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Abstract
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1 Introduction
In this article, we study the singular fourth-order elliptic problem:

⎧
⎪⎪⎨

⎪⎪⎩

�2u = μ u
|x|4 + Q(x)

∑m
i=1

ςiαi
2∗∗ |u|αi–2u|v|βi + σh(x)|u|q–2u, in R

N ,

�2v = μ v
|x|4 + Q(x)

∑m
i=1

ςiβi
2∗∗ |u|αi |v|βi–2v + σh(x)|v|q–2v, in R

N ,
∫

RN (|�u|2 + |�v|2) dx < +∞ and u, v �≡ 0, in R
N ,

(1.1)

where �2 denotes the biharmonic operator, N ≥ 5, σ ≥ 0, μ ∈ [0,μ) with μ � 1
16 N2(N –

4)2, q ∈ (1, 2), ςi ∈ (0, +∞), and αi, βi > 1 satisfy αi + βi = 2∗∗ (i = 1, . . . , m; 1 ≤ m ∈ N),
2∗∗ � 2N

N–4 is the critical Sobolev exponent; Q(x) and h(x) are G-invariant functions such
that Q(x) ∈ C (RN ) ∩ L∞(RN ) and h(x) ∈ Lθ (RN ) with θ � 2∗∗/(2∗∗ – q) (see Sect. 2 for
details).

There have been by now a large number of papers concerning the existence, nonexis-
tence as well as qualitative properties of nontrivial solutions to critical elliptic problems of
second order. With no hope of being complete, we would like to mention some of them [1–
4]. In most of these papers, the authors deal with the elliptic problems involving singular
potentials and critical exponents. For instance, Deng and Jin in [4] handled the following
singular equation:

–�u = μ
u

|x|2 + Q(x)|x|–su2∗(s)–1 and u > 0 in R
N , (1.2)
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where N > 2, μ ∈ [0, 1
4 (N – 2)2), s ∈ [0, 2), 2∗(s) = 2(N–s)

N–2 , and 2∗(0) = 2∗ � 2N
N–2 , and Q is

G-invariant with respect to a subgroup G of O(N). By applying analytic techniques and
critical point theory, several results on the existence and multiplicity of G-invariant solu-
tions to (1.2) were obtained. Subsequently, Waliullah [5] extended the results in [4] to the
weighted polyharmonic elliptic equations. In particular, Waliullah considered the follow-
ing semilinear partial differential equation:

(–�)ku = Q(x)|u|2∗
(k)–2u in R

N , (1.3)

where k > 1, N > 2k, 2∗
(k) = 2N

N–2k , and Q is G-invariant. By employing the minimizing se-
quence and the concentration–compactness method, the author attained the existence of
nontrivial G-invariant solution to (1.3). Borrowing ideas from [4, 5], Deng and Huang [6–
8] recently established a few valuable results for the scalar elliptic problems in a bounded
G-invariant domain. Moreover, let us also mention that when μ = 0 and the right-hand
side nonlinearity term |x|–su2∗(s)–1 in (1.2) is substituted by uq–1 with 1 < q ≤ 2∗, there have
been a variety of remarkable results on G-invariant solutions in [9–11]. Furthermore, for
other results about this aspect, see [12] with singular Lane–Emden–Fowler equations, [13]
with singular p-Laplacian equations, [14] with biharmonic operators and [15] with p(x)-
biharmonic operators [16], and monograph [17] with generalized Lane–Emden–Fowler
equations or Gierer–Meinhardt systems involving singular nonlinearity.

For the systems of singular elliptic equations involving critical exponents, a wide range
of works concerning the solutions structures have been presented in recent years. For
example, Cai and Kang [18] studied the following elliptic system with multiple critical
terms:

⎧
⎪⎪⎨

⎪⎪⎩

Lμu = ς1α1
2∗ |u|α1–2u|v|β1 + ς2α2

2∗ |u|α2–2u|v|β2 + a1|u|q1–2u + a2v, in �,

Lμv = ς1β1
2∗ |u|α1 |v|β1–2v + ς2β2

2∗ |u|α2 |v|β2–2v + a2u + a3|v|q2–2v, in �,

u = v = 0, on ∂�,

(1.4)

where N ≥ 3, � ⊂ R
N is a smooth bounded domain such that 0 ∈ �, Lμ = –� – μ|x|–2,

μ < 1
4 (N –2)2, aj ∈R (j = 1, 2, 3), ςi ∈ (0, +∞), qi ∈ [2, 2∗), and αi, βi > 1 fulfill αi +βi = 2∗ (i =

1, 2). By a variational minimax method combined with a delicate analysis of Palais–Smale
sequences, the authors proved the existence of positive solutions to (1.4). Very recently,
Nyamoradi and Hsu [19] investigated the following quasilinear elliptic system involving
multiple critical exponents:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

– div(|x|–ap|∇u|p–2∇u) =
∑m

i=1
ςiαi|u|αi–2u|v|βi

p∗(a,b)|x|bp∗(a,b) +
∑m

i=1
λifi(x)
|x|β |u|q–2u, in �,

– div(|x|–ap|∇v|p–2∇v) =
∑m

i=1
ςiβi|u|αi |v|βi–2v
p∗(a,b)|x|bp∗(a,b) +

∑m
i=1

μifi(x)
|x|β |v|q–2v, in �,

u = v = 0, on ∂�,

(1.5)

where 0 ∈ � is a smooth bounded domain in R
N , 1 < p < N , 0 ≤ a < N–p

p , a ≤ b < a + 1,
0 < ςi,λi,μi < +∞, αi, βi > 1, αi +βi = p∗(a, b) = Np

N–p(a+1–b) for i = 1, . . . , m. By employing the
analytic techniques of Nehari manifold, the authors established the existence and multi-
plicity of positive solutions to (1.5) under certain appropriate hypotheses on the param-
eters q, β , λi, μi and the weighted functions fi(x) (i = 1, . . . , m). Other results relating to
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second-order elliptic systems can be found in [20–23] and the references therein. For the
systems of fourth-order elliptic equations, we would like to refer the reader to the papers
[24–26] for the elliptic problems related to nonlinearities with critical growth.

Nevertheless, elliptic systems involving the G-invariant solutions have seldom been
studied; we only find a handful of results in [27–30]. To the best of our knowledge, there
are few results on G-invariant solutions for the singular fourth-order elliptic problem (1.1)
even in the scalar cases σ = 0, 0 < μ < μ, m = 1, and u = v. Therefore, it is necessary for
us to investigate (1.1) thoroughly. Let Q > 0 be a constant. This work is dedicated to seek-
ing the G-invariant solutions for both the cases of σ = 0, Q(x) �≡ Q and σ > 0, Q(x) ≡ Q
in (1.1). Our arguments are mainly based upon the symmetric criticality principle due to
Palais [31] and variational methods.

The rest of this article is schemed as follows. The variational framework and the main
results of this paper are presented in Sect. 2. The proofs of G-invariant solutions for the
cases σ = 0 and Q(x) �≡ Q are detailed in Sect. 3, while the multiplicity results for the cases
σ > 0 and Q(x) ≡ Q are proved in Sect. 4.

2 Preliminaries and main results
Let D2,2(RN ) denote the completion of C ∞

0 (RN ) under the norm (
∫

RN |�u|2 dx)1/2, associ-
ated with the inner product given by 〈u,ϕ〉 =

∫

RN �u�ϕ dx. Recall the well-known Rellich
inequality [32]

∫

RN
|�u|2 dx ≥ μ

∫

RN

u2

|x|4 dx, ∀u ∈ D2,2(
R

N)
, (2.1)

where N ≥ 5, μ = 1
16 N2(N – 4)2. We now employ the following norm in D2,2(RN ):

‖u‖μ �
[∫

RN

(|�u|2 – μ|x|–4u2)dx
] 1

2
, 0 ≤ μ < μ.

Thanks to the Rellich inequality (2.1), we find that the above norm ‖·‖μ is equivalent to the
usual norm (

∫

RN |� · |2 dx)1/2. Besides, we define the product space (D2,2(RN ))2 endowed
with the norm

∥
∥(u, v)

∥
∥

μ
=

(‖u‖2
μ + ‖v‖2

μ

) 1
2 , ∀(u, v) ∈ (

D2,2(
R

N))2. (2.2)

As usual, we denote by G any closed subgroup of O(N), the group of orthogonal linear
transformations. Let Gx = {gx; g ∈ G} be the orbit of x ∈ R

N ; |Gx| denote the number of
elements in Gx and |G0| = |G∞| = 1. Denote |G| = infx∈RN \{0} |Gx|. Note that |G| may be
+∞. We call � a G-invariant subset of RN , if x ∈ �, then gx ∈ � for all g ∈ G. A function
f : RN �→ R is called G-invariant if f (gx) = f (x) for every g ∈ G and x ∈ R

N . In particular,
an O(N)-invariant function is called radial.

The natural functional space to frame the analysis of (1.1) by variational methods is
the Hilbert space (D2,2

G (RN ))2, which is the subspace of (D2,2(RN ))2 consisting of all G-
invariant functions. This work is devoted to the study of the following systems:

(
PQ

σ

)

⎧
⎪⎪⎨

⎪⎪⎩

�2u = μ u
|x|4 + Q(x)

∑m
i=1

ςiαi
2∗∗ |u|αi–2u|v|βi + σh(x)|u|q–2u, in R

N ,

�2v = μ v
|x|4 + Q(x)

∑m
i=1

ςiβi
2∗∗ |u|αi |v|βi–2v + σh(x)|v|q–2v, in R

N ,

(u, v) ∈ (D2,2
G (RN ))2 and u, v �≡ 0, in R

N .
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To clearly describe the results of this paper, several notations should be presented:

Aμ � inf
u∈D2,2(RN )\{0}

∫

RN (|�u|2 – μ u2

|x|4 ) dx

(
∫

RN |u|2∗∗ dx)
2

2∗∗
, (2.3)

yε(x) � Cε–
0 Uμ

( |x|
ε

)

, (2.4)

where ε > 0, 
0 � N–4
2 , and the constant C = C(N ,μ) > 0, depending only on N and μ.

From [26, 33], we mention that yε(x) satisfies the following equations:

∫

RN

(

|�yε |2 – μ
y2
ε

|x|4
)

dx = 1 (2.5)

and
∫

RN
y2∗∗–1
ε ϕ dx = A– 2∗∗

2
μ

∫

RN

(

�yε�ϕ – μ
yεϕ

|x|4
)

dx

for all ϕ ∈ D2,2(RN ). Hence, we obtain (let ϕ = yε )

∫

RN
y2∗∗
ε dx = A– 2∗∗

2
μ . (2.6)

According to [26, Lemma 2.1] and [33, Theorem 2], we remark that the function Uμ(x) in
(2.4) is positive, radial symmetric, radially decreasing, and solves

⎧
⎨

⎩

�2u = μ u
|x|4 + u2∗∗–1, in R

N\{0},
u ∈ D2,2(RN ) and u > 0, in R

N\{0}.

By setting r = |x|, there holds that

Uμ(r) = O1
(
r–l1(μ)), as r → 0, (2.7)

Uμ(r) = O1
(
r–l2(μ)), U ′

μ(r) = O1
(
r–l2(μ)–1), as r → +∞, (2.8)

where O1(rt) (r → r0) means that there exist constants C1, C2 > 0 such that C1rt ≤ O1(rt) ≤
C2rt as r → r0, l1(μ) � 
0ϑ(μ), l2(μ) � 
0(2 – ϑ(μ)), 
0 = N–4

2 , and ϑ(μ) : [0,μ] �→ [0, 1]
is defined as

ϑ(μ) � 1 –

√

N2 – 4N + 8 – 4
√

(N – 2)2 + μ

N – 4
.

This implies ϑ(0) = 0, ϑ(μ) = 1 and

0 ≤ l1(μ) < 
0 < l2(μ) ≤ 2
0, ∀μ ∈ [0,μ). (2.9)

Moreover, there exist positive constants C3 = C3(N ,μ) and C4 = C4(N ,μ) such that

0 < C3 ≤ Uμ(x)
(|x|

l1(μ)

0 + |x|

l2(μ)

0

)
0 ≤ C4, ∀x ∈R
N\{0}. (2.10)
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The following hypotheses are needed.
(q.1) Q(x) is G-invariant.
(q.2) Q(x) ∈ C (RN ) ∩ L∞(RN ), and Q+(x) �≡ 0, where Q+(x) = max{0, Q(x)}.
(h.1) h(x) is G-invariant.
(h.2) h(x) is a nonnegative function in R

N such that

0 < ‖h‖θ �
(∫

RN
hθ (x) dx

) 1
θ

< +∞ with θ =
2∗∗

2∗∗ – q
.

The main results of this work can be stated in the following.

Theorem 2.1 Assume that (q.1) and (q.2) hold. If

∫

RN
Q(x)y2∗∗

ε dx ≥ max
{|G| 2–2∗∗

2 A– 2∗∗
2

0 ‖Q+‖∞,A– 2∗∗
2

μ Q+(0),A– 2∗∗
2

μ Q+(∞)
}

> 0 (2.11)

for certain ε > 0, where Q+(∞) = lim sup|x|→∞ Q+(x), then problem (PQ
0 ) possesses at least

one nontrivial solution in (D2,2
G (RN ))2.

Corollary 2.1 Assume that (q.1) and (q.2) hold. Then we have the following statements.
(1) Problem (PQ

0 ) admits at least one nontrivial solution if

Q(0) > 0, Q(0) ≥ max
{|G| 2–2∗∗

2 (A0/Aμ)– 2∗∗
2 ‖Q+‖∞, Q+(∞)

}
,

and either (i) Q(x) ≥ Q(0) + ξ0|x|2∗∗(l2(μ)–
0) for some ξ0 > 0 and |x| small, or (ii)
|Q(x) – Q(0)| ≤ ξ1|x|ς for some constants ξ1 > 0, ς > 2∗∗(l2(μ) – 
0) > 0 and |x| small
and

∫

RN

(
Q(x) – Q(0)

)|x|–2∗∗l2(μ) dx > 0. (2.12)

(2) Problem (PQ
0 ) has at least one nontrivial solution if lim|x|→∞ Q(x) = Q(∞) exists

and is positive,

Q(∞) ≥ max
{|G| 2–2∗∗

2 (A0/Aμ)– 2∗∗
2 ‖Q+‖∞, Q+(0)

}
,

and either (i) Q(x) ≥ Q(∞) + ξ2|x|–2∗∗(
0–l1(μ)) for certain ξ2 > 0 and large |x|, or (ii)
|Q(x) – Q(∞)| ≤ ξ3|x|–κ for some constants ξ3 > 0, κ > 2∗∗(
0 – l1(μ)) > 0 and large
|x| and

∫

RN

(
Q(x) – Q(∞)

)|x|–2∗∗l1(μ) dx > 0. (2.13)

(3) If Q(x) ≥ Q(∞) = Q(0) > 0 on R
N and

Q(∞) = Q(0) ≥ |G| 2–2∗∗
2 (A0/Aμ)– 2∗∗

2 ‖Q+‖∞,

then problem (PQ
0 ) possesses at least one nontrivial solution.
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Remark 2.1 Conditions (q.1) and (q.2) are essentially introduced in [9]. According to (q.2),
we only presume that Q(x) is bounded and continuous on R

N . Hence, the above results
do not require the continuity of Q(x) at infinity.

Theorem 2.2 Assume that |G| = +∞ and Q+(0) = Q+(∞) = 0. Then there exist infinitely
many G-invariant solutions to problem (PQ

0 ).

Corollary 2.2 If Q is a radial function such that Q+(0) = Q+(∞) = 0, then there exist in-
finitely many radial solutions to problem (PQ

0 ).

Theorem 2.3 Let Q > 0 be a constant. Assume that Q(x) ≡ Q and (h.1), (h.2) hold. Then
there exists σ ∗ > 0 such that, for any σ ∈ (0,σ ∗), problem (PQ

σ ) possesses at least two non-
trivial solutions in (D2,2

G (RN ))2.

Remark 2.2 The main results of this paper extend and complement those of [4, 5, 26, 29,
30]. Even in the scalar cases σ = 0, 0 < μ < μ, m = 1, and u = v, the above results in the
whole space are new.

Throughout this paper, we denote various positive constants as Ci (i = 1, 2, . . .) or C. The
dual space of (D2,2

G (RN ))2 ((D2,2(RN ))2, resp.) is denoted by (D–2,2
G (RN ))2 ((D–2,2(RN ))2,

resp.). The ball of center x and radius r is denoted by Br(x). on(1) is a generic infinitesimal
value as n → ∞. For any ε > 0, t ∈R, O(εt) denotes the quantity satisfying |O(εt)|/εt ≤ C,
and O1(εt) (ε → ε0) means that there exist constants C1, C2 > 0 such that C1ε

t ≤ O1(εt) ≤
C2ε

t as ε → ε0. In a Banach space X, we denote by ‘→’ and ‘⇀’ strong and weak conver-
gence, respectively. A functional F ∈ C 1(X,R) is called to satisfy the (PS)c condition if
each sequence {wn} in X satisfying F (wn) → c in R, F ′(wn) → 0 in X∗ contains a strongly
convergent subsequence.

3 Existence and multiplicity results for problem (PQ
0 )

The energy functional corresponding to problem (PQ
0 ) is defined on (D2,2

G (RN ))2 by

F (u, v) =
1
2
∥
∥(u, v)

∥
∥2

μ
–

1
2∗∗

∫

RN
Q(x)

m∑

i=1

ςi|u|αi |v|βi dx. (3.1)

It follows from (q.2) and the Rellich inequality (2.1) that F is a well-defined C 1 functional
on (D2,2

G (RN ))2. Then the critical points of F correspond to weak solutions of problem
(PQ

0 ). According to the principle of symmetric criticality (see Lemma 3.1), any critical
point of F in (D2,2

G (RN ))2 is also a solution of (PQ
0 ) in (D2,2(RN ))2. This means that (u, v) ∈

(D2,2
G (RN ))2 satisfies (PQ

0 ) if and only if, for any (ϕ1,ϕ2) ∈ (D2,2(RN ))2,

〈
F ′(u, v), (ϕ1,ϕ2)

〉

=
∫

RN

(

�u�ϕ1 + �v�ϕ2 – μ
uϕ1 + vϕ2

|x|4
)

dx

–
1

2∗∗

∫

RN
Q(x)

(

ϕ1

m∑

i=1

ςiαi|u|αi–2u|v|βi + ϕ2

m∑

i=1

ςiβi|u|αi |v|βi–2v

)

dx = 0. (3.2)
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Lemma 3.1 If Q(x) is a G-invariant function, then F ′(u, v) = 0 in (D–2,2
G (RN ))2 implies

F ′(u, v) = 0 in (D–2,2(RN ))2.

Proof The proof is similar to that of [9, Lemma 1] and is omitted here. �

For μ ∈ [0,μ), ςi ∈ (0, +∞), αi, βi > 1, and αi + βi = 2∗∗ (i = 1, . . . , m), we define

Aμ,m � inf
(u,v)∈(D2,2(RN )\{0})2

∫

RN (|�u|2 + |�v|2 – μ u2+v2

|x|4 ) dx

(
∫

RN
∑m

i=1 ςi|u|αi |v|βi dx)
2

2∗∗
, (3.3)

B(τ ) � 1 + τ 2

(
∑m

i=1 ςiτβi )
2

2∗∗
, τ ≥ 0, (3.4)

B(τmin) � min
τ≥0

B(τ ) > 0, (3.5)

where τmin > 0 is a minimal point of B(τ ) and hence a root of the equation

m∑

i=1

ςiτ
βi–1(αiτ

2 – βi
)

= 0, τ ≥ 0. (3.6)

Lemma 3.2 Let yε(x) be the minimizer of Aμ defined in (2.4), μ ∈ [0,μ), ςi ∈ (0, +∞), αi,
βi > 1, and αi + βi = 2∗∗ (i = 1, . . . , m). Then we have the following statements.

(i) Aμ,m = B(τmin)Aμ;
(ii) Aμ,m has the minimizer (yε(x), τminyε(x)) for all ε > 0.

Proof The proof is a repeat of that in [19, Theorem 2.2] (see also [21, Theorem 5]) and
hence is omitted here. �

To find conditions under which the Palais–Smale condition holds, we need the following
concentration compactness principle due to Lions [34].

Lemma 3.3 Let {(un, vn)} be a weakly convergent sequence to (u, v) in (D2,2
G (RN ))2 such

that |�un|2 ⇀ η(1), |�vn|2 ⇀ η(2), |un|αi |vn|βi ⇀ ν(i) (i = 1, . . . , m), |x|–4|un|2 ⇀ γ (1), and
|x|–4|vn|2 ⇀ γ (2) in the sense of measures. Then there exists some at most countable set J ,
{η(1)

j ≥ 0}j∈J ∪{0}, {η(2)
j ≥ 0}j∈J ∪{0}, {ν(i)

j ≥ 0}j∈J ∪{0}, γ
(1)
0 ≥ 0, γ

(2)
0 ≥ 0, {xj}j∈J ⊂ R

N\{0}
such that

(a) η(1) ≥ |�u|2 +
∑

j∈J η
(1)
j δxj + η

(1)
0 δ0, η(2) ≥ |�v|2 +

∑
j∈J η

(2)
j δxj + η

(2)
0 δ0,

(b) ν(i) = |u|αi |v|βi +
∑

j∈J ν
(i)
j δxj + ν

(i)
0 δ0, i = 1, . . . , m,

(c) γ (1) = |x|–4|u|2 + γ
(1)
0 δ0, γ (2) = |x|–4|v|2 + γ

(2)
0 δ0,

(d) A0,m(
∑m

i=1 ςiν
(i)
j )

2
2∗∗ ≤ η

(1)
j + η

(2)
j ,

(e) Aμ,m(
∑m

i=1 ςiν
(i)
0 )

2
2∗∗ ≤ η

(1)
0 + η

(2)
0 – μ(γ (1)

0 + γ
(2)
0 ),

where δxj , j ∈ J ∪ {0}, is a Dirac mass of 1 concentrated at xj ∈R
N .

To establish the existence results for problem (PQ
0 ), we need the following local (PS)c

condition, which is indispensable for the proof of Theorem 2.1.
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Lemma 3.4 Assume that (q.1) and (q.2) hold. Then the (PS)c condition in (D2,2
G (RN ))2

holds for F if

c < c∗
0 � 2

N
min

{|G|AN
4

0,m‖Q+‖1– N
4∞ ,A

N
4
μ,mQ+(0)1– N

4 ,A
N
4
μ,mQ+(∞)1– N

4
}

. (3.7)

Proof We follow closely the arguments in [9, Proposition 2]. It is trivial to check that
the (PS)c sequence {(un, vn)} of F is bounded in (D2,2

G (RN ))2. Then we may assume that
(un, vn) ⇀ (u, v) in (D2,2

G (RN ))2. In view of Lemma 3.3, there exist measures η(1), η(2),
ν(i) (i = 1, . . . , m), γ (1), and γ (2) such that relations (a)–(e) of this lemma hold. We begin
by considering the concentration at the point xj ∈ R

N\{0}, j ∈ J . For ε > 0 small, we de-
fine the cut-off function ψε

xj
(x) ∈ C ∞

0 (RN ) such that 0 ≤ ψε
xj

(x) ≤ 1, ψε
xj

(x) = 1 in Bε(xj),
ψε

xj
(x) = 0 on R

N\B2ε(xj), |∇ψε
xj
| ≤ 2/ε, and |�ψε

xj
| ≤ 2/ε2 on R

N . Then, by Lemma 3.1,
limn→∞〈F ′(un, vn), (unψ

ε
xj

, vnψ
ε
xj

)〉 = 0; hence, combining (3.2), the Hölder inequality, and
the Sobolev inequality, we derive

∫

RN
ψε

xj

{

dη(1) + dη(2) – μ
(
dγ (1) + dγ (2)) – Q(x)

m∑

i=1

ςi

2∗∗ (αi + βi) dν(i)

}

≤ lim
n→∞

∫

RN

{
2
∣
∣�un

〈∇un,∇ψε
xj

〉
+ �vn

〈∇vn,∇ψε
xj

〉∣
∣ +

∣
∣(un�un + vn�vn)�ψε

xj

∣
∣
}

dx

≤ sup
n≥1

(∫

RN
|�un|2 dx

) 1
2
[

2 lim
n→∞

(∫

RN
|∇un|2

∣
∣∇ψε

xj

∣
∣2 dx

) 1
2

+ lim
n→∞

(∫

RN
|un|2

∣
∣�ψε

xj

∣
∣2 dx

) 1
2
]

+ sup
n≥1

(∫

RN
|�vn|2 dx

) 1
2
[

2 lim
n→∞

(∫

RN
|∇vn|2

∣
∣∇ψε

xj

∣
∣2 dx

) 1
2

+ lim
n→∞

(∫

RN
|vn|2

∣
∣�ψε

xj

∣
∣2 dx

) 1
2
]

≤ C
{(∫

RN
|∇u|2∣∣∇ψε

xj

∣
∣2 dx

) 1
2

+
(∫

RN
|u|2∣∣�ψε

xj

∣
∣2 dx

) 1
2

+
(∫

RN
|v|2∣∣�ψε

xj

∣
∣2 dx

) 1
2

+
(∫

RN
|∇v|2∣∣∇ψε

xj

∣
∣2 dx

) 1
2
}

≤ C
{(∫

B2ε (xj)
|∇u| 2N

N–2 dx
) N–2

2N
(∫

RN

∣
∣∇ψε

xj

∣
∣N dx

) 1
N

+
(∫

B2ε (xj)
|u|2∗∗

dx
) 1

2∗∗ (∫

RN

∣
∣�ψε

xj

∣
∣

N
2

) 2
N

+
(∫

B2ε (xj)
|v|2∗∗

dx
) 1

2∗∗ (∫

RN

∣
∣�ψε

xj

∣
∣

N
2

) 2
N

+
(∫

B2ε (xj)
|∇v| 2N

N–2 dx
) N–2

2N
(∫

RN

∣
∣∇ψε

xj

∣
∣N dx

) 1
N
}

≤ C
{(∫

B2ε (xj)
|∇u| 2N

N–2 dx
) N–2

2N

+
(∫

B2ε (xj)
|�u|2 dx

) 1
2

+
(∫

B2ε (xj)
|�v|2 dx

) 1
2

+
(∫

B2ε (xj)
|∇v| 2N

N–2 dx
) N–2

2N
}

. (3.8)
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As ε → 0, it follows from (3.8) and Lemma 3.3 that

Q(xj)
m∑

i=1

ςiν
(i)
j ≥ η

(1)
j + η

(2)
j . (3.9)

This means that the concentration of the measures ν(i) (i = 1, . . . , m) cannot occur at points
where Q(xj) ≤ 0. By virtue of (3.9) and (d) of Lemma 3.3, we conclude that either (i) ν

(i)
j =

0 (i = 1, . . . , m) or (ii)
∑m

i=1 ςiν
(i)
j ≥ (A0,m/‖Q+‖∞)N/4. Let us now study the possibility of

concentration at x = 0 and at ∞. By the argument similar to that of xj ∈ R
N\{0}, we find

η
(1)
0 + η

(2)
0 – μ(γ (1)

0 + γ
(2)
0 ) – Q(0)

∑m
i=1 ςiν

(i)
0 ≤ 0. Together with (e) of Lemma 3.3, it follows

that either (iii) ν
(i)
0 = 0 (i = 1, . . . , m) or (iv)

∑m
i=1 ςiν

(i)
0 ≥ (Aμ,m/Q+(0))N/4. To discuss the

concentration at infinity of the sequence {(un, vn)}, we define the following quantities:
(1) η

(1)∞ = limR→∞ limn→∞
∫

|x|>R |�un|2 dx, η(2)∞ = limR→∞ limn→∞
∫

|x|>R |�vn|2 dx,
(2) ν

(i)∞ = limR→∞ limn→∞
∫

|x|>R |un|αi |vn|βi dx, i = 1, . . . , m,
(3) γ

(1)∞ = limR→∞ limn→∞
∫

|x|>R |x|–4|un|2 dx, γ (2)∞ = limR→∞ limn→∞
∫

|x|>R |x|–4|vn|2 dx.
It is obvious that η

(1)∞ , η
(2)∞ , ν

(i)∞ (i = 1, . . . , m), γ
(1)∞ , and γ

(2)∞ defined by (1)–(3) exist and are
finite. For R > 1, let ψR(x) ∈ C ∞(RN ) be a function such that 0 ≤ ψR(x) ≤ 1, ψR(x) = 1 for
|x| > R + 1, ψR(x) = 0 for |x| < R, |∇ψR| ≤ 2/R, and |�ψR| ≤ 2/R2. Because the sequence
{(unψR, vnψR)} is bounded in (D2,2

G (RN ))2, we deduce from (3.2) and the fact that αi + βi =
2∗∗ (i = 1, . . . , m) that

0 = lim
n→∞

〈
F ′(un, vn), (unψR, vnψR)

〉

= lim
n→∞

∫

RN

{(

|�un|2 + |�vn|2 – μ
|un|2 + |vn|2

|x|4 – Q(x)
m∑

i=1

ςi|un|αi |vn|βi

)

ψR

+
(
2�un〈∇un,∇ψR〉 + un�un�ψR + 2�vn〈∇vn,∇ψR〉 + vn�vn�ψR

)
}

dx. (3.10)

Furthermore, by utilizing the Hölder inequality and the Sobolev inequality, we obtain

lim
R→∞ lim

n→∞

∫

RN

(
2
∣
∣�un〈∇un,∇ψR〉∣∣ + |un�un�ψR|)dx

≤ lim
R→∞ lim

n→∞

(∫

RN
|�un|2 dx

) 1
2
[

2
(∫

RN
|∇un|2|∇ψR|2 dx

) 1
2

+
(∫

RN
|un|2|�ψR|2 dx

) 1
2
]

≤ C lim
R→∞

{(∫

R<|x|<R+1
|∇u|2|∇ψR|2 dx

) 1
2

+
(∫

R<|x|<R+1
|u|2|�ψR|2 dx

) 1
2
}

≤ C lim
R→∞

{(∫

R<|x|<R+1
|∇u| 2N

N–2 dx
) N–2

2N
+

(∫

R<|x|<R+1
|�u|2 dx

) 1
2
}

= 0.

Similarly, we have limR→∞ limn→∞
∫

RN (2|�vn〈∇vn,∇ψR〉| + |vn�vn�ψR|) dx = 0. Conse-
quently, it follows from (3.10) and definitions (1)–(3) of the quantities η

(1)∞ , η
(2)∞ , ν

(i)∞ (i =
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1, . . . , m), γ (1)∞ , and γ
(2)∞ that

Q+(∞)
m∑

i=1

ςiν
(i)
∞ ≥ η(1)

∞ + η(2)
∞ – μ

(
γ (1)

∞ + γ (2)
∞

)
. (3.11)

Moreover, in view of (3.3), we find Aμ,m(
∑m

i=1 ςiν
(i)∞)

2
2∗∗ ≤ η

(1)∞ + η
(2)∞ – μ(γ (1)∞ + γ

(2)∞ ). This,
combined with (3.11), implies that either (v) ν

(i)∞ = 0 (i = 1, . . . , m) or (vi)
∑m

i=1 ςiν
(i)∞ ≥

(Aμ,m/Q+(∞))N/4. In the following, we claim that (ii), (iv), and (vi) cannot occur. For every
continuous nonnegative function ψ such that 0 ≤ ψ(x) ≤ 1 on R

N , we find

c = lim
n→∞

(

F (un, vn) –
1

2∗∗
〈
F ′(un, vn), (un, vn)

〉
)

=
2
N

lim
n→∞

∫

RN

(

|�un|2 + |�vn|2 – μ
|un|2 + |vn|2

|x|4
)

dx

≥ 2
N

lim
n→∞

∫

RN

(

|�un|2 + |�vn|2 – μ
|un|2 + |vn|2

|x|4
)

ψ(x) dx.

Note that the measures ν(i) (i = 1, . . . , m) are bounded and G-invariant. This means that if
(ii) holds, then the set J must be finite. Moreover, if xj �= 0 is a singular point of ν(i) (i =
1, . . . , m), so is gxj for each g ∈ G, and the mass of ν(i) (i = 1, . . . , m) concentrated at gxj is
the same for every g ∈ G. Assuming that (ii) occurs for some j ∈ J with xj �= 0, we choose
ψ with compact support so that ψ(gxj) = 1 for every g ∈ G, and we derive

c ≥ 2
N

|G|(η(1)
j + η

(2)
j

) ≥ 2
N

|G|A0,m

( m∑

i=1

ςiν
(i)
j

) 2
2∗∗

≥ 2
N

|G|A0,m
(
A0,m/‖Q+‖∞

) 2
2∗∗–2 =

2
N

|G|AN
4

0,m‖Q+‖1– N
4∞ ,

which is impossible. Similarly, assuming that (iv) holds for x = 0, we take ψ with compact
support so that ψ(0) = 1, and we have

c ≥ 2
N

(
η

(1)
0 + η

(2)
0 – μγ

(1)
0 – μγ

(2)
0

) ≥ 2
N
Aμ,m

( m∑

i=1

ςiν
(i)
0

) 2
2∗∗

≥ 2
N
Aμ,m

(
Aμ,m/Q+(0)

) 2
2∗∗–2 =

2
N
A

N
4
μ,mQ+(0)1– N

4 ,

a contradiction to (3.7). Finally, if (vi) occurs, we choose ψ = ψR to obtain

c ≥ 2
N

(
η(1)

∞ + η(2)
∞ – μγ (1)

∞ – μγ (2)
∞

) ≥ 2
N
Aμ,m

( m∑

i=1

ςiν
(i)
∞

) 2
2∗∗

≥ 2
N
Aμ,m

(
Aμ,m/Q+(∞)

) 2
2∗∗–2 =

2
N
A

N
4
μ,mQ+(∞)1– N

4 ,

which contradicts (3.7). Hence, ν(i)
j = 0 (i = 1, . . . , m) for all j ∈ J ∪ {0,∞}, and this yields

lim
n→∞

∫

RN

m∑

i=1

ςi|un|αi |vn|βi dx =
∫

RN

m∑

i=1

ςi|u|αi |v|βi dx.



Deng et al. Boundary Value Problems  (2018) 2018:53 Page 11 of 21

Finally, taking into account limn→∞〈F ′(un, vn) – F ′(u, v), (un – u, vn – v)〉 = 0, we naturally
deduce (un, vn) → (u, v) as n → ∞ in (D2,2(RN ))2. �

Thanks to Lemma 3.4, we immediately obtain the following result.

Corollary 3.1 If |G| = +∞ and Q+(0) = Q+(∞) = 0, then the functionalF satisfies the (PS)c

condition for every c ∈R.

Proof of Theorem 2.1 Let yε be the extremal function satisfying (2.4)–(2.10). We now
choose ε > 0 such that (2.11) is fulfilled. It is clear from (q.2), (3.1), and (3.2) that there
exist constants α0 > 0 and ρ > 0 such that F (u, v) ≥ α0 for all ‖(u, v)‖μ = ρ . Moreover, if we
set u = yε , v = τminyε , and

�(t) = F (tyε , tτminyε) =
t2

2
(
1 + τ 2

min

)
∫

RN

(

|�yε |2 – μ
y2
ε

|x|4
)

dx

–
t2∗∗

2∗∗

m∑

i=1

ςiτ
βi
min

∫

RN
Q(x)y2∗∗

ε dx

with t ≥ 0, then maxt≥0 �(t) is attained for some finite t > 0 with �′(t) = 0. This yields

max
t≥0

�(t) = F (tyε , tτminyε) =
2
N

{ (1 + τ 2
min)

∫

RN (|�yε |2 – μ
y2
ε

|x|4 ) dx

(
∑m

i=1 ςiτ
βi
min

∫

RN Q(x)y2∗∗
ε dx)

2
2∗∗

} 2∗∗
2∗∗–2

. (3.12)

Besides, because F (tyε , tτminyε) → –∞ as t → +∞, there exists t0 > 0 such that ‖(t0yε ,
t0τminyε)‖μ > ρ and F (t0yε , t0τminyε) < 0. Now, we define

c0 = inf
γ∈�

max
t∈[0,1]

F
(
γ (t)

)
, (3.13)

where � = {γ ∈ C ([0, 1], (D2,2
G (RN ))2);γ (0) = (0, 0),F (γ (1)) < 0,‖γ (1)‖μ > ρ}. It follows di-

rectly from (2.5), (2.11), (3.4), (3.5), (3.7), (3.12), (3.13), and Lemma 3.2 that

c0 ≤F (tyε , tτminyε) =
2
N

{ (1 + τ 2
min)

∫

RN (|�yε |2 – μ
y2
ε

|x|4 ) dx

(
∑m

i=1 ςiτ
βi
min

∫

RN Q(x)y2∗∗
ε dx)

2
2∗∗

} 2∗∗
2∗∗–2

≤ 2
N

{ B(τmin)
∫

RN (|�yε |2 – μ
y2
ε

|x|4 ) dx

(max{|G| 2–2∗∗
2 A– 2∗∗

2
0 ‖Q+‖∞,A– 2∗∗

2
μ Q+(0),A– 2∗∗

2
μ Q+(∞)}) 2

2∗∗

} 2∗∗
2∗∗–2

=
2
N

min
{|G|AN

4
0,m‖Q+‖1– N

4∞ ,A
N
4
μ,mQ+(0)1– N

4 ,A
N
4
μ,mQ+(∞)1– N

4
}

= c∗
0.

If c0 < c∗
0, then the (PS)c condition holds by Lemma 3.4. Thus we arrive at the conclusion

by the mountain pass theorem in [35]. If c0 = c∗
0, then γ (t) = (tt0yε , tt0τminyε), with 0 ≤

t ≤ 1, is a path in � such that maxt∈[0,1] F (γ (t)) = c0. Hence, either �′(t) = 0 and we are
done, or γ can be deformed to a path γ̃ ∈ � with maxt∈[0,1] F (γ̃ (t)) < c0 and we have a
contradiction. Thus we conclude from Lemma 3.1 that there exists a nontrivial G-invariant
solution (u0, v0) ∈ (D2,2

G (RN )\{0})2 to problem (PQ
0 ) and the results follow. �
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Proof of Corollary 2.1 In view of (2.6) and Theorem 2.1, it is sufficient to prove that

∫

RN

(
Q(x) – Q̃

)
U2∗∗

μ

( |x|
ε

)

dx ≥ 0 (3.14)

for some ε > 0, where Q̃ = max{|G| 2–2∗∗
2 (A0/Aμ)– 2∗∗

2 ‖Q+‖∞, Q+(0), Q+(∞)}.
Part (1), case (i). By virtue of (3.14), we need to show that

ε–2∗∗l2(μ)
∫

RN

(
Q(x) – Q(0)

)
U2∗∗

μ

( |x|
ε

)

dx ≥ 0 (3.15)

for certain ε > 0. By the hypothesis, we choose �0 > 0 so that Q(x) ≥ Q(0) + ξ0|x|2∗∗(l2(μ)–
0)

for |x| ≤ �0. It follows from 2∗∗
0 = N and (2.8) that

ε–2∗∗l2(μ)
∫

|x|≤�0

(
Q(x) – Q(0)

)
U2∗∗

μ

( |x|
ε

)

dx

≥ ξ0

∫

|x|≤�0

ε–2∗∗l2(μ)|x|2∗∗(l2(μ)–
0)U2∗∗
μ

( |x|
ε

)

dx

= ξ0

∫

|x|≤�0

[( |x|
ε

)l2(μ)

Uμ

( |x|
ε

)]2∗∗

|x|–N dx → +∞ (3.16)

as ε → 0. On the other hand, for any ε > 0, we deduce from (2.8), (2.9), and the fact that
2∗∗l2(μ) > N that

∣
∣
∣
∣ε

–2∗∗l2(μ)
∫

|x|>�0

(
Q(x) – Q(0)

)
U2∗∗

μ

( |x|
ε

)

dx
∣
∣
∣
∣

≤
∫

|x|>�0

|Q(x) – Q(0)|
|x|2∗∗l2(μ)

[( |x|
ε

)l2(μ)

Uμ

( |x|
ε

)]2∗∗

dx

≤ C
∫

|x|>�0

1
|x|2∗∗l2(μ) dx ≤ C1 (3.17)

for some constant C1 > 0 independent of ε. Combining (3.16) and (3.17), we obtain (3.15)
for ε sufficiently small.

Part (1), case (ii). By the hypothesis, we choose �1 > 0 so that |Q(x) – Q(0)| ≤ ξ1|x|ς
for |x| ≤ �1. Taking into account ς > 2∗∗(l2(μ) – 
0) > 0, N – 1 + ς – 2∗∗l2(μ) > –1 and
N – 1 – 2∗∗l2(μ) < –1, we derive

ε–2∗∗l2(μ)
∫

RN

∣
∣Q(x) – Q(0)

∣
∣U2∗∗

μ

( |x|
ε

)

dx

=
∫

RN

|Q(x) – Q(0)|
|x|2∗∗l2(μ)

[( |x|
ε

)l2(μ)

Uμ

( |x|
ε

)]2∗∗

dx

≤ C
∫

RN

|Q(x) – Q(0)|
|x|2∗∗l2(μ) dx

≤ C
(

ξ1

∫

|x|≤�1

|x|ς–2∗∗l2(μ) dx +
∫

|x|>�1

∣
∣Q(x) – Q(0)

∣
∣|x|–2∗∗l2(μ) dx

)

≤ C
(∫ �1

0
rN–1+ς–2∗∗l2(μ) dr +

∫ +∞

�1

rN–1–2∗∗l2(μ) dr
)

< +∞.
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Thus, by (2.8), (2.12), and the Lebesgue dominated convergence theorem, we have

lim
ε→0

∫

RN
ε–2∗∗l2(μ)(Q(x) – Q(0)

)
U2∗∗

μ

( |x|
ε

)

dx

= lim
ε→0

∫

RN

(
Q(x) – Q(0)

)|x|–2∗∗l2(μ)
[( |x|

ε

)l2(μ)

Uμ

( |x|
ε

)]2∗∗

dx

= C
∫

RN

(
Q(x) – Q(0)

)|x|–2∗∗l2(μ) dx > 0.

Hence (3.15) holds for ε small enough.
Part (2), case (i). According to (3.14), we need to prove that

ε–2∗∗l1(μ)
∫

RN

(
Q(x) – Q(∞)

)
U2∗∗

μ

( |x|
ε

)

dx ≥ 0 (3.18)

for certain ε > 0. By the assumption, we take �2 > 0 such that Q(x) ≥ Q(∞) +
ξ2|x|–2∗∗(
0–l1(μ)) for all |x| ≥ �2. It follows from (2.7) that

ε–2∗∗l1(μ)
∫

|x|≥�2

(
Q(x) – Q(∞)

)
U2∗∗

μ

( |x|
ε

)

dx

=
∫

|x|≥�2

(
Q(x) – Q(∞)

)|x|–2∗∗l1(μ)
[( |x|

ε

)l1(μ)

Uμ

( |x|
ε

)]2∗∗

dx

≥ ξ2

∫

|x|≥�2

|x|–N
[( |x|

ε

)l1(μ)

Uμ

( |x|
ε

)]2∗∗

dx → +∞

as ε → +∞. On the other hand, for any ε > 0, we conclude from (2.7), (q.2), and the fact
that N – 1 – 2∗∗l1(μ) > –1 that

∣
∣
∣
∣

∫

|x|≤�2

ε–2∗∗l1(μ)(Q(x) – Q(∞)
)
U2∗∗

μ

( |x|
ε

)

dx
∣
∣
∣
∣

≤
∫

|x|≤�2

|Q(x) – Q(∞)|
|x|2∗∗l1(μ)

[( |x|
ε

)l1(μ)

Uμ

( |x|
ε

)]2∗∗

dx

≤ C
∫

|x|≤�2

|Q(x) – Q(∞)|
|x|2∗∗l1(μ) dx ≤ C

∫ �2

0
rN–1–2∗∗l1(μ) dr ≤ C2

for some constant C2 > 0 independent of ε > 0. By putting these two estimates together,
we obtain (3.18) for ε > 0 large enough.

Part (2), case (ii). By the assumption, we take �3 > 0 such that |Q(x) – Q(∞)| ≤ ξ3|x|–κ

for all |x| ≥ �3. Taking into account κ > 2∗∗(
0 – l1(μ)) > 0, N – 1 – κ – 2∗∗l1(μ) < –1 and
N – 1 – 2∗∗l1(μ) > –1, we find

ε–2∗∗l1(μ)
∫

RN

∣
∣Q(x) – Q(∞)

∣
∣U2∗∗

μ

( |x|
ε

)

dx

=
∫

RN

|Q(x) – Q(∞)|
|x|2∗∗l1(μ)

[( |x|
ε

)l1(μ)

Uμ

( |x|
ε

)]2∗∗

dx

≤ C
∫

RN

|Q(x) – Q(∞)|
|x|2∗∗l1(μ) dx
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≤ C
(

ξ3

∫

|x|≥�3

|x|–κ–2∗∗l1(μ) dx +
∫

|x|≤�3

∣
∣Q(x) – Q(∞)

∣
∣|x|–2∗∗l1(μ) dx

)

≤ C
(∫ +∞

�3

rN–1–κ–2∗∗l1(μ) dr +
∫ �3

0
rN–1–2∗∗l1(μ) dr

)

< +∞.

Therefore, by (2.7), (2.13), and the Lebesgue dominated convergence theorem, we obtain

lim
ε→+∞

∫

RN
ε–2∗∗l1(μ)(Q(x) – Q(∞)

)
U2∗∗

μ

( |x|
ε

)

dx

= lim
ε→+∞

∫

RN

Q(x) – Q(∞)
|x|2∗∗l1(μ)

[( |x|
ε

)l1(μ)

Uμ

( |x|
ε

)]2∗∗

dx

= C
∫

RN

(
Q(x) – Q(∞)

)|x|–2∗∗l1(μ) dx > 0.

Thus (3.18) holds for ε > 0 enough large. Similar to the above, we find that part (3) fol-
lows. �

To prove Theorem 2.2, we need the following symmetric mountain pass theorem (see
[36] or [37, Theorem 9.12]).

Lemma 3.5 Let X be an infinite dimensional Banach space, and let F ∈ C 1(X,R) be an
even functional satisfying the (PS)c condition for each c and F (0) = 0. Furthermore, one
supposes that:

(i) there exist constants α̃ > 0 and ρ > 0 such that F (w) ≥ α̃ for all ‖w‖ = ρ ;
(ii) there exists an increasing sequence of subspaces {Xk} of X , with dim Xk = k, such that

for every k one can find a constant Rk > 0 such that F (w) ≤ 0 for all w ∈ Xk with
‖w‖ ≥ Rk .

Then F possesses a sequence of critical values {ck} tending to ∞ as k → ∞.

Proof of Theorem 2.2 We follow closely the arguments in [9, Theorem 3] (see also [38,
Theorem 3]). By virtue of Lemma 3.5 with X = (D2,2

G (RN ))2 and w = (u, v) ∈ X, we easily
see from (q.2), (2.2), (3.1), and (3.3) that

F (u, v) ≥ 1
2
∥
∥(u, v)

∥
∥2

μ
–

1
2∗∗ ‖Q‖∞A– 2∗∗

2
μ,m

∥
∥(u, v)

∥
∥2∗∗

μ
.

Thanks to 2∗∗ > 2, there exist constants α̃ > 0 and ρ > 0 such that F (u, v) ≥ α̃ for any
(u, v) with ‖(u, v)‖μ = ρ . To find an appropriate sequence of finite dimensional subspaces
of (D2,2

G (RN ))2, we set � = {x ∈ R
N ; Q(x) > 0}. The set � is G-invariant, and we can de-

fine (D2,2
G (�))2, which is the subspace of G-invariant functions of (D2,2(�))2. Extending

functions in (D2,2
G (�))2 by 0 outside �, we can presume that (D2,2

G (�))2 ⊂ (D2,2
G (RN ))2.

Let {Xk} be an increasing sequence of subspaces of (D2,2
G (�))2 with dim Xk = k for ev-

ery k. As in [38, Theorem 3], we define ϕ1,k , . . . , ϕk,k ∈ C ∞
0 (RN ) such that 0 ≤ ϕi,k ≤ 1,

supp(ϕi,k) ∩ supp(ϕj,k) = ∅, i �= j, and

∣
∣supp(ϕi,k) ∩ �

∣
∣ > 0,

∣
∣supp(ϕj,k) ∩ �

∣
∣ > 0, ∀i, j ∈ {1, . . . , k}.
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Taking ei,k = (aϕi,k , bϕi,k) ∈ Xk , i = 1, . . . , k, and Xk = span{e1,k , . . . , ek,k}, where a and b are
two positive constants, we conclude from the construction of Xk that dim Xk = k for ev-
ery k. Therefore, there exists a constant ε(k) > 0 such that

∫

�

Q(x)
(
ς1|ũ|α1 |ṽ|β1 + · · · + ςm|ũ|αm |ṽ|βm

)
dx

=
∫

�

Q(x)

(

ς1

∣
∣
∣
∣
∣

k∑

i=1

ati,kϕi,k

∣
∣
∣
∣
∣

α1 ∣∣
∣
∣
∣

k∑

i=1

bti,kϕi,k

∣
∣
∣
∣
∣

β1

+ · · ·

+ ςm

∣
∣
∣
∣
∣

k∑

i=1

ati,kϕi,k

∣
∣
∣
∣
∣

αm ∣
∣
∣
∣
∣

k∑

i=1

bti,kϕi,k

∣
∣
∣
∣
∣

βm)

dx ≥ ε(k)

for all (ũ, ṽ) =
∑k

i=1 ti,kei,k ∈ Xk , with ‖(ũ, ṽ)‖μ = 1. Hence, if (u, v) ∈ Xk\{(0, 0)}, then we
write (u, v) = t(ũ, ṽ), with t = ‖(u, v)‖μ and ‖(ũ, ṽ)‖μ = 1. Therefore, we derive

F (u, v) =
1
2

t2 –
1

2∗∗ t2∗∗
∫

�

Q(x)
m∑

i=1

ςi|ũ|αi |ṽ|βi dx ≤ 1
2

t2 –
ε(k)
2∗∗ t2∗∗ ≤ 0

for t > 0 sufficiently large. By Corollary 3.1 and Lemma 3.5, we conclude that there exists
a sequence of critical values ck → ∞ as k → ∞ and the results follow. �

Proof of Corollary 2.2 Because Q(x) is radial, we know that the corresponding group
G = O(N) and |G| = +∞. By Corollary 3.1, F satisfies the (PS)c condition for every c ∈ R.
Therefore, we deduce from Theorem 2.2 that the results follow. �

4 Multiplicity results for problem (PQ
σ )

The purpose of this section is to investigate problem (PQ
σ ) and prove Theorem 2.3; here

we always presume that σ > 0 and Q(x) ≡ Q > 0 is a constant. The corresponding energy
functional of problem (PQ

σ ) is defined on (D2,2
G (RN ))2 by

Eσ (u, v) =
1
2
∥
∥(u, v)

∥
∥2

μ
–

Q
2∗∗

∫

RN

m∑

i=1

ςi|u|αi |v|βi dx –
σ

q

∫

RN
h(x)

(|u|q + |v|q)dx, (4.1)

where 1 < q < 2. In view of (h.2), (2.3), and the Hölder inequality, we find

∫

RN
h(x)

(|u|q + |v|q)dx

≤
(∫

RN
hθ (x) dx

) 1
θ
{(∫

RN
|u|2∗∗

dx
) q

2∗∗
+

(∫

RN
|v|2∗∗

dx
) q

2∗∗ }

≤A– q
2

μ ‖h‖θ

(‖u‖q
μ + ‖v‖q

μ

) ≤ C‖h‖θ

∥
∥(u, v)

∥
∥q

μ
. (4.2)

It follows from (4.1) and (4.2) that Eσ ∈ C 1((D2,2
G (RN ))2,R) and there exists a one-to-one

correspondence between the weak solutions of (PQ
σ ) and the critical points of Eσ . We now

observe that an analogously symmetric criticality principle of Lemma 3.1 clearly holds.
Consequently, the weak solutions of problem (PQ

σ ) are exactly the critical points of the
functional Eσ .
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Lemma 4.1 Assume that (h.1) and (h.2) hold. Then there exists a positive constant M
depending only on N , q, Aμ, and ‖h‖θ , such that any bounded sequence {(un, vn)} ⊂
(D2,2

G (RN ))2 satisfying

Eσ (un, vv) → c <
2
N

Q1– N
4 A

N
4
μ,m – Mσ

2
2–q ,

E ′
σ (un, vv) → 0 (n → ∞)

(4.3)

contains a convergent subsequence.

Proof By the hypothesis, {(un, vn)} is bounded in (D2,2
G (RN ))2. Hence we obtain a subse-

quence, still denoted by {(un, vn)}, satisfying (un, vn) ⇀ (u, v) in (D2,2
G (RN ))2, (un, vn) →

(u, v) a.e. in R
N and (un, vn) → (u, v) in (Lr

loc(RN ))2 for all r ∈ [1, 2∗∗). By virtue of (h.2), the
Hölder inequality and the Lebesgue dominated theorem, we derive

lim
n→∞

∫

RN
h(x)

(|un|q + |vn|q
)

dx =
∫

RN
h(x)

(|u|q + |v|q)dx. (4.4)

Applying the standard argument, we easily check from (4.4) that (u, v) is a critical point of
Eσ . Further, in view of (h.2), (4.1), (4.2), and the Hölder inequality, by direct calculation,
we obtain

Eσ (u, v) = Eσ (u, v) –
1

2∗∗
〈
E ′

σ (u, v), (u, v)
〉

=
2
N

∥
∥(u, v)

∥
∥2

μ
–

σ

2∗∗q
(
2∗∗ – q

)
∫

RN
h(x)

(|u|q + |v|q)dx

≥ 2
N

(‖u‖2
μ + ‖v‖2

μ

)
–

σ

2∗∗q
(
2∗∗ – q

)
A– q

2
μ ‖h‖θ

(‖u‖q
μ + ‖v‖q

μ

)

≥ –(2 – q)
(

qN
4

) q
2–q

(
2∗∗ – q

2∗∗q
A– q

2
μ ‖h‖θ

) 2
2–q

σ
2

2–q � –Mσ
2

2–q , (4.5)

where M = (2 – q)( qN
4 )

q
2–q ( 2∗∗–q

2∗∗q A– q
2

μ ‖h‖θ )
2

2–q is a positive constant. We now set ũn = un – u
and ṽn = vn – v. Then, by the Brezis–Lieb lemma [39] and arguing as in [40, Lemma 2.1],
we have

∥
∥(̃un, ṽn)

∥
∥2

μ
=

∥
∥(un, vn)

∥
∥2

μ
–

∥
∥(u, v)

∥
∥2

μ
+ on(1), (4.6)

∫

RN
|̃un|αi |̃vn|βi dx =

∫

RN
|un|αi |vn|βi dx –

∫

RN
|u|αi |v|βi dx + on(1), i = 1, . . . , m. (4.7)

Taking into account Eσ (un, vn) = c + on(1) and E ′
σ (un, vn) = on(1), we conclude from (4.1),

(4.4), (4.6), and (4.7) that

c + on(1) = Eσ (un, vn) = Eσ (u, v) +
1
2
∥
∥(̃un, ṽn)

∥
∥2

μ

–
Q

2∗∗

∫

RN

m∑

i=1

ςi |̃un|αi |̃vn|βi dx + on(1) (4.8)
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and

∥
∥(̃un, ṽn)

∥
∥2

μ
– Q

∫

RN

m∑

i=1

ςi |̃un|αi |̃vn|βi dx = on(1). (4.9)

As a result, for a subsequence {(̃un, ṽn)}, we find

∥
∥(̃un, ṽn)

∥
∥2

μ
→ ξ ≥ 0, Q

∫

RN

m∑

i=1

ςi |̃un|αi |̃vn|βi dx → ξ

as n → ∞. It follows from (3.3) that Aμ,m(ξ/Q)
2

2∗∗ ≤ ξ . This yields either ξ = 0 or ξ ≥
Q1– N

4 A
N
4
μ,m. If ξ ≥ Q1– N

4 A
N
4
μ,m, then we deduce from (4.5), (4.8), and (4.9) that

c = Eσ (u, v) +
(

1
2

–
1

2∗∗

)

ξ ≥ 2
N

Q1– N
4 A

N
4
μ,m – Mσ

2
2–q ,

which contradicts (4.3). Therefore, we obtain ‖(̃un, ṽn)‖2
μ → 0 as n → +∞, and hence,

(un, vn) → (u, v) in (D2,2
G (RN ))2. The conclusion of this lemma follows. �

Lemma 4.2 Assume that (h.1) and (h.2) hold. Then there exists σ ∗
1 > 0 such that for any

σ ∈ (0,σ ∗
1 ) the following geometric conditions for Eσ (u, v) hold:

(i) Eσ (0, 0) = 0; there exist constants α > 0 and ρ > 0 such that Eσ (u, v) ≥ α for all
‖(u, v)‖μ = ρ ;

(ii) there exists (eu, ev) ∈ (D2,2
G (RN ))2 such that ‖(eu, ev)‖μ > ρ and Eσ (eu, ev) < 0.

Proof In view of (h.2), (3.3), (4.1), (4.2), and the Hölder inequality, by direct computation,
we derive

Eσ (u, v) ≥ 1
2
∥
∥(u, v)

∥
∥2

μ
–

Q
2∗∗A

– 2∗∗
2

μ,m
∥
∥(u, v)

∥
∥2∗∗

μ
–

σ

q
C‖h‖θ

∥
∥(u, v)

∥
∥q

μ

≥
(

1
2

– ς0

)
∥
∥(u, v)

∥
∥2

μ
–

Q
2∗∗A

– 2∗∗
2

μ,m
∥
∥(u, v)

∥
∥2∗∗

μ
– C(ς0)σ

2
2–q (4.10)

for any ς0 ∈ (0, 1
2 ), where C(ς0) = ( 2

q – 1)ς0[C‖h‖θ /(2ς0)]2/(2–q) is a positive constant. It
follows from the last inequality in (4.10) that there exist constants α > 0, ρ > 0, and σ ∗

1 > 0
such that Eσ (u, v) ≥ α > 0 for all ‖(u, v)‖μ = ρ , ς0 ∈ (0, 1

2 ) and σ ∈ (0,σ ∗
1 ). This yields (i).

On the other hand, taking into account
∫

RN h(x)(|u|q + |v|q) dx ≥ 0, we deduce from (4.1)
that there exists (ǔ, v̌) ∈ (D2,2

G (RN )\{0})2 such that Eσ (tǔ, tv̌) → –∞ as t → +∞. There-
fore, we can choose (eu, ev) = (Tǔ, Tv̌) (T > 0 large enough) such that ‖(eu, ev)‖μ > ρ and
Eσ (eu, ev) < 0. Thus (ii) follows. �

Lemma 4.3 Assume that (h.1) and (h.2) hold. Then there exists σ ∗
2 > 0 such that

sup
t≥0

Eσ (tyε , tτminyε) <
2
N

Q1– N
4 A

N
4
μ,m – Mσ

2
2–q (4.11)

for any σ ∈ (0,σ ∗
2 ) and small ε > 0, where M > 0 is given in Lemma 4.1 and τmin > 0 satisfies

(3.4)–(3.6).
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Proof Similar to the proof in Alves [41, Theorem 3], we define the functions

�(t) = Eσ (tyε , tτminyε) =
t2

2
(
1 + τ 2

min

)
∫

RN

(

|�yε |2 – μ
y2
ε

|x|4
)

dx

–
t2∗∗

2∗∗

( m∑

i=1

ςiτ
βi
min

)

Q
∫

RN
y2∗∗
ε dx –

σ

q
tq(1 + τ

q
min

)
∫

RN
h(x)yq

ε dx (4.12)

and

�̃(t) =
t2

2
(
1 + τ 2

min

)
∫

RN

(

|�yε |2 – μ
y2
ε

|x|4
)

dx –
t2∗∗

2∗∗

( m∑

i=1

ςiτ
βi
min

)

Q
∫

RN
y2∗∗
ε dx (4.13)

with t ≥ 0. Note that �̃(0) = 0, �̃(t) > 0 for t → 0+, and limt→+∞ �̃(t) = –∞. Hence,
supt≥0 �̃(t) can be achieved at some finite t0

ε > 0 at which �̃ ′(t) becomes zero. In view
of (2.5), (2.6), (3.4)–(3.6), (4.13), and Lemma 3.2, by simple arithmetic, we derive

sup
t≥0

�̃(t) = �̃
(
t0
ε

)
=

(
1
2

–
1

2∗∗

){ (1 + τ 2
min)

∫

RN (|�yε |2 – μ
y2
ε

|x|4 ) dx

[(
∑m

i=1 ςiτ
βi
min)Q

∫

RN y2∗∗
ε dx]

2
2∗∗

} 2∗∗
2∗∗–2

=
2
N

Q1– N
4
(
B(τmin)Aμ

) N
4 =

2
N

Q1– N
4 A

N
4
μ,m. (4.14)

Let σ > 0 be such that

2
N

Q1– N
4 A

N
4
μ,m – Mσ

2
2–q > 0, ∀σ ∈ (0,σ ).

On the one hand, by virtue of (h.1), (h.2), (2.5), and (4.12), we conclude that

�(t) = Eσ (tyε , tτminyε) ≤ t2

2
(
1 + τ 2

min

)
, ∀t ≥ 0,σ > 0,

and there exists T0 ∈ (0, 1) independent of ε such that

sup
0≤t≤T0

�(t) ≤ T2
0

2
(
1 + τ 2

min

)
<

2
N

Q1– N
4 A

N
4
μ,m – Mσ

2
2–q , ∀σ ∈ (0,σ ). (4.15)

On the other hand, it follows from (4.12), (4.13), and (4.14) that

sup
t≥T0

�(t) ≤ sup
t≥0

�̃(t) –
σ

q
Tq

0
(
1 + τ

q
min

)
∫

RN
h(x)yq

ε dx

=
2
N

Q1– N
4 A

N
4
μ,m –

σ

q
Tq

0
(
1 + τ

q
min

)
∫

RN
h(x)yq

ε dx. (4.16)

Now, taking σ > 0 such that – σ
q Tq

0 (1 + τ
q
min)

∫

RN h(x)yq
ε dx < –Mσ

2
2–q , namely

0 < σ <
[

Tq
0

qM
(
1 + τ

q
min

)
∫

RN
h(x)yq

ε dx
] 2–q

q
� σ̃ ,
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we find from (4.16) that

sup
t≥T0

�(t) <
2
N

Q1– N
4 A

N
4
μ,m – Mσ

2
2–q , ∀σ ∈ (0, σ̃ ). (4.17)

Choosing σ ∗
2 = min{σ , σ̃ }, we deduce from (4.15) and (4.17) that

sup
t≥0

�(t) <
2
N

Q1– N
4 A

N
4
μ,m – Mσ

2
2–q , ∀σ ∈ (

0,σ ∗
2
)
,

which implies (4.11). Hence the results of this lemma follow. �

Proof of Theorem 2.3 Taking ρ > 0 and σ ∗ = min{σ ∗
1 ,σ ∗

2 }, for 0 < σ < σ ∗, given in the proofs
of Lemmas 4.2 and 4.3, we define

c1 � inf
Bρ (0)

Eσ (u, v),

where Bρ(0) = {(u, v) ∈ (D2,2
G (RN ))2;‖(u, v)‖μ ≤ ρ}. It is easy to see that the metric space

Bρ(0) is complete. According to the Ekeland variational principle [42], we deduce that
there exists a sequence {(un, vn)} ⊂ Bρ(0) such that Eσ (un, vn) → c1 and E ′

σ (un, vn) → 0 as
n → ∞.

Let ϕ0, ψ0 ∈ C ∞
0 (RN ) be the G-invariant functions such that ϕ0, ψ0 > 0. It follows from

(h.1) and (h.2) that
∫

RN h(x)(ϕq
0 + ψ

q
0 ) dx > 0. In view of 1 < q < 2 < 2∗∗, we find that there

exists t̃0 = t̃0(ϕ0,ψ0) > 0 sufficiently small such that

Eσ (t̃0ϕ0, t̃0ψ0) =
t̃2
0
2

∥
∥(ϕ0,ψ0)

∥
∥2

μ

–
Q

2∗∗ t̃2∗∗
0

∫

RN

m∑

i=1

ςiϕ
αi
0 ψ

βi
0 dx –

σ

q
t̃q
0

∫

RN
h(x)

(
ϕ

q
0 + ψ

q
0
)

dx < 0.

This yields

c1 < 0 <
2
N

Q1– N
4 A

N
4
μ,m – Mσ

2
2–q , ∀σ ∈ (

0,σ ∗).

By virtue of Lemma 4.1, Eσ admits a nontrivial critical point (u1, v1) with Eσ (u1, v1) = c1 < 0.
Applying the principle of symmetric criticality, we obtain that (u1, v1) is a nontrivial G-
invariant solution of problem (PQ

σ ).
Furthermore, we now define

c2 � inf
γ∈�

max
t∈[0,1]

Eσ

(
γ (t)

)
,

where � = {γ ∈ C ([0, 1], (D2,2
G (RN ))2);γ (0) = (0, 0),γ (1) = (eu, ev)}. It follows from Lemmas

4.2 and 4.3 that

0 < α ≤ c2 <
2
N

Q1– N
4 A

N
4
μ,m – Mσ

2
2–q , ∀σ ∈ (

0,σ ∗).
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This, combined with the mountain pass theorem, implies that c2 is another nonzero crit-
ical value of Eσ . Similar to the above arguments, problem (PQ

σ ) possesses another non-
trivial G-invariant solution (u2, v2) with Eσ (u2, v2) = c2 > 0. �
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16. Ghergu, M., Rădulescu, V.: Singular elliptic problems with lack of compactness. Ann. Mat. Pura Appl. 185, 63–79 (2006)
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