trans-
verse vibrations. It was pointed out in [1–4] that (1.1) models several physical and bio-
logical systems where u describes a process which relies on the mean of itself such as the
population density. For more mathematical and physical background on Kirchhoff-type
problems, we refer the reader to [1, 5–8] and the references therein. It is well known that
fourth-order elliptic equation has been widely studied since Lazer and Mckenna [9] first
proposed to study periodic oscillations and traveling waves in a suspension bridge.

In te recent years, many scholars widely studied the Schrödinger equation under variant
assumptions on V (x) and f (x, u), such as [3, 4, 10–13]. In [10], Wu considered the following
Schrödinger–Kirchhoff-type problem:

–
(

a + b
∫
RN

|∇u|2 dx
)

�u + V (x)u = f (x, u), in R
N (N ≤ 3) (1.2)

under these hypotheses:
(V ′) V ∈ C(RN ,R) satisfies inf V (x) ≥ a1 > 0 and for each M > 0, meas{x ∈ R

N : V (x) ≤
M} < +∞, where a1 is a constant and meas denotes the Lebesgue measure in R

N .
(f1) f ∈ C(RN ×R,R) and |f (x, t)| ≤ C(1+ |t|p–1) for some 2 ≤ p < 2∗, where C is a positive

constant;
(f2) f (x, t) = o(|t|) as |t| → 0;
(f3) F(x,t)

t4 → +∞ as |t| → +∞ uniformly in ∀x ∈ R
N ;

(f4) tf (x, t) ≥ 4F(x, t), ∀x ∈R
N , ∀t ∈R.

Here (f3) is essential in these references to overcome the missing of compactness. The
author got a nontrivial solution of (1.2). In [8], Zhang and Tang also considered the prob-
lem (1.2) under the assumption (V ), and they obtained infinitely many high energy solu-
tions of the problem (1.2). In [11], Nie studied the following Schrödinger–Kirchhoff-type
equation:

⎧⎨
⎩–(a + b

∫
R3 |∇u|2 dx)�u + λV (x)u = f (x, u), in R

3,

u(x) → 0 as |x| → ∞,
(1.3)

under the assumption (V ′). They got a sequence of high energy weak solutions whenever
λ > 0 is sufficiently large. In [14], Xu and Chen also used condition (V ′) to study the prob-
lem (1.3).

More recently, Cheng and Tang [15] studied the following elliptic equation:

⎧⎨
⎩�2u – �u + V (x)u – 1

2�(u2)u = f (x, u), in R
N

u(x) ∈ H2(RN ),
(1.4)

under the assumption (f3). Clearly, the problem (1.1) is equivalent to (1.4) whenever N = 3,
a = 1, b = 0, λ = 1, and condition (f3) is stronger than (F2).
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Motivated by the work we discussed above, we will use weaker conditions (F2), (F3) in-
stead of the common assumptions (f3), (f4), while V (x) and f (x, u)u are both allowed to be
sign-changing. We will further study and establish the existence of infinitely many high
energy solutions of (1.1) whenever λ ≥ 1, by using the fountain theorem [16, 17] or its
other versions [18, 19]. To the best of our knowledge, there is little work concerning this
case up to now.

The following are our main results.

Theorem 1.1 Assume that (V ) and (F1)–(F4) are satisfied, then problem (1.1) possesses
infinitely many high energy solutions whenever λ ≥ 1.

Corollary 1.2 Assume that (V ) and (F1)–(F4) are satisfied, then problem (1.3) possesses
infinitely many high energy nontrivial solutions whenever λ ≥ 1.

Remark 1.3 Obviously, the condition (V ) is weaker than (V ′); (F1) is weaker than (f1) and
(f2); (F3) is weaker than (f7) [14] and (f4); (F2) is weaker than (g2) [15]. Furthermore, we do
not require λ large enough, but we only need λ ≥ 1. Therefore, our results extend and im-
prove Theorem 1 [10], Theorem 1.2 [11], Theorem 1.3 [14], Theorem 1.1 [8], Theorem 1.4
[15] and so on.

Remark 1.4 There are many functions satisfying assumptions (F1)–(F4) not (f3). For ex-
ample

f (x, u) = 4u3 –
2u(1 + u2) ln(1 + u2) + 2u3 – 2u3 ln(1 + u2)

(1 + u2)2

for all (x, u) ∈R
3 ×R.

Indeed, F(x, u) = u4 – u2 ln(1+u2)
1+u2 , then we can find a positive constant α such that

f (x, u)u – 4F(x, u) + αu2 =
2u2 ln(1 + u2 – 2u4 + αu6 + 2αu4 + αu2)

(1 + u2)2 ≥ 0.

2 Preliminary lemmas and proof of our main result
In order to apply the variational method, we first recall some related preliminaries and
establish a corresponding variational framework for our problem (1.1); then we give the
proof of Theorem 1.1.

For 1 < s < +∞, define the Sobolev space

W m,s(
R

N)
=

{
u ∈ Ls(

R
N) | Dαu ∈ Ls(

R
N)

, |α| ≤ m
}

equipped with the norm

‖u‖W m,s(RN ) =
( ∑

|α|≤m

∫
RN

∣∣Dαu
∣∣s dx

) 1
s
,
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where α = (α1,α2, . . . ,αN ) with αi ∈ Z
+ (the set of all non-negative integers), i = 1, 2, . . . , N ,

|α| = α1 + α2 + · · · + αN and

Dαu =
∂ |α|u

∂xα1
1 ∂xα2

2 · · · ∂xαN
N

.

For s = 2, Hm(RN ) = W m,2(RN ) is a Hilbert space equipped with the scalar product

〈u, v〉Hm =
∑

|α|≤m

∫
RN

DαuDαv dx

and the norm

‖u‖Hm = 〈u, u〉 1
2
Hm =

( ∑
|α|≤m

∫
RN

∣∣Dαu
∣∣2 dx

) 1
2

.

Moreover, for m = 2 one has

〈u, v〉H2 =
∫
RN

(�u�v + ∇u∇v + uv) dx,

‖u‖2
H2 = 〈u, v〉H2 =

∫
RN

(|�u|2 + |∇u|2 + u2)dx,

whenever u, v ∈ H2(RN ).
Under assumption (V ), we can find V0 ≥ 0 such that Ṽ (x) = V (x) + V0 ≥ 1 for all x ∈R

3.
Then

Eλ =
{

u ∈ H2(
R

3) :
∫
R3

(
a|∇u|2 + λṼ (x)u2)dx < ∞

}

is a Hilbert space endowed with the norm

‖u‖λ =
(∫

R3

(|�u|2 + a|∇u|2 + λṼ (x)u2)dx
) 1

2
.

Let

�λ(u) =
1
2

∫
R3

(|�u|2 + a|∇u|2 + λV (x)u2)dx +
b
4

(∫
R3

|∇u|2 dx
)2

+
1
2

∫
R3

u2|∇u|2 dx –
∫
R3

F(x, u) dx, ∀u ∈ Eλ. (2.1)

By condition (V ), (F1) and the fact
∫
R3 u2|∇u|2 dx < ∞ (see Lemma 2.2 in [20]), �λ is a

well-defined class C1 functional. For all u, v ∈ Eλ

〈
�′

λ(u), v
〉

=
∫
R3

(�u�v + a∇u∇v + λV (x)uv
)

dx + b
∫
R3

|∇u|2 dx
∫
R3

∇u∇v dx

+
∫
R3

(
uv|∇u|2 + u2∇u∇v

)
dx –

∫
R3

f (x, u)v dx. (2.2)
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Clearly, seeking a weak solution of problem (1.1) is equivalent to finding a critical point of
the functional �λ.

Definition 2.1 A sequence {un} ⊂ Eλ is said to be a (C)c sequence if

�λ(un) → c,
∥∥�′

λ(un)
∥∥

λ

(
1 + ‖un‖λ

) → 0.

�λ is said to satisfy the (C)c condition if any (C)c sequence possesses a convergent subse-
quence.

Let E′
λ = {u ∈ H2(RN ) :

∫
RN (a|∇u|2 + λṼ (x)u2) dx < ∞}.

Lemma 2.2 Under assumption (V ), the embedding E′
λ ↪→ Ls(RN ) is compact for 2 ≤ s < 2∗,

where 2∗ = 2N
N–4 , if N > 4; 2∗ = +∞, if N ≤ 4.

Proof Define

E =
{

u ∈ H1(
R

N)
:
∫
RN

(
a|∇u|2 + λṼ (x)u2)dx < ∞

}
.

By Propositions 3.1 and 3.3 in [13], we know that the embedding E ↪→ Ls(RN ) is com-
pact for 2 ≤ s < 2∗ due to the condition (V ), and the embedding E′

λ ↪→ E is continuous,
therefore, the embedding E′

λ ↪→ Ls(RN ) is compact for 2 ≤ s < 2∗. �

Lemma 2.3 Under assumptions (V ), (F1), any bounded (C)c sequence of �λ has a strongly
convergent subsequence in Eλ.

Proof Let {un} ⊂ Eλ hold with

sup
n

‖un‖λ < +∞. (2.3)

Then up to a subsequence, there exists a constant c ∈R such that

�λ(un) → c, �′
λ(un) → 0. (2.4)

According to Lemma 2.2, going if necessary to a subsequence, we can assume that there
exists u ∈ Eλ such that

un ⇀ u in Eλ,

un → u in Ls(
R

3) (2 ≤ s < +∞), (2.5)

un → u a.e. in R
3.

By an elementary computation,

〈
�′

λ(un) – �′(u), un – u
〉

≥ ‖un – u‖2
λ – λV0

∫
R3

|un – u|2 dx
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+ b
(∫

R3
|∇un|2 dx –

∫
R3

|∇u|2 dx
)∫

R3
∇un∇(un – u) dx

+
∫
R3

(
un|∇un|2 – u|∇u|2)(un – u) dx +

∫
R3

(
u2

n – u2)∇u∇(un – u) dx

+
∫
R3

(
f (x, u) – f (x, un)

)
(un – u) dx. (2.6)

Clearly, λV0
∫
R3 |un – u|2 dx → 0, and 〈�′

λ(un) – �′(u), un – u〉 → 0. Then, since {un} ⊂ Eλ

is bounded, we have

∣∣∣∣b
(∫

R3
|∇un|2 dx –

∫
R3

|∇u|2 dx
)∫

R3
∇un∇(un – u) dx

∣∣∣∣
≤

∣∣∣∣b
(∫

R3
|∇un|2 dx –

∫
R3

|∇u|2 dx
)∫

R3
∇u∇(un – u) dx

∣∣∣∣
+

∣∣∣∣b
(∫

R3
|∇un|2 dx –

∫
R3

|∇u|2 dx
)∫

R3

∣∣∇(un – u)
∣∣2 dx

∣∣∣∣
→ 0. (2.7)

Note that Eλ ↪→ H2(R3) ↪→ W 1,s(R3) for 2 ≤ s ≤ +∞,

∫
R3

|∇un|3 dx ≤
∫
R3

(
|un|2 +

3∑
i=1

∣∣∣∣∂un

∂xi

∣∣∣∣
2
) 3

2

dx

≤
∫
R3

(
|un| +

3∑
i=1

∣∣∣∣∂un

∂xi

∣∣∣∣
)3

dx

≤
∫
R3

[
4 max

{
|un|,

∣∣∣∣∂un

∂x1

∣∣∣∣,
∣∣∣∣∂un

∂x2

∣∣∣∣,
∣∣∣∣∂un

∂x3

∣∣∣∣
}]3

dx

≤ 43
∫
R3

(
|un|3 +

3∑
i=1

∣∣∣∣∂un

∂xi

∣∣∣∣
3
)

dx

= 43‖un‖3
W 1,3(R3)

≤ 43S3
3‖un‖3

λ, (2.8)

where

Ss = sup
u∈Eλ ,‖u‖λ=1

‖u‖W 1,s , ∀2 ≤ s ≤ +∞.

Applying (2.3)–(2.5) and (2.8), there exist constants C1 > 0 such that

∣∣∣∣
∫
R3

(
un|∇un|2 – u|∇u|2)(un – u) dx

∣∣∣∣
≤

∫
R3

|un||∇un|2|un – u|dx +
∫
R3

|u||∇u|2|un – u|dx

≤
(∫

R3
|un|6 dx

) 1
6
(∫

R3
|∇un|3 dx

) 2
3
(∫

R3
|un – u|6 dx

) 1
6



Wang et al. Boundary Value Problems  (2018) 2018:54 Page 7 of 13

+
(∫

R3
|u|6 dx

) 1
6
(∫

R3
|∇u|3 dx

) 2
3
(∫

R3
|un – u|6 dx

) 1
6

≤ C1‖un – u‖L6 → 0, as n → ∞, (2.9)

and C′
1 > 0 such that

∣∣∣∣
∫
R3

(
u2

n – u2)∇u∇(un – u) dx
∣∣∣∣

≤
∫
R3

|un – u||un + u||∇u|∣∣∇(un – u)
∣∣dx

≤
(∫

R3
|un – u|6

) 1
6
(∫

R3
|un + u|6

) 1
6
(∫

R3
|∇u|3

) 1
3
(∫

R3

∣∣∇(un – u)
∣∣3

) 1
3

≤ C′
1‖un – u‖L6 → 0, as n → ∞. (2.10)

By (F1) and the Hölder inequality,

∣∣∣∣
∫
R3

(
f (x, u) – f (x, un)

)
(un – u) dx

∣∣∣∣
≤ C0

∫
R3

[|u| + |u|p–1 + |un| + |un|p–1]|un – u|dx

≤ C0
[(‖un‖L2 + ‖u‖L2

)‖un – u‖L2 +
(‖un‖p–1

Lp + ‖u‖p–1
Lp

)‖un – u‖Lp
]
.

Then, combining the last inequality with (2.5), we get

∫
R3

(
f (x, u) – f (x, un)

)
(un – u) dx → 0, as n → ∞. (2.11)

Hence, the combination of (2.7) and (2.9)–(2.11) implies that

un → u in Eλ.

Therefore, the proof is complete. �

Lemma 2.4 Assume that (V ) and (F1)–(F3) hold, then �λ satisfies the (C)c condition.

Proof Let {un} ⊂ Eλ be such that

�λ(un) → c,
∥∥�′

λ(un)
∥∥

λ

(
1 + ‖un‖λ

) → 0. (2.12)

First, we prove that {un} is bounded in Eλ. By (F3), (2.1), (2.2) and (2.12), one has

c + o(1) = �λ(un) –
1
4
〈
�′

λ(un), un
〉

=
1
4

∫
R3

(|�un|2 + a|∇un|2 + λṼ (x)u2
n
)

dx

+
∫
R3

[
1
4

f (x, un)un – F(x, un) –
λ

4
V0u2

n

]
dx
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≥ 1
4
‖un‖2

λ –
α + λV0

4

∫
R3

u2
n dx. (2.13)

Thus, it remains to show that {un} is bounded in L2(R3). Otherwise, suppose that ‖un‖2 →
∞ and then ‖un‖λ → ∞. Let ωn = un

‖un‖λ
, then ‖ωn‖λ = 1. According to Lemma 2.2, up to

a subsequence, for some ω ∈ Eλ, we obtain

ωn ⇀ ω in Eλ,

ωn → ω in L2(
R

3),

ωn → ω a.e. in R
3.

Clearly, we deduce that ω �= 0 from (2.13). Then, for x ∈ {y ∈ R
3 : ω(y) �= 0}, we have

|un(x)| → ∞ as n → ∞. For any given u ∈ H2(R3)\{0}, define

g(t) =
∥∥t–1u(tx)

∥∥2
H2 – 1

=
1
t

∫
R3

|�u|2 dx +
1
t3

∫
R3

|∇u|2 dx +
1
t5

∫
R3

u2 dx – 1, ∀t > 0.

By an elementary computation, there exists a unique T = t̃(u) > 0 such that

g(T) = 0, ∀u ∈ H2(
R

3)\{0}.

This implies that g(t) = 0 defines a functional T = t̃(u) on H2(R3)\{0}. We define t̃(0) = 0.
It is easy to verify that T = t̃(u) is continuous and t̃(u) → ∞ as ‖u‖H2 → ∞.

Due to the definition of g , for any u ∈ H2(R3)\{0}, there exists

v(x) = T–1u(Tx) ∈ H2(
R

3)
such that

‖v‖H2 = 1.

Note that un �= 0 for large n ∈N, then there exist

vn(x) = T–1
n un(Tnx) ∈ H2(

R
3)

such that

‖vn‖H2 = 1.

That is,

un(x) = Tnvn
(
T–1

n x
)
,

with ‖vn‖H2 = 1 for large n ∈ N. Moreover, we have

Tn = t̃(un) → ∞ as n → ∞
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and

{
x ∈R

3 : vn(x) �= 0
} �= ∅ for large n ∈N.

From (F1)–(F3), there are R0 > 0 and C2 > 0 such that, for all x ∈R
3,

f (x, u)u + αu2 ≥ 4F(x, u) ≥ 0, ∀|u| ≥ R0, (2.14)

and

∣∣f (x, u)u
∣∣ ≤ C2u2, ∀|u| ≤ R0. (2.15)

Thus, by (F3), (2.1), (2.2), (2.12)–(2.15) and ‖vn‖H2 = 1,

c + o(1) = �λ(un) –
1
2
〈
�′

λ(un), un
〉

≥ –
b
4
‖∇un‖4

2 –
α

4

∫
R3

u2
n dx –

1
2

∫
R3

u2
n|∇un|2 dx +

1
4

∫
R3

f (x, un)un dx

= –
bT6

n
4

‖∇vn‖4
2 –

αT5
n

4

∫
R3

v2
n dx –

T5
n

2

∫
R3

v2
n|∇vn|2 dx

+
T3

n
4

∫
|Tnvn|≤R0

f (Tnx, Tnvn)Tnvn dx +
T6

n
4

∫
|Tnvn|≥R0

f (Tnx, Tnvn)Tnvn

T3
n

dx

≥ T6
n

4

{
–b –

α + C2

Tn
+

∫
|Tnvn|≥R0

f (Tnx, Tnvn)Tnvn

T3
n

dx

–
2
∫
R3 v2

n|∇vn|2 dx
Tn

}
. (2.16)

By the Hölder inequality and the Sobolev embedding inequality, we see that the sequence
of integrals

∫
R3 v2

n|∇vn|2 dx < ∞, since ‖vn‖H2 = 1; on the other hand, by (F2) and (2.14),
we have∫

|Tnvn|≥R0

f (Tnx, Tnvn)Tnvn

T3
n

dx → +∞ as n → +∞,

which contradicts (2.16). Hence, {un} is bounded in L2(R3). This shows that {un} is
bounded in Eλ due to (2.13). By Lemma 2.3, {un} contains a convergent subsequence. �

Next, we define

Xj = Rej, Yk =
k⊕

j=1

Xj, Zk =
∞⊕

j=k+1

Xj, k ∈ Z,

where {ej} is an orthonormal basis of Eλ.

Lemma 2.5 Assume that (V ) holds, then, for 2 ≤ s < 2∗,

βk(s) = sup
u∈Zk ,‖u‖λ=1

‖u‖s → 0, k → ∞.
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Proof By virtue of Lemma 2.2, we can prove the conclusion in a similar way to [16,
Lemma 3.8] and [17, Corollary 8.18]. �

Lemma 2.6 Assume that (V ) and (F1) hold, then there exist constants ρ,α > 0 such that
�|∂Bρ∩Zm ≥ α.

Proof From (2.1) and (F1), for all u ∈ Eλ we have

�λ(u) =
1
2

∫
R3

(|�u|2 + a|∇u|2 + λV (x)u2)dx +
b
4

(∫
R3

|∇u|2 dx
)2

+
1
2

∫
R3

u2|∇u|2 dx –
∫
R3

F(x, u) dx

≥ 1
2
‖u‖2

λ –
(

λV0 + C0

2
‖u‖2

2 +
C0

p
‖u‖p

p

)
. (2.17)

By virtue of Lemma 2.5, we can choose an integer m ≥ 1, for all u ∈ Zm, satisfying

‖u‖2
2 ≤ 1

2(λV0 + C0)
‖u‖2

λ,

‖u‖p
p ≤ p

4C0
‖u‖p

λ.

Combining this with (2.17), one has

�λ(u) ≥ 1
4
‖u‖2

λ

(
1 – ‖u‖p–2

λ

)
.

Note that, if we let ρ = ‖u‖λ > 0 be sufficiently small, then �λ(u) ≥ 1
8ρ2 > 0. �

Lemma 2.7 Assume that (V ), (F1) and (F2) hold, then, for any finite dimensional subspace
E ⊂ Eλ, there exists R = R(E) > 0 such that �λ|E\Bρ < 0.

Proof According to the proof of Lemma 2.4, we know that, for any u ∈ E\{0}, there exists
a unique T = t̃(u) > 0 such that

v(x) = T–1u(Tx) ∈ H2(
R

3) and ‖v‖H2 = 1.

Hence

u(x) = Tv
(
T–1x

)
with ‖v‖H2 = 1 and T > 0.

By the equivalence of norms in the finite dimensional space E, there exists C3 > 0 such that

min{a, 1}‖u‖2
H2 ≤ ‖u‖2

λ ≤ C3‖u‖2
2.

Combining this with

T = t̃(u) → ∞ as ‖u‖λ → ∞ uniformly in E,
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we find that, for any δ > 0, there exists a large R = R(E, δ) > 0 such that

T = t̃(u) ≥ δ for all u ∈ E with ‖u‖λ ≥ R.

By (F1), there exists C4 > 0, for all x ∈R
N , |u| ≤ R0 such that

∣∣F(x, u)
∣∣ ≤ C4u2,

where R0 is given by (2.15). Combining (2.1) with ‖v‖H2 = 1, it follows that for all u ∈ E\{0}

�λ(u) =
1
2
‖u‖2

λ +
b
4
‖∇u‖4

2 +
1
2

∫
R3

u2|∇u|2 dx –
∫
R3

[
λV0

2
u2 + F(x, u)

]
dx

≤ C3

2
‖u‖2

2 +
b
4
‖∇u‖4

2 +
1
2

∫
R3

u2|∇u|2 dx –
∫
R3

[
λV0

2
u2 + F(x, u)

]
dx

=
C3 – λV0

2
T5‖v‖2

2 +
bT6

4
‖∇v‖4

2 – T3
∫
R3

F(Tx, Tv) dx +
1
2

∫
R3

u2|∇u|2 dx

≤ T6
(

b
4

+
C3 + λV0 + 2C4

2T
–

∫
|Tv|≥R0

F(Tx, Tv)
T3 dx

)
+

1
2

∫
R3

u2|∇u|2 dx

= �(T). (2.18)

Note that v �= 0, then it follows from (F2) that

F(Tx, Tv)
|Tv|3 → +∞ as T → +∞.

Thus∫
|Tv|≥R0

F(Tx, Tv)
T3 → +∞ as T → +∞.

Combining this with (2.18), we obtain

�(T) → –∞ as T → +∞.

Thus, there exists a large T0 > 0 such that

�(T) ≤ –1

for all T ≥ T0. Taking δ = T0, then there exists a large R = R(E) > 0 such that

T = t̃(u) ≥ T0

for all u ∈ E with ‖u‖λ ≥ R.
Hence, �λ(u) < 0 for all u ∈ E with ‖u‖λ ≥ R. �

Proof of Theorem 1.1 Let X = Eλ, Y = Ym and Z = Zm. Clearly, �(0) = 0 and �(u) = �(–u)
due to (F4). By virtue of Lemma 2.4, Lemma 2.6, Lemma 2.7 and the fountain theorem
(Theorem 3.6 [16]), problem (1.1) possesses infinitely many high energy solutions. �
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Proof of Corollary 1.2 Let us consider the Hilbert space

H =
{

u ∈ H1(
R

3) :
∫
R3

(
a|∇u|2 + λṼ (x)u2)dx < ∞

}

endowed with the norm

‖u‖ =
(∫

R3

(
a|∇u|2 + λṼ (x)u2)dx

) 1
2

.

Let

�(u) =
1
2

∫
R3

(
a|∇u|2 + λV (x)u2)dx +

b
4

(∫
R3

|∇u|2 dx
)2

–
∫
R3

F(x, u) dx, ∀u ∈ H .

Obviously, � is a well-defined class C1 functional, and the embedding H ↪→ Ls is compact
for 2 ≤ s < 6 (see the proof of Lemma 2.2). By Lemma 2.4, Lemma 2.6, Lemma 2.7 and the
fountain theorem (Theorem 3.6 [16]), problem (1.3) possesses infinitely many high energy
solutions. �

Remark 2.8 In the next paper, we wish to consider the sign-changing solutions for the
biharmonic problem like in [19, 21] and so on.

3 Conclusions
In this paper, we consider a sequence of high energy weak solutions for the modified quasi-
linear fourth-order elliptic equation (1.1) under rather weak conditions. We first prove that
the energy functional satisfies the Cerami condition in the well-defined Hilbert space and
then prove that the fountain theorem holds under the given conditions by a new technique.
Our results extend and improve some recent results.
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