https://doi.org/10.1186/s13661-018-0973-3

Ground state sign-changing solutions for semilinear Dirichlet problems

Xiaoyan Lin ${ }^{1 *}$ and Xianhua Tang ${ }^{2}$
*Correspondence:
xiaoyanlin98@hotmail.com
' Department of Mathematics, Huaihua University, Huaihua, P.R. China

Full list of author information is available at the end of the article

Abstract

In the present paper, we consider the existence of ground state sign-changing solutions for the semilinear Dirichlet problem $$
\begin{cases}-\Delta u+\lambda u=f(x, u), & x \in \Omega \tag{0.1}\\ u=0, & x \in \partial \Omega\end{cases}
$$ where $\Omega \subset \mathbb{R}^{N}$ is a bounded domain with a smooth boundary $\partial \Omega, \lambda>-\lambda_{1}$ is a constant, λ_{1} is the first eigenvalue of $\left(-\Delta, H_{0}^{\prime}(\Omega)\right)$, and $f \in C(\Omega \times \mathbb{R}, \mathbb{R})$. Under some standard growth assumptions on f and a weak version of Nehari type monotonicity condition that the function $t \mapsto f(x, t) /|t|$ is non-decreasing on $(-\infty, 0) \cup(0, \infty)$ for every $x \in \Omega$, we prove that (0.1) possesses one ground state sign-changing solution, which has precisely two nodal domains. Our results improve and generalize some existing ones.

MSC: 35J20; 35J65
Keywords: Semilinear Dirichlet problem; Ground state sign-changing solutions; Perturbation method

1 Introduction

Let $\Omega \subset \mathbb{R}^{N}$ be a bounded domain with a smooth boundary $\partial \Omega$. In this paper we are concerned with the existence of sign-changing solutions of the semilinear Dirichlet problem

$$
\begin{cases}-\Delta u+\lambda u=f(x, u), & x \in \Omega \tag{1.1}\\ u=0, & x \in \partial \Omega\end{cases}
$$

where $\lambda>-\lambda_{1}$ is a constant, λ_{1} is the first eigenvalue of $\left(-\triangle, H_{0}^{1}(\Omega)\right)$, and $f: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ satisfies the following assumptions:
(F1) $f \in \mathcal{C}(\Omega \times \mathbb{R}, \mathbb{R})$ and $f(x, t)=o(t)$ as $t \rightarrow 0$ uniformly in $x \in \Omega$;
(F2) there exist constants $\mathcal{C}_{0}>0$ and $p \in\left(2,2^{*}\right)$ such that

$$
|f(x, t)| \leq \mathcal{C}_{0}\left(1+|t|^{p-1}\right), \quad \forall(x, t) \in \Omega \times \mathbb{R},
$$

where $2^{*}=2 N /(N-2)$ if $N \geq 3$, and $2^{*}=+\infty$ if $N=1,2$;
(F3) $\lim _{|t| \rightarrow \infty} \frac{F(x, t)}{t^{2}}=\infty$ uniformly in $x \in \Omega$, where $F(x, t)=\int_{0}^{t} f(x, s) \mathrm{d} s$;
(F4) The function $t \mapsto f(x, t) /|t|$ is non-decreasing on $(-\infty, 0) \cup(0, \infty)$ for every $x \in \Omega$.

Let $H_{0}^{1}(\Omega)$ be the Sobolev space, and define $\Phi: H_{0}^{1}(\Omega) \rightarrow \mathbb{R}$ as follows:

$$
\begin{equation*}
\Phi(u)=\frac{1}{2} \int_{\Omega}\left(|\nabla u|^{2}+\lambda u^{2}\right) \mathrm{d} x-\int_{\Omega} F(x, u) \mathrm{d} x . \tag{1.2}
\end{equation*}
$$

It is a well-known consequence of (F1) and (F2) that $\Phi \in \mathcal{C}^{1}\left(H_{0}^{1}(\Omega), \mathbb{R}\right)$ and the critical points of Φ are weak solutions of (1.1). Furthermore, if $u \in H_{0}^{1}(\Omega)$ is a solution of (1.1) and $u^{ \pm} \neq 0$, then u is a sign-changing solution of (1.1), where

$$
u^{+}(x):=\max \{u(x), 0\} \quad \text { and } \quad u^{-}(x):=\min \{u(x), 0\} .
$$

In order to facilitate the narrative, we set

$$
\begin{align*}
& \mathcal{M}:=\left\{u \in H_{0}^{1}(\Omega): u^{ \pm} \neq 0,\left\langle\Phi^{\prime}(u), u^{+}\right\rangle=\left\langle\Phi^{\prime}(u), u^{-}\right\rangle=0\right\}, \tag{1.3}\\
& \mathcal{N}:=\left\{u \in H_{0}^{1}(\Omega): u \neq 0,\left\langle\Phi^{\prime}(u), u\right\rangle=0\right\}, \tag{1.4}
\end{align*}
$$

and put

$$
\begin{equation*}
m_{0}:=\inf _{u \in \mathcal{M}} \Phi(u), \quad c_{0}:=\inf _{u \in \mathcal{N}} \Phi(u) . \tag{1.5}
\end{equation*}
$$

Problem (1.1) has been studied extensively, and much progress has been made recently concerning the existence of sign-changing solutions, see [1-13]. In particular, Bartsch and Weth [6] proved that (1.1) has a least energy sign-changing solution \bar{u}, i.e., $\Phi(\bar{u})=m_{0}$, which has precisely two nodal domains under (F1), (F2) and the following assumptions:
(F5) $f \in \mathcal{C}^{1}(\Omega \times \mathbb{R}, \mathbb{R})$ and $f^{\prime}(x, t)>f(x, t) / t$ for all $x \in \Omega$ and $t \neq 0$;
(AR) there exists $\mu>2$ such that $t f(x, t) \geq \mu F(x, t)>0$ for all $x \in \Omega$ and large $|t|$.
This result improves the work of Castro et al. [9] as well as the one of Bartsch et al. [2] for (1.1) with $f(x, t)=f(t)$. Moreover, further information is gained on sign-changing solutions, in particular on the nodal structure, extremality properties, and the Morse index with respect to Φ.

We point out that (F5) plays a very crucial role in papers [2, 6, 9], it is a stronger version of the following Nehari type monotonicity assumption:
(Ne) The function $t \mapsto f(x, t) /|t|$ is strictly increasing on $(-\infty, 0) \cup(0, \infty)$ for every $x \in \Omega$.
(Ne) seems to be essential in seeking a ground solution of Nehari type for (1.1), for example, see [14-16]. It is also necessary for the existence of a least energy sign-changing solution. In particular, under (F1), (F2), and (Ne), Bartsch and Weth [6] proved that every weak solution $u \in \mathcal{M}$ of (1.1) with $0<\Phi(u) \leq m_{0}$ has precisely two nodal domains, while Bartsch et al. [17] showed that every minimizer of Φ on \mathcal{M} is a critical point of Φ, hence a sign-changing solution of (1.1) with precisely two nodal domains. Under some additional conditions on Ω and f, such as (F5) and (AR), the infimum m_{0} of Φ can be attained in \mathcal{M}, see $[2,6,9]$. However, it is unknown whether assumptions (F1), (F2), and (Ne) guarantee that the infimum m_{0} of Φ is attained in \mathcal{M}.
It is a well-known consequence of (Ne) that there is unique $t_{u}>0$ such that $t_{u} u \in \mathcal{N}$ for every $u \in H_{0}^{1}(\Omega) \backslash\{0\}$, which implies that Φ has one minimizer on \mathcal{M} at most. Moreover, in Bartsch et al. [17], (Ne) plays a very important role in showing that every minimizer
of Φ on \mathcal{M} is a critical point. If $t \mapsto f(x, t) /|t|$ is not strictly increasing, then t_{u} and the minimizer of Φ on \mathcal{M} may not be unique, and their arguments become invalid. This paper intends to address this problem caused by the dropping of this "strictly increasing" condition on f. Motivated by the works [2, 6, 9, 17-26], we will use variational methods to generalize and improve the existence results on sign-changing solutions in reference to the relaxing assumption (Ne). However, our proof relies more on the specific choice of the (P.S.) sequence than on the appropriate minimax principle.

We are now in a position to state the main results of this paper.

Theorem 1.1 Assume that $\lambda>-\lambda_{1}$ and (F1)-(F4) hold. Then Problem (1.1) has a signchanging solution $u_{0} \in \mathcal{M}$ such that $\Phi\left(u_{0}\right)=\inf _{\mathcal{M}} \Phi>0$. Furthermore, suppose that

$$
\begin{equation*}
\frac{1}{2} t f(x, t)-F(x, t)>0, \quad \forall x \in \Omega, t \neq 0 \tag{1.6}
\end{equation*}
$$

Then u_{0} has precisely two nodal domains.

Theorem 1.2 Assume that $\lambda>-\lambda_{1}$ and (F1)-(F4) hold. Then $m_{0} \geq 2 c_{0}$.

Remark 1.3 Tang [27, Theorem 1.2] has proved that if $\lambda>-\lambda_{1}$ and (F1)-(F4) hold, then Problem (1.1) has a solution $\bar{u} \in \mathcal{N}$ such that $\Phi(\bar{u})=\inf _{\mathcal{N}} \Phi=c_{0}>0$.

Remark 1.4 In [3], Bartsch et al. obtained the existence of sign-changing solutions of (1.1) under (F1), (F2), (F3), and (AR) by using variational methods and invariant sets of descent flow. However, the sign-changing solutions obtained in [3] are not the ground state ones.

2 Some preliminary lemmas

In this section, we give some preliminary lemmas which are crucial for proving our results. We introduce a new inner product and a norm on $H_{0}^{1}(\Omega)$

$$
(u, v)=\int_{\Omega}(\nabla u \cdot \nabla v+\lambda u v) \mathrm{d} x, \quad\|u\|=(u, u)^{1 / 2}, \quad \forall u, v \in H_{0}^{1}(\Omega)
$$

where $(\cdot, \cdot)_{2}$ and $\|\cdot\|_{2}$ denote the usual L^{2}-inner product and the norm, respectively. In view of Sobolev embedding theorem, the norm $\|\cdot\|$ is equivalent to the usual norm in $H_{0}^{1}(\Omega)$. Furthermore, for any $s \in\left[2,2^{*}\right]$, there exists a constant $\gamma_{s}>0$ such that $\|u\|_{s} \leq \gamma_{s}\|u\|$ for all $u \in H_{0}^{1}(\Omega)$. Hence, the energy functional Φ can be rewritten as

$$
\begin{equation*}
\Phi(u)=\frac{1}{2}\|u\|^{2}-\int_{\Omega} F(x, u) \mathrm{d} x, \quad \forall u \in H_{0}^{1}(\Omega) . \tag{2.1}
\end{equation*}
$$

Moreover, for any $u, \varphi \in H_{0}^{1}(\Omega)$, we have

$$
\begin{equation*}
\left\langle\Phi^{\prime}(u), \varphi\right\rangle=(u, \varphi)-\int_{\Omega} f(x, u) \varphi \mathrm{d} x . \tag{2.2}
\end{equation*}
$$

Lemma 2.1 Assume that (F1)-(F4) hold. Then

$$
\begin{align*}
\Phi(u) & \geq \Phi\left(s u^{+}+t u^{-}\right)+\frac{1-s^{2}}{2}\left\langle\Phi^{\prime}(u), u^{+}\right\rangle+\frac{1-t^{2}}{2}\left\langle\Phi^{\prime}(u), u^{-}\right\rangle \\
\forall u & =u^{+}+u^{-} \in H_{0}^{1}(\Omega), s, t \geq 0 \tag{2.3}
\end{align*}
$$

Proof It follows from (F4) that

$$
\begin{align*}
& \frac{1-t^{2}}{2} \tau f(x, \tau)+F(x, t \tau)-F(x, \tau) \\
& \quad=\int_{t}^{1}\left[\frac{f(x, \tau)}{\tau}-\frac{f(x, s \tau)}{s \tau}\right] s \tau^{2} \mathrm{~d} s \geq 0, \quad \forall t \geq 0, \tau \in \mathbb{R} \backslash\{0\} . \tag{2.4}
\end{align*}
$$

Thus, by (2.1), (2.2), and (2.4), one has

$$
\begin{aligned}
\Phi(u)-\Phi\left(s u^{+}+t u^{-}\right)= & \frac{1}{2}\left(\|u\|^{2}-\left\|s u^{+}+t u^{-}\right\|^{2}\right)+\int_{\Omega}\left[F\left(x, s u^{+}+t u^{-}\right)-F(x, u)\right] \mathrm{d} x \\
= & \frac{1-s^{2}}{2}\left\|u^{+}\right\|^{2}+\frac{1-t^{2}}{2}\left\|u^{-}\right\|^{2} \\
& +\int_{\Omega}\left[F\left(x, s u^{+}\right)+F\left(x, t u^{-}\right)-F\left(x, u^{+}\right)-F\left(x, u^{-}\right)\right] \mathrm{d} x \\
= & \frac{1-s^{2}}{2}\left\langle\Phi^{\prime}(u), u^{+}\right\rangle+\frac{1-t^{2}}{2}\left\langle\Phi^{\prime}(u), u^{-}\right\rangle \\
& +\int_{\Omega}\left[\frac{1-s^{2}}{2} f\left(x, u^{+}\right) u^{+}+F\left(x, s u^{+}\right)-F\left(x, u^{+}\right)\right] \mathrm{d} x \\
& +\int_{\Omega}\left[\frac{1-t^{2}}{2} f\left(x, u^{-}\right) u^{-}+F\left(x, t u^{-}\right)-F\left(x, u^{-}\right)\right] \mathrm{d} x \\
\geq & \frac{1-s^{2}}{2}\left\langle\Phi^{\prime}(u), u^{+}\right\rangle+\frac{1-t^{2}}{2}\left\langle\Phi^{\prime}(u), u^{-}\right\rangle, \quad \forall s, t \geq 0 .
\end{aligned}
$$

This shows that (2.3) holds.

From Lemma 2.1, we have the following two corollaries immediately.

Corollary 2.2 Assume that (F1)-(F4) hold. If $u=u^{+}+u^{-} \in \mathcal{M}$, then

$$
\begin{equation*}
\Phi\left(u^{+}+u^{-}\right)=\max _{s, t \geq 0} \Phi\left(s u^{+}+t u^{-}\right) . \tag{2.5}
\end{equation*}
$$

Corollary 2.3 Assume that (F1)-(F4) hold. If $u \in \mathcal{N}$, then

$$
\begin{equation*}
\Phi(u)=\max _{t \geq 0} \Phi(t u) . \tag{2.6}
\end{equation*}
$$

By a standard argument, we can prove the following lemma using (Ne), see [28, Lemma 4.1].

Lemma 2.4 Assume that (F1)-(F3), (Ne) hold. If $u \in H_{0}^{1}(\Omega)$ with $u^{ \pm} \neq 0$, then there exists a unique pair $\left(s_{u}, t_{u}\right)$ of positive numbers such that $s_{u} u^{+}+t_{u} u^{-} \in \mathcal{M}$.

Lemma 2.5 Assume that (F1)-(F3), (Ne) hold. Then

$$
m_{0}=\inf _{u \in \mathcal{M}} \Phi(u)=\inf _{u \in H_{0}^{1}(\Omega), u^{ \pm} \neq 0} \max _{s, t \geq 0} \Phi\left(s u^{+}+t u^{-}\right)
$$

Proof On the one hand, by Corollary 2.2, one has

$$
\begin{equation*}
\inf _{u \in H_{0}^{1}(\Omega), u^{ \pm} \neq 0} \max _{s, t \geq 0} \Phi\left(s u^{+}+t u^{-}\right) \leq \inf _{u \in \mathcal{M}} \max _{s, t \geq 0} \Phi\left(s u^{+}+t u^{-}\right)=\inf _{u \in \mathcal{M}} \Phi(u)=m_{0} \tag{2.7}
\end{equation*}
$$

On the other hand, for any $u \in H_{0}^{1}(\Omega)$ with $u^{ \pm} \neq 0$, it follows from Lemma 2.4 that

$$
\max _{s, t \geq 0} \Phi\left(s u^{+}+t u^{-}\right) \geq \Phi\left(s_{u} u^{+}+t_{u} u^{-}\right) \geq \inf _{v \in \mathcal{M}} \Phi(v)=m_{0}
$$

which implies

$$
\begin{equation*}
\inf _{u \in H_{0}^{1}(\Omega), u^{ \pm} \neq 0} \max _{s, t \geq 0} \Phi\left(s u^{+}+t u^{-}\right) \geq \inf _{u \in \mathcal{M}} \Phi(u)=m_{0} \tag{2.8}
\end{equation*}
$$

Hence, the conclusion directly follows from (2.7) and (2.8).
Lemma 2.6 Assume that (F1)-(F3), (Ne) hold. Then $m_{0}>0$ can be achieved.
Proof Let $\left\{u_{n}\right\} \subset \mathcal{M}$ be such that $\Phi\left(u_{n}\right) \rightarrow m_{0}$. First, we prove that $\left\{u_{n}\right\}$ is bounded in E. Arguing by contradiction, suppose that $\left\|u_{n}\right\| \rightarrow \infty$. Let $v_{n}=u_{n} /\left\|u_{n}\right\|$, then $\left\|v_{n}\right\|=1$. By Sobolev embedding theorem, passing to a subsequence, we may assume that $v_{n} \rightarrow v$ in $L^{s}(\Omega), 2 \leq s<2^{*}, v_{n} \rightarrow v$ a.e. on Ω.

If $v=0$, then $v_{n} \rightarrow 0$ in $L^{s}(\Omega)$ for $2 \leq s<2^{*}$. Fix $R>\left[2\left(1+m_{0}\right)\right]^{1 / 2}$. By (F1) and (F2), there exists $C_{1}>0$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\Omega} F\left(x, R v_{n}\right) \mathrm{d} x \leq R^{2} \lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{2}^{2}+C_{1} R^{p} \lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{p}^{p}=0 . \tag{2.9}
\end{equation*}
$$

Let $t_{n}=R /\left\|u_{n}\right\|$. Hence, by (2.1), (2.9), and Corollary 2.3, one has

$$
\begin{aligned}
m_{0}+o(1) & =\Phi\left(u_{n}\right) \geq \Phi\left(t_{n} u_{n}\right) \\
& =\frac{t_{n}^{2}}{2}\left\|u_{n}\right\|^{2}-\int_{\Omega} F\left(x, t_{n} u_{n}\right) \mathrm{d} x \\
& =\frac{R^{2}}{2}-\int_{\Omega} F\left(x, R v_{n}\right) \mathrm{d} x \\
& =\frac{R^{2}}{2}+o(1)>m_{0}+1+o(1)
\end{aligned}
$$

which is a contradiction. Thus $v \neq 0$.
For $x \in\left\{z \in \mathbb{R}^{N}: v(z) \neq 0\right\}$, we have $\lim _{n \rightarrow \infty}\left|u_{n}(x)\right|=\infty$. Hence, it follows from (F3), (Ne), and Fatou's lemma that

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \frac{m_{0}+o(1)}{\left\|u_{n}\right\|^{2}}=\lim _{n \rightarrow \infty} \frac{\Phi\left(u_{n}\right)}{\left\|u_{n}\right\|^{2}} \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{2}\left\|v_{n}\right\|^{2}-\int_{\Omega} \frac{F\left(x, u_{n}\right)}{u_{n}^{2}} v_{n}^{2} \mathrm{~d} x\right] \\
& \leq \frac{1}{2}-\liminf _{n \rightarrow \infty} \int_{\Omega} \frac{F\left(x, u_{n}\right)}{u_{n}^{2}} v_{n}^{2} \mathrm{~d} x \leq \frac{1}{2}-\int_{\Omega} \liminf _{n \rightarrow \infty} \frac{F\left(x, u_{n}\right)}{u_{n}^{2}} v_{n}^{2} \mathrm{~d} x \\
& =-\infty .
\end{aligned}
$$

This contradiction shows that $\left\{u_{n}\right\}$ is bounded in $H_{0}^{1}(\Omega)$. Thus there exists $u_{0} \in H_{0}^{1}(\Omega)$ such that $u_{n}^{ \pm} \rightharpoonup u_{0}^{ \pm}$in $H_{0}^{1}(\Omega)$, which implies that $u_{n}^{ \pm} \rightarrow u_{0}^{ \pm}$in $L^{s}(\Omega)$ for $s \in\left[2,2^{*}\right)$ and $u_{n}^{ \pm} \rightarrow u_{0}^{ \pm}$a.e. on Ω.

Next, we prove that $u_{0} \in \mathcal{M}$ and $\Phi\left(u_{0}\right)=m_{0}$. Since $\inf _{\mathcal{N}} \Phi=c_{0}>0, u_{n} \in \mathcal{M}$, and $u_{n}^{ \pm} \in \mathcal{N}$, then it follows from (2.1), (2.2), and the weak semicontinuity of norm that

$$
\begin{aligned}
\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}^{ \pm}\right\rangle & =\left\|u_{0}^{ \pm}\right\|^{2}-\int_{\Omega} f\left(x, u_{0}^{ \pm}\right) u_{0}^{ \pm} \mathrm{d} x \\
& \leq \liminf _{n \rightarrow \infty}\left[\left\|u_{n}^{ \pm}\right\|^{2}-\int_{\Omega} f\left(x, u_{n}^{ \pm}\right) u_{n}^{ \pm} \mathrm{d} x\right] \\
& =\liminf _{n \rightarrow \infty}\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}^{ \pm}\right\rangle=0
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\Omega}\left[\frac{1}{2} f\left(x, u_{0}^{ \pm}\right)-F\left(x, u_{0}^{ \pm}\right)\right] \mathrm{d} x & =\lim _{n \rightarrow \infty} \int_{\Omega}\left[\frac{1}{2} f\left(x, u_{n}^{ \pm}\right)-F\left(x, u_{n}^{ \pm}\right)\right] \mathrm{d} x \\
& =\lim _{n \rightarrow \infty}\left[\Phi\left(u_{n}^{ \pm}\right)-\frac{1}{2}\left\langle\Phi^{\prime}\left(u_{n}^{ \pm}\right), u_{n}^{ \pm}\right\rangle\right] \\
& =\lim _{n \rightarrow \infty} \Phi\left(u_{n}^{ \pm}\right) \geq c_{0}>0 .
\end{aligned}
$$

These, together with (2.4) $(t=0)$, show

$$
\begin{equation*}
u_{0}^{ \pm} \neq 0, \quad\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}^{ \pm}\right\rangle \leq 0 . \tag{2.10}
\end{equation*}
$$

By Lemma 2.4, there exist $s_{0}, t_{0}>0$ such that $s_{0} u_{0}^{+}+t_{0} u_{0}^{-} \in \mathcal{M}$. From (2.1), (2.2), (2.10), and Lemma 2.1, we have

$$
\begin{aligned}
m_{0} & =\lim _{n \rightarrow \infty}\left[\Phi\left(u_{n}\right)-\frac{1}{2}\left\langle\Phi^{\prime}\left(u_{n}\right), u_{n}\right\rangle\right] \\
& =\lim _{n \rightarrow \infty} \int_{\Omega}\left[\frac{1}{2} f\left(x, u_{n}\right) u_{n}-F\left(x, u_{n}\right)\right] \mathrm{d} x \\
& =\int_{\Omega}\left[\frac{1}{2} f\left(x, u_{0}\right) u_{0}-F\left(x, u_{0}\right)\right] \mathrm{d} x \\
& =\Phi\left(u_{0}\right)-\frac{1}{2}\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}\right\rangle \\
& \geq \Phi\left(s_{0} u_{0}^{+}+t_{0} u_{0}^{-}\right)+\frac{1-s_{0}^{2}}{2}\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}^{+}\right\rangle+\frac{1-t_{0}^{2}}{2}\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}^{-}\right\rangle-\frac{1}{2}\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}\right\rangle \\
& \geq m_{0}-\frac{s_{0}^{2}}{2}\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}^{+}\right\rangle-\frac{t_{0}^{2}}{2}\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}^{-}\right\rangle,
\end{aligned}
$$

which implies

$$
\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}^{ \pm}\right\rangle=0, \quad \Phi\left(u_{0}\right)=m_{0} .
$$

Similar to the proof of [17, Proposition 3.1], we can prove the following lemma.

Lemma 2.7 Assume that (F1)-(F3), (Ne) hold. If $u_{0} \in \mathcal{M}$ and $\Phi\left(u_{0}\right)=m_{0}$, then u_{0} is a critical point of Φ.

3 Sign-changing solutions

For any $\epsilon>0$, let $f_{\epsilon}(x, t)=f(x, t)+\epsilon p|t|^{p-2} t$ and

$$
\begin{equation*}
\Phi_{\epsilon}(u)=\Phi(u)-\epsilon\|u\|_{p}^{p}, \quad \forall u \in H_{0}^{1}(\Omega) \tag{3.1}
\end{equation*}
$$

Similarly, we define

$$
\begin{align*}
& \mathcal{M}_{\epsilon}:=\left\{u \in H_{0}^{1}(\Omega): u^{ \pm} \neq 0,\left\langle\Phi_{\epsilon}^{\prime}(u), u^{+}\right\rangle=\left\langle\Phi_{\epsilon}^{\prime}(u), u^{-}\right\rangle=0\right\} \tag{3.2}\\
& \mathcal{N}_{\epsilon}:=\left\{u \in H_{0}^{1}(\Omega): u \neq 0,\left\langle\Phi_{\epsilon}^{\prime}(u), u\right\rangle=0\right\} \tag{3.3}
\end{align*}
$$

and

$$
\begin{equation*}
m_{\epsilon}:=\inf _{u \in \mathcal{M}_{\epsilon}} \Phi_{\epsilon}(u), \quad c_{\epsilon}:=\inf _{u \in \mathcal{N}_{\epsilon}} \Phi_{\epsilon}(u) . \tag{3.4}
\end{equation*}
$$

Lemma 3.1 Assume that (F1)-(F4) hold. Then there exists a constant $\alpha>0$ which does not depend on $\epsilon \in(0,1]$ such that

$$
\begin{equation*}
\Phi_{\epsilon}(u) \geq \alpha, \quad \forall u \in \mathcal{N}_{\epsilon}, \epsilon \in(0,1] . \tag{3.5}
\end{equation*}
$$

Proof By (F1) and (F2), there exists a constant $C_{2}>0$ such that

$$
\begin{equation*}
F(x, t) \leq \frac{1}{4 \gamma_{2}^{2}} t^{2}+C_{2}|t|^{p}, \quad \forall(x, t) \in \Omega \times \mathbb{R} . \tag{3.6}
\end{equation*}
$$

From (3.1), (3.6), and Corollary 2.3, one has

$$
\begin{aligned}
\Phi_{\epsilon}(u) & =\max _{t \geq 0} \Phi_{\epsilon}(t u)=\max _{t \geq 0}\left[\frac{t^{2}}{2}\|u\|^{2}-\int_{\Omega} F(x, t u) \mathrm{d} x-\epsilon t^{p}\|u\|_{p}^{p}\right] \\
& \left.\geq \max _{t \geq 0}\left[\frac{t^{2}}{4}\|u\|^{2}-\left(C_{2}+1\right) \gamma_{p}^{p} t^{p}\|u\|^{p}\right)\right] \\
& =\frac{p-2}{4 p\left[2\left(C_{2}+1\right) \gamma_{p}^{p} p\right]^{2 /(p-2)}}:=\alpha>0, \quad \forall u \in \mathcal{N}_{\epsilon}, \epsilon \in(0,1] .
\end{aligned}
$$

Proof of Theorem 1.1 Under the conditions of Theorem 1.1, for $\epsilon>0, f_{\epsilon}$ satisfies (F1)-(F3) and (Ne). In view of Lemmas 2.6 and 2.7, there exists $u_{\epsilon} \in \mathcal{M}_{\epsilon}$ such that $\Phi_{\epsilon}\left(u_{\epsilon}\right)=m_{\epsilon}$ and $\Phi_{\epsilon}^{\prime}\left(u_{\epsilon}\right)=0$.
By (F1)-(F3), one can easily prove that $\mathcal{M}_{0} \neq \emptyset$. Let $u_{0} \in \mathcal{M}_{0}$. Then $\Phi\left(u_{0}\right):=c^{*}>0$ and $\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}^{ \pm}\right\rangle=0$. By Lemma 2.4, there exist $s_{\epsilon}>0$ and $t_{\epsilon}>0$ such that $s_{\epsilon} u_{0}^{+}+t_{\epsilon} u_{0}^{-} \in \mathcal{M}_{\epsilon}$. Hence, from Corollary 2.2 and Lemma 3.1, we have

$$
\begin{align*}
c^{*} & =\Phi\left(u_{0}\right) \\
& \geq \Phi\left(s_{\epsilon} u_{0}^{+}+t_{\epsilon} u_{0}^{-}\right) \geq \Phi_{\epsilon}\left(s_{\epsilon} u_{0}^{+}+t_{\epsilon} u_{0}^{-}\right) \\
& \geq m_{\epsilon} \geq \hat{\kappa}, \quad \forall \epsilon \in(0,1) . \tag{3.7}
\end{align*}
$$

Hence, we can choose a sequence $\left\{\epsilon_{n}\right\}$ such that $\epsilon_{n} \searrow 0$ as $n \rightarrow \infty$, and

$$
\begin{equation*}
u_{\epsilon_{n}} \in \mathcal{M}_{\epsilon_{n}}, \quad \Phi_{\epsilon_{n}}\left(u_{\epsilon_{n}}\right)=m_{\epsilon_{n}} \rightarrow \bar{m}, \quad \Phi_{\epsilon_{n}}^{\prime}\left(u_{\epsilon_{n}}\right)=0 . \tag{3.8}
\end{equation*}
$$

First, we prove that $\left\{u_{\epsilon_{n}}\right\}$ is bounded in $H_{0}^{1}(\Omega)$. Arguing by contradiction, suppose that $\left\|u_{\epsilon_{n}}\right\| \rightarrow \infty$. Let $v_{n}=u_{\epsilon_{n}} /\left\|u_{\epsilon_{n}}\right\|$, then $\left\|v_{n}\right\|=1$. By Sobolev embedding theorem, passing to a subsequence, we may assume that $v_{n} \rightarrow v$ in $L^{s}(\Omega), 2 \leq s<2^{*}, v_{n} \rightarrow v$ a.e. on Ω.
If $v=0$, then $v_{n} \rightarrow 0$ in $L^{s}(\Omega)$ for $2 \leq s<2^{*}$. Fix $R>[2(1+\bar{m})]^{1 / 2}$. By (F1) and (F2), there exists $C_{3}>0$ such that

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \int_{\Omega} F\left(x, R v_{n}\right) \mathrm{d} x \leq R^{2} \lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{2}^{2}+C_{3} R^{p} \lim _{n \rightarrow \infty}\left\|v_{n}\right\|_{p}^{p}=0 . \tag{3.9}
\end{equation*}
$$

Let $t_{n}=R /\left\|u_{\epsilon_{n}}\right\|$. Hence, using (3.1), (3.8), (3.9), and Corollary 2.3, one has

$$
\begin{aligned}
m_{\epsilon_{n}} & =\Phi_{\epsilon_{n}}\left(u_{\epsilon_{n}}\right) \geq \Phi_{\epsilon_{n}}\left(t_{n} u_{\epsilon_{n}}\right) \\
& =\frac{t_{n}^{2}}{2}\left\|u_{\epsilon_{n}}\right\|^{2}-\int_{\Omega}\left[F\left(x, t_{n} u_{\epsilon_{n}}\right)+\epsilon_{n}\left|t_{n} u_{\epsilon_{n}}\right|^{p}\right] \mathrm{d} x \\
& =\frac{R^{2}}{2}-\int_{\Omega}\left[F\left(x, R v_{n}\right)+\epsilon_{n} R^{p}\left|v_{n}\right|^{p}\right] \mathrm{d} x \\
& =\frac{R^{2}}{2}+o(1)>\bar{m}+1+o(1),
\end{aligned}
$$

which is a contradiction. Thus $v \neq 0$.
For $x \in\left\{z \in \mathbb{R}^{N}: v(z) \neq 0\right\}$, we have $\lim _{n \rightarrow \infty}\left|u_{\epsilon_{n}}(x)\right|=\infty$. Hence, it follows from (F3), (F4), (3.8), and Fatou's lemma that

$$
\begin{aligned}
0 & =\lim _{n \rightarrow \infty} \frac{m_{\epsilon_{n}}}{\left\|u_{\epsilon_{n}}\right\|^{2}}=\lim _{n \rightarrow \infty} \frac{\Phi_{\epsilon_{n}}\left(u_{\epsilon_{n}}\right)}{\left\|u_{\epsilon_{n}}\right\|^{2}} \\
& =\lim _{n \rightarrow \infty}\left[\frac{1}{2}\left\|v_{n}\right\|^{2}-\int_{\Omega} \frac{F\left(x, u_{\epsilon_{n}}\right)+\epsilon_{n}\left|u_{\epsilon_{n}}\right|^{p}}{u_{\epsilon_{n}}^{2}} v_{n}^{2} \mathrm{~d} x\right] \\
& \leq \frac{1}{2}-\liminf _{n \rightarrow \infty} \int_{\Omega} \frac{F\left(x, u_{\epsilon_{n}}\right)}{u_{\epsilon_{n}}^{2}} v_{n}^{2} \mathrm{~d} x \leq \frac{1}{2}-\int_{\Omega} \liminf _{n \rightarrow \infty} \frac{F\left(x, u_{\epsilon_{n}}\right)}{u_{\epsilon_{n}}^{2}} v_{n}^{2} \mathrm{~d} x \\
& =-\infty .
\end{aligned}
$$

This contradiction shows that $\left\{u_{\epsilon_{n}}\right\}$ is bounded in $H_{0}^{1}(\Omega)$. Hence, there exists a subsequence of $\left\{\epsilon_{n}\right\}$ still denoted by $\left\{\epsilon_{n}\right\}$ and $u_{0} \in H_{0}^{1}(\Omega)$ such that $u_{\epsilon_{n}} \rightharpoonup u_{0}$ in $H_{0}^{1}(\Omega)$.

Second, we prove that $\Phi^{\prime}\left(u_{0}\right)=0$ and $\Phi\left(u_{0}\right)=m_{0}$. By Sobolev embedding theorem, $u_{\epsilon_{n}} \rightarrow u_{0}$ in $L^{s}(\Omega), 2 \leq s<2^{*}, u_{\epsilon_{n}} \rightarrow u_{0}$ a.e. on Ω. Then, from (2.2), (3.1), and (3.8), one has

$$
\begin{aligned}
\left\langle\Phi^{\prime}\left(u_{0}\right), \varphi\right\rangle & =\left(u_{0}, \varphi\right)-\int_{\Omega} f\left(x, u_{0}\right) \varphi \mathrm{d} x \\
& =\lim _{n \rightarrow \infty}\left[\left(u_{\epsilon_{n}}, \varphi\right)-\int_{\Omega}\left[f\left(x, u_{\epsilon_{n}}\right)+\epsilon_{n} p\left|u_{\epsilon_{n}}\right|^{p-2} u_{\epsilon_{n}}\right] \varphi \mathrm{d} x\right] \\
& =\lim _{n \rightarrow \infty}\left\langle\Phi_{\epsilon_{n}}^{\prime}\left(u_{\epsilon_{n}}\right), \varphi\right\rangle=0, \quad \forall \varphi \in C_{0}^{\infty}(\Omega) .
\end{aligned}
$$

This shows $\Phi^{\prime}\left(u_{0}\right)=0$. Since $u_{\epsilon_{n}} \rightarrow u_{0}$ in $L^{s}(\Omega), 2 \leq s<2^{*}$, by (3.1) and (3.8), we have

$$
\begin{align*}
\| u_{\epsilon_{n}}- & u_{0} \|^{2} \\
= & \left\langle\Phi_{\epsilon_{n}}^{\prime}\left(u_{\epsilon_{n}}\right)-\Phi^{\prime}\left(u_{0}\right), u_{\epsilon_{n}}-u_{0}\right\rangle+\epsilon_{n} p \int_{\Omega}\left(\left|u_{\epsilon_{n}}\right|^{p-2} u_{\epsilon_{n}}-\left|u_{0}\right|^{p-2} u_{0}\right)\left(u_{\epsilon_{n}}-u_{0}\right) \mathrm{d} x \\
& +\int_{\Omega}\left[f\left(x, u_{\epsilon_{n}}\right)-f\left(x, u_{0}\right)\right]\left(u_{\epsilon_{n}}-u_{0}\right) \mathrm{d} x \rightarrow 0, \quad \text { as } n \rightarrow \infty, \tag{3.10}
\end{align*}
$$

which implies $u_{\epsilon_{n}} \rightarrow u_{0}$ in $H_{0}^{1}(\Omega)$, and so $u_{\epsilon_{n}}^{ \pm} \rightarrow u_{0}^{ \pm}$in $H_{0}^{1}(\Omega)$. Consequently, it follows from (3.1) and (3.8) that $\Phi\left(u_{0}\right)=\bar{m}$. Again from (3.1) and (3.5), one has

$$
\begin{align*}
\int_{\Omega}\left[\frac{1}{2} f\left(x, u_{0}^{ \pm}\right)-F\left(x, u_{0}^{ \pm}\right)\right] \mathrm{d} x & =\lim _{n \rightarrow \infty} \int_{\Omega}\left[\frac{1}{2} f\left(x, u_{\epsilon_{n}}^{ \pm}\right)-F\left(x, u_{\epsilon_{n}}^{ \pm}\right)+\frac{(p-2) \epsilon_{n}}{2}\left|u_{\epsilon_{n}}^{ \pm}\right|^{p}\right] \mathrm{d} x \\
& =\lim _{n \rightarrow \infty}\left[\Phi_{\epsilon_{n}}\left(u_{\epsilon_{n}}^{ \pm}\right)-\frac{1}{2}\left\langle\Phi_{\epsilon_{n}}^{\prime}\left(u_{\epsilon_{n}}^{ \pm}\right), u_{\epsilon_{n}}^{ \pm}\right\rangle\right] \\
& =\lim _{n \rightarrow \infty} \Phi_{\epsilon_{n}}\left(u_{\epsilon_{n}}^{ \pm}\right) \geq \alpha>0 . \tag{3.11}
\end{align*}
$$

This, together with $(2.4)(t=0)$, shows $u_{0}^{ \pm} \neq 0$. Thus $u_{0} \in \mathcal{M}$ and $\bar{m}=\Phi\left(u_{0}\right) \geq m_{0}$. Next, we prove $\Phi\left(u_{0}\right)=m_{0}$. Let ε be any positive number. Then there exists $v_{\varepsilon} \in \mathcal{M}$ such that $\Phi\left(v_{\varepsilon}\right)<m_{0}+\varepsilon$. Then (F3) implies that there exists $K_{\varepsilon}>0$ such that, for $s \geq K_{\varepsilon}$ or $t \geq K_{\varepsilon}$,

$$
\begin{align*}
\Phi_{\epsilon_{n}}\left(s v_{\varepsilon}^{+}+t v_{\varepsilon}^{-}\right)= & \frac{s^{2}}{2}\left\|v_{\varepsilon}^{+}\right\|^{2}-\int_{\Omega} F\left(x, s v_{\varepsilon}^{+}\right) \mathrm{d} x-\epsilon_{n} s^{p}\left\|v_{\varepsilon}^{+}\right\|_{p}^{p} \\
& +\frac{t^{2}}{2}\left\|v_{\varepsilon}^{-}\right\|^{2}-\int_{\Omega} F\left(x, t v_{\varepsilon}^{-}\right) \mathrm{d} x-\epsilon_{n} t^{p}\left\|v_{\varepsilon}^{-}\right\|_{p}^{p} \\
\leq & \frac{s^{2}}{2}\left\|v_{\varepsilon}^{+}\right\|^{2}-\int_{\Omega} F\left(x, s v_{\varepsilon}^{+}\right) \mathrm{d} x+\frac{t^{2}}{2}\left\|v_{\varepsilon}^{-}\right\|^{2}-\int_{\Omega} F\left(x, t v_{\varepsilon}^{-}\right) \mathrm{d} x<0 \tag{3.12}
\end{align*}
$$

In view of Lemma 2.4, there exists a pair $\left(s_{n}, t_{n}\right)$ of positive numbers such that $s_{n} v_{\varepsilon}^{+}+t_{n} v_{\varepsilon}^{-} \in$ $\mathcal{M}_{\epsilon_{n}}$, which, together with (3.12) and $c_{\epsilon_{n}}>0$, implies $0<s_{n}, t_{n}<K_{\varepsilon}$. Hence, from (2.3), (3.1), and $\left\langle\Phi^{\prime}\left(v_{\varepsilon}\right), v_{\varepsilon}^{ \pm}\right\rangle=0$, we have

$$
\begin{aligned}
m_{0}+\varepsilon & >\Phi\left(v_{\varepsilon}\right)=\Phi_{\epsilon_{n}}\left(v_{\varepsilon}\right)+\epsilon_{n}\left\|v_{\varepsilon}\right\|_{p}^{p} \\
& \geq \Phi_{\epsilon_{n}}\left(s_{n} v_{\varepsilon}^{+}+t_{n} v_{\varepsilon}^{-}\right)+\frac{1-s_{n}^{2}}{2}\left\langle\Phi_{\epsilon_{n}}^{\prime}\left(v_{\varepsilon}\right), v_{\varepsilon}^{+}\right\rangle+\frac{1-t_{n}^{2}}{2}\left\langle\Phi_{\epsilon_{n}}^{\prime}\left(v_{\varepsilon}\right), v_{\varepsilon}^{-}\right\rangle \\
& \geq m_{\epsilon_{n}}-\frac{1+K_{\varepsilon}^{2}}{2}\left|\left\langle\Phi_{\epsilon_{n}}^{\prime}\left(v_{\varepsilon}\right), v_{\varepsilon}^{+}\right\rangle\right|-\frac{1+K_{\varepsilon}^{2}}{2}\left|\left\langle\Phi_{\epsilon_{n}}^{\prime}\left(v_{\varepsilon}\right), v_{\varepsilon}^{-}\right\rangle\right| \\
& =m_{\epsilon_{n}}-\frac{\left(1+K_{\varepsilon}^{2}\right) p \epsilon_{n}}{2}\left\|v_{\varepsilon}^{+}\right\|_{p}^{p}-\frac{\left(1+K_{\varepsilon}^{2}\right) p \epsilon_{n}}{2}\left\|v_{\varepsilon}^{-}\right\|_{p}^{p},
\end{aligned}
$$

which yields

$$
\begin{equation*}
\bar{m}=\lim _{n \rightarrow \infty} m_{\epsilon_{n}} \leq m_{0}+\varepsilon \tag{3.13}
\end{equation*}
$$

Since $\varepsilon>0$ is arbitrary, one has $\bar{m} \leq m_{0}$. Thus, $\bar{m}=m_{0}$, i.e., $\Phi\left(u_{0}\right)=m_{0}$.

Finally, we show that u_{0} has exactly two nodal domains. Let $u_{0}=u_{1}+u_{2}+u_{3}$, where

$$
\begin{align*}
& u_{1} \geq 0, \quad u_{2} \leq 0, \quad \Omega_{1} \cap \Omega_{2}=\emptyset \tag{3.14}\\
& \left.u_{1}\right|_{\Omega \backslash\left(\Omega_{1} \cup \Omega_{2}\right)}=\left.u_{2}\right|_{\Omega \backslash\left(\Omega_{1} \cup \Omega_{2}\right)}=\left.u_{3}\right|_{\Omega_{1} \cup \Omega_{2}}=0, \\
& \Omega_{1}:=\left\{x \in \Omega: u_{1}(x)>0\right\}, \quad \Omega_{2}:=\left\{x \in \Omega: u_{2}(x)<0\right\}, \tag{3.15}
\end{align*}
$$

and Ω_{1}, Ω_{2} are connected open subsets of Ω.
Setting $v=u_{1}+u_{2}$, we see that $v^{+}=u_{1}$ and $v^{-}=u_{2}$, i.e., $v^{ \pm} \neq 0$. Note that $\Phi^{\prime}\left(u_{0}\right)=0$, by a simple computation, one has

$$
\begin{equation*}
\left\langle\Phi^{\prime}(v), v^{+}\right\rangle=\left\langle\Phi^{\prime}(v), v^{-}\right\rangle=0 . \tag{3.16}
\end{equation*}
$$

From (2.1), (2.2), (2.3), (3.14), and (3.16), we have

$$
\begin{aligned}
m_{0} & =\Phi\left(u_{0}\right)-\frac{1}{2}\left\langle\Phi^{\prime}\left(u_{0}\right), u_{0}\right\rangle \\
& =\Phi(v)+\Phi\left(u_{3}\right)-\frac{1}{2}\left[\left\langle\Phi^{\prime}(v), v\right\rangle+\left\langle\Phi^{\prime}\left(u_{3}\right), u_{3}\right\rangle\right] \\
& \geq \sup _{s, t \geq 0} \Phi\left(s v^{+}+t v^{-}\right)+\Phi\left(u_{3}\right)-\frac{1}{2}\left\langle\Phi^{\prime}\left(u_{3}\right), u_{3}\right\rangle \\
& \geq m_{0}+\int_{\Omega}\left[\frac{1}{2} f\left(x, u_{3}\right) u_{3}-F\left(x, u_{3}\right)\right] \mathrm{d} x,
\end{aligned}
$$

which, together with (1.6), shows $u_{3}=0$. Therefore, u_{0} has exactly two nodal domains.

Proof of Theorem 1.2 In view of Theorem 1.1, there exists $u_{0} \in \mathcal{M}$ such that $m_{0}=\Phi\left(u_{0}\right)$. Since $u^{ \pm} \in \mathcal{N}$, then one has

$$
m_{0}=\Phi\left(u_{0}\right)=\Phi\left(u_{0}^{+}\right)+\Phi\left(u_{0}^{-}\right) \geq 2 c_{0} .
$$

4 Conclusion

In this paper, by using the variational methods and a suitable approximating method, we prove that Problem (1.1) has a sign-changing solution $u_{0} \in \mathcal{M}$ such that $\Phi\left(u_{0}\right)=\inf _{\mathcal{M}} \Phi>$ 0 if $\lambda>-\lambda_{1}$ and f satisfies (F1)-(F4). Furthermore, if $\frac{1}{2} t f(x, t)-F(x, t)>0$ for all $x \in \mathbb{R}^{N}$ and $t \neq 0$, we also prove that u_{0} has precisely two nodal domains. Our results improve and generalize some existing ones in the literature.

Acknowledgements

This work is partially supported by the NNFC (No: 11471137) of China by Hunan Provincial Natural Science Foundation (No: 2017JJ22) of China.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors jointly worked on the results, and they read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Huaihua University, Huaihua, P.R. China. ${ }^{2}$ School of Mathematics and Statistics, Central South University, Changsha, P.R. China.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 28 December 2017 Accepted: 3 April 2018 Published online: 10 April 2018

References

1. Bartsch, T.: Critical point theory on partially ordered Hilbert spaces. J. Funct. Anal. 186, 117-152 (2001)
2. Bartsch, T., Chang, K.-C., Wang, Z.-Q.: On the Morse indices of sign changing solutions of nonlinear elliptic problems. Math. Z. 233, 655-677 (2000)
3. Bartsch, T., Liu, Z.L., Weth, T.: Sign changing solutions of superlinear Schrödinger equations. Commun. Partial Differ. Equ. 29, 25-42 (2004)
4. Bartsch, T., Wang, Z.-Q.: On the existence of sign changing solutions for semilinear Dirichlet problems. Topol. Methods Nonlinear Anal. 7, 115-131 (1996)
5. Bartsch, T., Wang, Z.-Q.: Sign changing solutions of nonlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 13, 191-198 (1999)
6. Bartsch, T., Weth, T.: A note on additional properties of sign changing solutions to superlinear Schrödinger equations. Topol. Methods Nonlinear Anal. 22, 1-14 (2003)
7. Bartsch, T., Willem, M.: Infinitely many radial solutions of a semilinear elliptic problem on \mathbb{R}^{N}. Arch. Ration. Mech. Anal. 124, 261-276 (1993)
8. Bartsch, T., Weth, T.: Three nodal solutions of singularly perturbed elliptic equations on domains without topology. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22, 259-281 (2005)
9. Castro, A., Cossio, J., Neuberger, J.: A sign changing solution for a superlinear Dirichlet problem. Rocky Mt. J. Math. 27, 1041-1053 (1997)
10. Dancer, E., Du, Y.: Existence of sign changing solutions for some semilinear problems with jumping nonlinearities Proc. R. Soc. Edinb., Sect. A 124, 1165-1176 (1994)
11. Dancer, E., Du, Y.: On sign changing solutions of certain semi-linear elliptic problems. Appl. Anal. 56, 193-206 (1995)
12. Liu, Z.L., Sun, J.X.: Invariant sets of descending flow in critical point theory with applications to nonlinear differential equations. J. Differ. Equ. 172, 257-299 (2001)
13. Li, S.J., Zhang, Z.T.: Sign-changing and multiple solutions theorems for semilinear elliptic boundary value problems with jumping nonlinearities. Acta Math. Sin. 16, 113-122 (2000)
14. Kryszewski, W., Szulkin, A.: Infinite-dimension alhomology and multibump solutions. J. Fixed Point Theory Appl. 5, 1-35 (2009)
15. Li, Y.Q., Wang, Z.-Q., Zeng, J.: Ground states of nonlinear Schrödinger equations with potentials. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 23, 829-837 (2006)
16. Liu, J.Q., Wang, Y.Q., Wang, Z.Q.: Solutions for quasilinear Schrödinger equations via the Nehari method. Commun Partial Differ. Equ. 29, 879-901 (2004)
17. Bartsch, T., Weth, T., Willem, M.: Partial symmetry of least energy nodal solutions to some variational problems. J. Anal. Math. 96, 1-18 (2005)
18. Chen, S.T., Tang, X.H.: Ground state sign-changing solutions for a class of Schrödinger-Poisson type problems in \mathbb{R}^{3}. Z. Angew. Math. Phys. 67, 1-18 (2016)
19. Shuai, W.: Sign-changing solutions for a class of Kirchhoff-type problem in bounded domains. J. Differ. Equ. 259, 1256-1274 (2015)
20. Tang, X.H.: Non-Nehari manifold method for asymptotically linear Schrödinger equation. J. Aust. Math. Soc. 98, 104-116 (2015)
21. Tang, X.H.: Non-Nehari manifold method for asymptotically periodic Schrödinger equations. Sci. China Math. 58, 715-728 (2015)
22. Tang, X.H., Chen, S.T.: Ground state solutions of Nehari-Pohozaev type for Schrödinger-Poisson problems with general potentials. Discrete Contin. Dyn. Syst., Ser. A 37, 4973-5002 (2017)
23. Tang, X.H., Chen, S.T.: Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc. Var. Partial Differ. Equ. 56, Article ID 110 (2017)
24. Tang, X.H., Cheng, B.T.: Ground state sign-changing solutions for Kirchhoff type problems in bounded domains. J. Differ. Equ. 261, 2384-2402 (2016)
25. Chen, S.T., Tang, X.H.: Improved results for Klein-Gordon-Maxwell systems with general nonlinearity. Discrete Contin. Dyn. Syst., Ser. A 38, 2333-2348 (2018)
26. Tang, X.H., Lin, X.Y., Yu, J.S.: Nontrivial solutions for Schrödinger equation with local super-quadratic conditions. J. Dyn. Differ. Equ. 1-15 (2018). https://doi.org/10.1007/s10884-018-9662-2
27. Tang, X.H.: Non-Nehari manifold method for superlinear Schrödinger equation. Taiwan. J. Math. 18, 1957-1979 (2014)
28. Willem, M.: Minimax Theorems. Birkhäuser, Boston (1996)
