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Abstract
In the present paper, we consider the existence of ground state sign-changing
solutions for the semilinear Dirichlet problem

{
–�u + λu = f (x,u), x ∈ �;
u = 0, x ∈ ∂�,

(0.1)

where � ⊂ R
N is a bounded domain with a smooth boundary ∂�, λ > –λ1 is a

constant, λ1 is the first eigenvalue of (–�,H1
0(�)), and f ∈ C(� ×R,R). Under some

standard growth assumptions on f and a weak version of Nehari type monotonicity
condition that the function t �→ f (x, t)/|t| is non-decreasing on (–∞, 0)∪ (0,∞) for
every x ∈ �, we prove that (0.1) possesses one ground state sign-changing solution,
which has precisely two nodal domains. Our results improve and generalize some
existing ones.
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1 Introduction
Let � ⊂ R

N be a bounded domain with a smooth boundary ∂�. In this paper we are con-
cerned with the existence of sign-changing solutions of the semilinear Dirichlet problem

{
–�u + λu = f (x, u), x ∈ �;
u = 0, x ∈ ∂�,

(1.1)

where λ > –λ1 is a constant, λ1 is the first eigenvalue of (–�, H1
0 (�)), and f : � × R → R

satisfies the following assumptions:
(F1) f ∈ C(� ×R,R) and f (x, t) = o(t) as t → 0 uniformly in x ∈ �;
(F2) there exist constants C0 > 0 and p ∈ (2, 2∗) such that

∣∣f (x, t)
∣∣ ≤ C0

(
1 + |t|p–1), ∀(x, t) ∈ � ×R,

where 2∗ = 2N/(N – 2) if N ≥ 3, and 2∗ = +∞ if N = 1, 2;
(F3) lim|t|→∞ F(x,t)

t2 = ∞ uniformly in x ∈ �, where F(x, t) =
∫ t

0 f (x, s) ds;
(F4) The function t �→ f (x, t)/|t| is non-decreasing on (–∞, 0) ∪ (0,∞) for every x ∈ �.
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Let H1
0 (�) be the Sobolev space, and define � : H1

0 (�) → R as follows:

�(u) =
1
2

∫
�

(|∇u|2 + λu2)dx –
∫

�

F(x, u) dx. (1.2)

It is a well-known consequence of (F1) and (F2) that � ∈ C1(H1
0 (�),R) and the critical

points of � are weak solutions of (1.1). Furthermore, if u ∈ H1
0 (�) is a solution of (1.1) and

u± �= 0, then u is a sign-changing solution of (1.1), where

u+(x) := max
{

u(x), 0
}

and u–(x) := min
{

u(x), 0
}

.

In order to facilitate the narrative, we set

M :=
{

u ∈ H1
0 (�) : u± �= 0,

〈
�′(u), u+〉

=
〈
�′(u), u–〉

= 0
}

, (1.3)

N :=
{

u ∈ H1
0 (�) : u �= 0,

〈
�′(u), u

〉
= 0

}
, (1.4)

and put

m0 := inf
u∈M

�(u), c0 := inf
u∈N

�(u). (1.5)

Problem (1.1) has been studied extensively, and much progress has been made recently
concerning the existence of sign-changing solutions, see [1–13]. In particular, Bartsch and
Weth [6] proved that (1.1) has a least energy sign-changing solution ū, i.e., �(ū) = m0,
which has precisely two nodal domains under (F1), (F2) and the following assumptions:

(F5) f ∈ C1(� ×R,R) and f ′(x, t) > f (x, t)/t for all x ∈ � and t �= 0;
(AR) there exists μ > 2 such that tf (x, t) ≥ μF(x, t) > 0 for all x ∈ � and large |t|.

This result improves the work of Castro et al. [9] as well as the one of Bartsch et al. [2]
for (1.1) with f (x, t) = f (t). Moreover, further information is gained on sign-changing so-
lutions, in particular on the nodal structure, extremality properties, and the Morse index
with respect to �.

We point out that (F5) plays a very crucial role in papers [2, 6, 9], it is a stronger version
of the following Nehari type monotonicity assumption:

(Ne) The function t �→ f (x, t)/|t| is strictly increasing on (–∞, 0) ∪ (0,∞) for every
x ∈ �.

(Ne) seems to be essential in seeking a ground solution of Nehari type for (1.1), for ex-
ample, see [14–16]. It is also necessary for the existence of a least energy sign-changing
solution. In particular, under (F1), (F2), and (Ne), Bartsch and Weth [6] proved that every
weak solution u ∈ M of (1.1) with 0 < �(u) ≤ m0 has precisely two nodal domains, while
Bartsch et al. [17] showed that every minimizer of � on M is a critical point of �, hence a
sign-changing solution of (1.1) with precisely two nodal domains. Under some additional
conditions on � and f , such as (F5) and (AR), the infimum m0 of � can be attained in M,
see [2, 6, 9]. However, it is unknown whether assumptions (F1), (F2), and (Ne) guarantee
that the infimum m0 of � is attained in M.

It is a well-known consequence of (Ne) that there is unique tu > 0 such that tuu ∈N for
every u ∈ H1

0 (�) \ {0}, which implies that � has one minimizer on M at most. Moreover,
in Bartsch et al. [17], (Ne) plays a very important role in showing that every minimizer
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of � on M is a critical point. If t �→ f (x, t)/|t| is not strictly increasing, then tu and the
minimizer of � on M may not be unique, and their arguments become invalid. This pa-
per intends to address this problem caused by the dropping of this “strictly increasing”
condition on f . Motivated by the works [2, 6, 9, 17–26], we will use variational methods
to generalize and improve the existence results on sign-changing solutions in reference to
the relaxing assumption (Ne). However, our proof relies more on the specific choice of the
(P.S.) sequence than on the appropriate minimax principle.

We are now in a position to state the main results of this paper.

Theorem 1.1 Assume that λ > –λ1 and (F1)–(F4) hold. Then Problem (1.1) has a sign-
changing solution u0 ∈M such that �(u0) = infM � > 0. Furthermore, suppose that

1
2

tf (x, t) – F(x, t) > 0, ∀x ∈ �, t �= 0. (1.6)

Then u0 has precisely two nodal domains.

Theorem 1.2 Assume that λ > –λ1 and (F1)–(F4) hold. Then m0 ≥ 2c0.

Remark 1.3 Tang [27, Theorem 1.2] has proved that if λ > –λ1 and (F1)–(F4) hold, then
Problem (1.1) has a solution ū ∈N such that �(ū) = infN � = c0 > 0.

Remark 1.4 In [3], Bartsch et al. obtained the existence of sign-changing solutions of (1.1)
under (F1), (F2), (F3), and (AR) by using variational methods and invariant sets of descent
flow. However, the sign-changing solutions obtained in [3] are not the ground state ones.

2 Some preliminary lemmas
In this section, we give some preliminary lemmas which are crucial for proving our re-

sults. We introduce a new inner product and a norm on H1
0 (�)

(u, v) =
∫

�

(∇u · ∇v + λuv) dx, ‖u‖ = (u, u)1/2, ∀u, v ∈ H1
0 (�),

where (·, ·)2 and ‖·‖2 denote the usual L2-inner product and the norm, respectively. In view
of Sobolev embedding theorem, the norm ‖ · ‖ is equivalent to the usual norm in H1

0 (�).
Furthermore, for any s ∈ [2, 2∗], there exists a constant γs > 0 such that ‖u‖s ≤ γs‖u‖ for
all u ∈ H1

0 (�). Hence, the energy functional � can be rewritten as

�(u) =
1
2
‖u‖2 –

∫
�

F(x, u) dx, ∀u ∈ H1
0 (�). (2.1)

Moreover, for any u,ϕ ∈ H1
0 (�), we have

〈
�′(u),ϕ

〉
= (u,ϕ) –

∫
�

f (x, u)ϕ dx. (2.2)

Lemma 2.1 Assume that (F1)–(F4) hold. Then

�(u) ≥ �
(
su+ + tu–)

+
1 – s2

2
〈
�′(u), u+〉

+
1 – t2

2
〈
�′(u), u–〉

,

∀u = u+ + u– ∈ H1
0 (�), s, t ≥ 0. (2.3)
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Proof It follows from (F4) that

1 – t2

2
τ f (x, τ ) + F(x, tτ ) – F(x, τ )

=
∫ 1

t

[
f (x, τ )

τ
–

f (x, sτ )
sτ

]
sτ 2 ds ≥ 0, ∀t ≥ 0, τ ∈R \ {0}. (2.4)

Thus, by (2.1), (2.2), and (2.4), one has

�(u) – �
(
su+ + tu–)

=
1
2
(‖u‖2 –

∥∥su+ + tu–∥∥2) +
∫

�

[
F
(
x, su+ + tu–)

– F(x, u)
]

dx

=
1 – s2

2
∥∥u+∥∥2 +

1 – t2

2
∥∥u–∥∥2

+
∫

�

[
F
(
x, su+)

+ F
(
x, tu–)

– F
(
x, u+)

– F
(
x, u–)]

dx

=
1 – s2

2
〈
�′(u), u+〉

+
1 – t2

2
〈
�′(u), u–〉

+
∫

�

[
1 – s2

2
f
(
x, u+)

u+ + F
(
x, su+)

– F
(
x, u+)]

dx

+
∫

�

[
1 – t2

2
f
(
x, u–)

u– + F
(
x, tu–)

– F
(
x, u–)]

dx

≥ 1 – s2

2
〈
�′(u), u+〉

+
1 – t2

2
〈
�′(u), u–〉

, ∀s, t ≥ 0.

This shows that (2.3) holds. �

From Lemma 2.1, we have the following two corollaries immediately.

Corollary 2.2 Assume that (F1)–(F4) hold. If u = u+ + u– ∈M, then

�
(
u+ + u–)

= max
s,t≥0

�
(
su+ + tu–)

. (2.5)

Corollary 2.3 Assume that (F1)–(F4) hold. If u ∈N , then

�(u) = max
t≥0

�(tu). (2.6)

By a standard argument, we can prove the following lemma using (Ne), see [28,
Lemma 4.1].

Lemma 2.4 Assume that (F1)–(F3), (Ne) hold. If u ∈ H1
0 (�) with u± �= 0, then there exists

a unique pair (su, tu) of positive numbers such that suu+ + tuu– ∈M.

Lemma 2.5 Assume that (F1)–(F3), (Ne) hold. Then

m0 = inf
u∈M

�(u) = inf
u∈H1

0 (�),u±�=0
max
s,t≥0

�
(
su+ + tu–)

.
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Proof On the one hand, by Corollary 2.2, one has

inf
u∈H1

0 (�),u±�=0
max
s,t≥0

�
(
su+ + tu–) ≤ inf

u∈M
max
s,t≥0

�
(
su+ + tu–)

= inf
u∈M

�(u) = m0. (2.7)

On the other hand, for any u ∈ H1
0 (�) with u± �= 0, it follows from Lemma 2.4 that

max
s,t≥0

�
(
su+ + tu–) ≥ �

(
suu+ + tuu–) ≥ inf

v∈M
�(v) = m0,

which implies

inf
u∈H1

0 (�),u±�=0
max
s,t≥0

�
(
su+ + tu–) ≥ inf

u∈M
�(u) = m0. (2.8)

Hence, the conclusion directly follows from (2.7) and (2.8). �

Lemma 2.6 Assume that (F1)–(F3), (Ne) hold. Then m0 > 0 can be achieved.

Proof Let {un} ⊂ M be such that �(un) → m0. First, we prove that {un} is bounded in E.
Arguing by contradiction, suppose that ‖un‖ → ∞. Let vn = un/‖un‖, then ‖vn‖ = 1. By
Sobolev embedding theorem, passing to a subsequence, we may assume that vn → v in
Ls(�), 2 ≤ s < 2∗, vn → v a.e. on �.

If v = 0, then vn → 0 in Ls(�) for 2 ≤ s < 2∗. Fix R > [2(1 + m0)]1/2. By (F1) and (F2), there
exists C1 > 0 such that

lim sup
n→∞

∫
�

F(x, Rvn) dx ≤ R2 lim
n→∞‖vn‖2

2 + C1Rp lim
n→∞‖vn‖p

p = 0. (2.9)

Let tn = R/‖un‖. Hence, by (2.1), (2.9), and Corollary 2.3, one has

m0 + o(1) = �(un) ≥ �(tnun)

=
t2
n
2

‖un‖2 –
∫

�

F(x, tnun) dx

=
R2

2
–

∫
�

F(x, Rvn) dx

=
R2

2
+ o(1) > m0 + 1 + o(1),

which is a contradiction. Thus v �= 0.
For x ∈ {z ∈ R

N : v(z) �= 0}, we have limn→∞ |un(x)| = ∞. Hence, it follows from (F3),
(Ne), and Fatou’s lemma that

0 = lim
n→∞

m0 + o(1)
‖un‖2 = lim

n→∞
�(un)
‖un‖2

= lim
n→∞

[
1
2
‖vn‖2 –

∫
�

F(x, un)
u2

n
v2

n dx
]

≤ 1
2

– lim inf
n→∞

∫
�

F(x, un)
u2

n
v2

n dx ≤ 1
2

–
∫

�

lim inf
n→∞

F(x, un)
u2

n
v2

n dx

= –∞.
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This contradiction shows that {un} is bounded in H1
0 (�). Thus there exists u0 ∈ H1

0 (�)
such that u±

n ⇀ u±
0 in H1

0 (�), which implies that u±
n → u±

0 in Ls(�) for s ∈ [2, 2∗) and
u±

n → u±
0 a.e. on �.

Next, we prove that u0 ∈M and �(u0) = m0. Since infN � = c0 > 0, un ∈M, and u±
n ∈N ,

then it follows from (2.1), (2.2), and the weak semicontinuity of norm that

〈
�′(u0), u±

0
〉

=
∥∥u±

0
∥∥2 –

∫
�

f
(
x, u±

0
)
u±

0 dx

≤ lim inf
n→∞

[∥∥u±
n
∥∥2 –

∫
�

f
(
x, u±

n
)
u±

n dx
]

= lim inf
n→∞

〈
�′(un), u±

n
〉

= 0

and

∫
�

[
1
2

f
(
x, u±

0
)

– F
(
x, u±

0
)]

dx = lim
n→∞

∫
�

[
1
2

f
(
x, u±

n
)

– F
(
x, u±

n
)]

dx

= lim
n→∞

[
�

(
u±

n
)

–
1
2
〈
�′(u±

n
)
, u±

n
〉]

= lim
n→∞�

(
u±

n
) ≥ c0 > 0.

These, together with (2.4) (t = 0), show

u±
0 �= 0,

〈
�′(u0), u±

0
〉 ≤ 0. (2.10)

By Lemma 2.4, there exist s0, t0 > 0 such that s0u+
0 + t0u–

0 ∈M. From (2.1), (2.2), (2.10), and
Lemma 2.1, we have

m0 = lim
n→∞

[
�(un) –

1
2
〈
�′(un), un

〉]

= lim
n→∞

∫
�

[
1
2

f (x, un)un – F(x, un)
]

dx

=
∫

�

[
1
2

f (x, u0)u0 – F(x, u0)
]

dx

= �(u0) –
1
2
〈
�′(u0), u0

〉

≥ �
(
s0u+

0 + t0u–
0
)

+
1 – s2

0
2

〈
�′(u0), u+

0
〉
+

1 – t2
0

2
〈
�′(u0), u–

0
〉
–

1
2
〈
�′(u0), u0

〉

≥ m0 –
s2

0
2

〈
�′(u0), u+

0
〉
–

t2
0
2

〈
�′(u0), u–

0
〉
,

which implies

〈
�′(u0), u±

0
〉

= 0, �(u0) = m0. �

Similar to the proof of [17, Proposition 3.1], we can prove the following lemma.
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Lemma 2.7 Assume that (F1)–(F3), (Ne) hold. If u0 ∈ M and �(u0) = m0, then u0 is a
critical point of �.

3 Sign-changing solutions
For any ε > 0, let fε(x, t) = f (x, t) + εp|t|p–2t and

�ε(u) = �(u) – ε‖u‖p
p, ∀u ∈ H1

0 (�). (3.1)

Similarly, we define

Mε :=
{

u ∈ H1
0 (�) : u± �= 0,

〈
�′

ε(u), u+〉
=

〈
�′

ε(u), u–〉
= 0

}
, (3.2)

Nε :=
{

u ∈ H1
0 (�) : u �= 0,

〈
�′

ε(u), u
〉

= 0
}

, (3.3)

and

mε := inf
u∈Mε

�ε(u), cε := inf
u∈Nε

�ε(u). (3.4)

Lemma 3.1 Assume that (F1)–(F4) hold. Then there exists a constant α > 0 which does not
depend on ε ∈ (0, 1] such that

�ε(u) ≥ α, ∀u ∈Nε , ε ∈ (0, 1]. (3.5)

Proof By (F1) and (F2), there exists a constant C2 > 0 such that

F(x, t) ≤ 1
4γ 2

2
t2 + C2|t|p, ∀(x, t) ∈ � ×R. (3.6)

From (3.1), (3.6), and Corollary 2.3, one has

�ε(u) = max
t≥0

�ε(tu) = max
t≥0

[
t2

2
‖u‖2 –

∫
�

F(x, tu) dx – εtp‖u‖p
p

]

≥ max
t≥0

[
t2

4
‖u‖2 – (C2 + 1)γ p

p tp‖u‖p)
]

=
p – 2

4p[2(C2 + 1)γ p
p p]2/(p–2)

:= α > 0, ∀u ∈Nε , ε ∈ (0, 1]. �

Proof of Theorem 1.1 Under the conditions of Theorem 1.1, for ε > 0, fε satisfies (F1)–(F3)
and (Ne). In view of Lemmas 2.6 and 2.7, there exists uε ∈Mε such that �ε(uε) = mε and
�′

ε(uε) = 0.
By (F1)–(F3), one can easily prove that M0 �= ∅. Let u0 ∈ M0. Then �(u0) := c∗ > 0 and

〈�′(u0), u±
0 〉 = 0. By Lemma 2.4, there exist sε > 0 and tε > 0 such that sεu+

0 + tεu–
0 ∈ Mε .

Hence, from Corollary 2.2 and Lemma 3.1, we have

c∗ = �(u0)

≥ �
(
sεu+

0 + tεu–
0
) ≥ �ε

(
sεu+

0 + tεu–
0
)

≥ mε ≥ κ̂ , ∀ε ∈ (0, 1). (3.7)
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Hence, we can choose a sequence {εn} such that εn ↘ 0 as n → ∞, and

uεn ∈Mεn , �εn (uεn ) = mεn → m̄, �′
εn (uεn ) = 0. (3.8)

First, we prove that {uεn} is bounded in H1
0 (�). Arguing by contradiction, suppose that

‖uεn‖ → ∞. Let vn = uεn /‖uεn‖, then ‖vn‖ = 1. By Sobolev embedding theorem, passing to
a subsequence, we may assume that vn → v in Ls(�), 2 ≤ s < 2∗, vn → v a.e. on �.

If v = 0, then vn → 0 in Ls(�) for 2 ≤ s < 2∗. Fix R > [2(1 + m̄)]1/2. By (F1) and (F2), there
exists C3 > 0 such that

lim sup
n→∞

∫
�

F(x, Rvn) dx ≤ R2 lim
n→∞‖vn‖2

2 + C3Rp lim
n→∞‖vn‖p

p = 0. (3.9)

Let tn = R/‖uεn‖. Hence, using (3.1), (3.8), (3.9), and Corollary 2.3, one has

mεn = �εn (uεn ) ≥ �εn (tnuεn )

=
t2
n
2

‖uεn‖2 –
∫

�

[
F(x, tnuεn ) + εn|tnuεn |p

]
dx

=
R2

2
–

∫
�

[
F(x, Rvn) + εnRp|vn|p

]
dx

=
R2

2
+ o(1) > m̄ + 1 + o(1),

which is a contradiction. Thus v �= 0.
For x ∈ {z ∈ R

N : v(z) �= 0}, we have limn→∞ |uεn (x)| = ∞. Hence, it follows from (F3),
(F4), (3.8), and Fatou’s lemma that

0 = lim
n→∞

mεn

‖uεn‖2 = lim
n→∞

�εn (uεn )
‖uεn‖2

= lim
n→∞

[
1
2
‖vn‖2 –

∫
�

F(x, uεn ) + εn|uεn |p
u2

εn

v2
n dx

]

≤ 1
2

– lim inf
n→∞

∫
�

F(x, uεn )
u2

εn

v2
n dx ≤ 1

2
–

∫
�

lim inf
n→∞

F(x, uεn )
u2

εn

v2
n dx

= –∞.

This contradiction shows that {uεn} is bounded in H1
0 (�). Hence, there exists a subse-

quence of {εn} still denoted by {εn} and u0 ∈ H1
0 (�) such that uεn ⇀ u0 in H1

0 (�).
Second, we prove that �′(u0) = 0 and �(u0) = m0. By Sobolev embedding theorem,

uεn → u0 in Ls(�), 2 ≤ s < 2∗, uεn → u0 a.e. on �. Then, from (2.2), (3.1), and (3.8), one
has

〈
�′(u0),ϕ

〉
= (u0,ϕ) –

∫
�

f (x, u0)ϕ dx

= lim
n→∞

[
(uεn ,ϕ) –

∫
�

[
f (x, uεn ) + εnp|uεn |p–2uεn

]
ϕ dx

]

= lim
n→∞

〈
�′

εn (uεn ),ϕ
〉

= 0, ∀ϕ ∈ C∞
0 (�).
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This shows �′(u0) = 0. Since uεn → u0 in Ls(�), 2 ≤ s < 2∗, by (3.1) and (3.8), we have

‖uεn – u0‖2

=
〈
�′

εn (uεn ) – �′(u0), uεn – u0
〉
+ εnp

∫
�

(|uεn |p–2uεn – |u0|p–2u0
)
(uεn – u0) dx

+
∫

�

[
f (x, uεn ) – f (x, u0)

]
(uεn – u0) dx → 0, as n → ∞, (3.10)

which implies uεn → u0 in H1
0 (�), and so u±

εn → u±
0 in H1

0 (�). Consequently, it follows
from (3.1) and (3.8) that �(u0) = m̄. Again from (3.1) and (3.5), one has

∫
�

[
1
2

f
(
x, u±

0
)

– F
(
x, u±

0
)]

dx = lim
n→∞

∫
�

[
1
2

f
(
x, u±

εn

)
– F

(
x, u±

εn

)
+

(p – 2)εn

2
∣∣u±

εn

∣∣p
]

dx

= lim
n→∞

[
�εn

(
u±

εn

)
–

1
2
〈
�′

εn

(
u±

εn

)
, u±

εn

〉]

= lim
n→∞�εn

(
u±

εn

) ≥ α > 0. (3.11)

This, together with (2.4) (t = 0), shows u±
0 �= 0. Thus u0 ∈ M and m̄ = �(u0) ≥ m0. Next,

we prove �(u0) = m0. Let ε be any positive number. Then there exists vε ∈ M such that
�(vε) < m0 + ε. Then (F3) implies that there exists Kε > 0 such that, for s ≥ Kε or t ≥ Kε ,

�εn

(
sv+

ε + tv–
ε

)
=

s2

2
∥∥v+

ε

∥∥2 –
∫

�

F
(
x, sv+

ε

)
dx – εnsp∥∥v+

ε

∥∥p
p

+
t2

2
∥∥v–

ε

∥∥2 –
∫

�

F
(
x, tv–

ε

)
dx – εntp∥∥v–

ε

∥∥p
p

≤ s2

2
∥∥v+

ε

∥∥2 –
∫

�

F
(
x, sv+

ε

)
dx +

t2

2
∥∥v–

ε

∥∥2 –
∫

�

F
(
x, tv–

ε

)
dx < 0. (3.12)

In view of Lemma 2.4, there exists a pair (sn, tn) of positive numbers such that snv+
ε + tnv–

ε ∈
Mεn , which, together with (3.12) and cεn > 0, implies 0 < sn, tn < Kε . Hence, from (2.3),
(3.1), and 〈�′(vε), v±

ε 〉 = 0, we have

m0 + ε > �(vε) = �εn (vε) + εn‖vε‖p
p

≥ �εn

(
snv+

ε + tnv–
ε

)
+

1 – s2
n

2
〈
�′

εn (vε), v+
ε

〉
+

1 – t2
n

2
〈
�′

εn (vε), v–
ε

〉

≥ mεn –
1 + K2

ε

2
∣∣〈�′

εn (vε), v+
ε

〉∣∣ –
1 + K2

ε

2
∣∣〈�′

εn (vε), v–
ε

〉∣∣

= mεn –
(1 + K2

ε )pεn

2
∥∥v+

ε

∥∥p
p –

(1 + K2
ε )pεn

2
∥∥v–

ε

∥∥p
p,

which yields

m̄ = lim
n→∞ mεn ≤ m0 + ε. (3.13)

Since ε > 0 is arbitrary, one has m̄ ≤ m0. Thus, m̄ = m0, i.e., �(u0) = m0.
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Finally, we show that u0 has exactly two nodal domains. Let u0 = u1 + u2 + u3, where

u1 ≥ 0, u2 ≤ 0, �1 ∩ �2 = ∅,

u1|�\(�1∪�2) = u2|�\(�1∪�2) = u3|�1∪�2 = 0,
(3.14)

�1 :=
{

x ∈ � : u1(x) > 0
}

, �2 :=
{

x ∈ � : u2(x) < 0
}

, (3.15)

and �1, �2 are connected open subsets of �.
Setting v = u1 + u2, we see that v+ = u1 and v– = u2, i.e., v± �= 0. Note that �′(u0) = 0, by

a simple computation, one has

〈
�′(v), v+〉

=
〈
�′(v), v–〉

= 0. (3.16)

From (2.1), (2.2), (2.3), (3.14), and (3.16), we have

m0 = �(u0) –
1
2
〈
�′(u0), u0

〉

= �(v) + �(u3) –
1
2
[〈
�′(v), v

〉
+

〈
�′(u3), u3

〉]

≥ sup
s,t≥0

�
(
sv+ + tv–)

+ �(u3) –
1
2
〈
�′(u3), u3

〉

≥ m0 +
∫

�

[
1
2

f (x, u3)u3 – F(x, u3)
]

dx,

which, together with (1.6), shows u3 = 0. Therefore, u0 has exactly two nodal domains. �

Proof of Theorem 1.2 In view of Theorem 1.1, there exists u0 ∈ M such that m0 = �(u0).
Since u± ∈N , then one has

m0 = �(u0) = �
(
u+

0
)

+ �
(
u–

0
) ≥ 2c0. �

4 Conclusion
In this paper, by using the variational methods and a suitable approximating method, we

prove that Problem (1.1) has a sign-changing solution u0 ∈M such that �(u0) = infM � >
0 if λ > –λ1 and f satisfies (F1)–(F4). Furthermore, if 1

2 tf (x, t) – F(x, t) > 0 for all x ∈ R
N

and t �= 0, we also prove that u0 has precisely two nodal domains. Our results improve and
generalize some existing ones in the literature.
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