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Abstract
By introducing a new superquadratic condition, we obtain the existence of two
nontrivial homoclinic solutions for a class of perturbed second order Hamiltonian
systems which are obtained by the mountain pass theorem and Ekeland’s variational
principle.
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1 Introduction and main results
In this paper, we consider the existence of two nontrivial homoclinic solutions for the
following second order Hamiltonian systems:

ü(t) – L(t)u(t) + ∇W
(
t, u(t)

)
= f (t), (1)

for all t ∈ R, where W ∈ C1(R × RN , R), L: R → RN2 is a matrix-valued function and
f ∈ C(R, RN ). A solution u(t) of problem (1) is homoclinic (to 0) if u(t) → 0 as t → ±∞.
Moreover, if u(t) �= 0, u(t) is called a nontrivial homoclinic solution. Here and subse-
quently, ∇W (t, x) denotes the gradient with respect to the x variable.

The homoclinic solutions have been proved to be important in studying the behavior of
dynamic systems. There have been many papers concerning this topic by using the vari-
ational methods since the remarkable results by Ambrosetti and Rabinowitz [1]. Because
of the lack of compactness, this problem is more difficult than studying the existence of
periodic solutions. In order to get the compactness of embedding theorem back, many
conditions have been proposed (see [1–41]). Two kinds of important conditions are peri-
odic and coercive conditions. The periodic condition was introduced by Rabinowitz [19]
in 1990 to discuss the existence of homoclinic solutions for problem (1) as the limit of a
sequence of subharmonics which are obtained by the mountain pass theorem. The follow-
ing coercive condition is a classical condition introduced by Rabinowitz and his co-author
[20].

(L′) L ∈ C(R, RN2 ) is a symmetric and positively definite matrix for all t ∈ R and

inf|x|=1

(
L(t)x, x

) → +∞ as |t| → ∞.
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Condition (L′) has been studied by many other mathematicians to deal with the nonpe-
riodic systems. After then, there have been some other coercive conditions introduced by
other mathematicians.

By using the variational methods to study problem (1), the growth conditions of W (t, x)
are needed. These conditions are mainly classified into three cases: the superquadratic
case, the subquadratic case, and the asymptotically quadratic case. In this paper, we
mainly consider the superquadratic case. The following growth condition is a classical
superquadratic condition known as the (AR) condition.

(AR) there exists a constant θ > 2 such that

0 < θW (t, x) ≤ (∇W (t, x), x
)

for every t ∈ R and x ∈ RN \ {0}.
However, the (AR) condition is so strong that many functions cannot be involved. In

order to study problem (1) with different potentials, many other superquadratic condi-
tions are proposed. In 2009, Ding and Lee [8] introduced the following generalized su-
perquadratic condition.

(GS) There exist ε ∈ (0, 1) and r1, d0 > 0 such that

W̃ (t, x) ≥ d0
(∇W (t, x), x)

|x|2–ε
for all t ∈ R and |x| ≥ r1,

where

W̃ (t, x) =
(∇W (t, x), x

)
– 2W (t, x).

Some examples are given to show the difference between (GS) and (AR) conditions. The
following superquadratic condition is used by Lv and Tang [14] to obtain infinitely many
homoclinic solutions for problem (1) when W (t, x) is even in x.

(MC) There exists ς ≥ 1 such that

ςW̃ (t, x) ≥ W̃ (t,ςx)

for all (t, x) ∈ R × RN . Recently, Wu et al. [33] introduced the following condition:
(SQ) W̃ (t,x)

W (t,x) |x|2 → +∞ as |x| → ∞ uniformly in t ∈ R, where

W̃ (t, x) =
(∇W (t, x), x

)
– 2W (t, x).

With (SQ), the authors obtained the existence of homoclinic solutions for a class of peri-
odic Hamiltonian systems.

In 2018, Wu et al. [32] showed the existence of homoclinic solutions for problem (1)
without periodic or even conditions. In 2015, Xu et al. [36] showed the existence of two
solutions for problem (1) with a nonzero perturbation. In the same year, Zhang and Yuan
[40] obtained two homoclinic solutions for a class of perturbed Hamiltonian systems un-
der the (AR) condition. In this paper, we introduce a new superquadratic condition to
study problem (1) with small forcing terms. The following theorem is our main result.
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Theorem 1.1 Suppose that W and L satisfy the following conditions:
(L) For the smallest eigenvalue of L(t), i.e., l(t) ≡ inf|x|=1 L(t)x · x, there exists a constant

ν < 1 such that l(t)|t|ν–2 → +∞ as |t| → ∞.
(W 1) W (t, 0) = 0 for all t ∈ R and ∇W (t, x) = o(|x|) as |x| → 0 uniformly for t ∈ R;
(W 2) (∇W (t, x), x) ≥ 2W (t, x) ≥ 0 for all (t, x) ∈ R × RN ;
(W 3) W (t, x)/|x|2 → +∞ as |x| → ∞ uniformly in t;
(W 4) There exist τ > 2 and d1 > 0 such that

∣
∣∇W (t, x)

∣
∣ ≤ d1

(
1 + |x|τ–1) for all t ∈ R;

(W 5) There exist constants μ ≥ 1, λ0 ∈ (0, 1), d2 > 0, and r∞ > 0 such that

(
1 – λ2

2
– λ

)
(∇W (t, x), x

)
+ W (t,λx) – W (t, x) ≥ –d2λ

μ|x|μ

for all λ ∈ [0,λ0], |x| ≥ r∞, and t ∈ R.
Then there exists δ > 0 such that, for any f �≡ 0 satisfying

max
t∈R

∣∣f (t)
∣∣ ≤ δ, (2)

system (1) possesses at least two nontrivial homoclinic solutions.

Remark 1 In Theorem 1.1, the perturbation f is not required to be integrable.

Remark 2 Consider the following example:

G(x) = |x|s + (s – 2)|x|s–ε sin2(|x|ε/ε
)
, (3)

where s > 2 and ε ∈ (0, s – 2). It is easy to check that (3) satisfies the conditions of The-
orem 1.1 and but not the (AR) condition. As we know, Theorem 1.1 is the first result to
obtain the existence of two homoclinic solutions for problem (1) without the (AR) condi-
tion.

2 Proof of Theorem 1.1
Let A be a self-adjoint extension of the operator –(d2/dt2) + L(t) with the domain D(A) ⊂
L2(R, RN ). Let E = D(|A|1/2) be the domain of |A|1/2 and define on E the inner product and
the norm as (u, w)0 = (|A|1/2u, |A|1/2w)2 + (u, w)2 and ‖u‖0 = (u, u)1/2, respectively, where
(·, ·)2 denotes the inner product of L2. Then E is a Hilbert space.

It is known that the spectrum σ (A) consists of eigenvalues numbered in λ1 ≤ λ2 ≤ · · · →
∞, and a corresponding system of eigenfunctions (en)(Aen = λnen) forms an orthogonal
basis in L2. Let n– = #{i|λi < 0}, n0 = #{i|λi = 0}, and n̄ = n– + n0. Set E– = span{e1, . . . , en–},
E0 = span{en–+1, . . . , en̄}, and E+ = span{en̄+1, . . .}. Then E = E– ⊕E0 ⊕E+. The inner product
and the norm on E are introduced as

(u, w) =
(|A|1/2u, |A|1/2w

)
2 +

(
u0, w0)

2, ‖u‖ = (u, u)1/2,
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where u = u– + u0 + u+ and w = w– + w0 + w+ ∈ E = E– ⊕E0 ⊕E+. Furthermore, let I : E → R
be the functional defined by

I(u) =
∫

R

(
1
2
∣∣u̇(t)

∣∣2 +
1
2
(
L(t)u(t), u(t)

)
– W

(
t, u(t)

)
+

(
f (t), u(t)

)
)

dt

=
1
2
‖u‖2 –

∫

R
W

(
t, u(t)

)
dt +

∫

R

(
f (t), u(t)

)
dt. (4)

It is known that the critical points of I in E are the homoclinic solutions of (1). One can
easily check that I ∈ C1(E, R) and

〈
I ′(u), v

〉
=

∫

R

((
u̇(t), v̇(t)

)
+

(
L(t)u(t), v(t)

)
–

(∇W
(
t, u(t)

)
, v(t)

))
dt

+
∫

R

(
f (t), v(t)

)
dt. (5)

By Lemma 2.2 in [6] we can conclude that E is compactly embedded in Lp for any p ∈
[1, +∞], which implies that there exists a constant Cp > 0 such that

‖u‖Lp ≤ Cp‖u‖ for all u ∈ E. (6)

Lemma 2.1 Suppose that the conditions of Theorem 1.1 hold, then there exist constants α,
� > 0 such that I|S ≥ α, where S = {u ∈ E|‖u‖ = �}.

Proof By (W 1), for any ε > 0, there exists σ > 0 such that

∣∣∇W (t, x)
∣∣ ≤ ε|x|, |x| ≤ σ , ∀t ∈ R.

Then it follows from (W 1) and (W 2) that

W (t, x) =
∣
∣W (t, x) – W (t, 0)

∣
∣

=
∣
∣∣∣

∫ 1

0

(∇W (t, sx), x
)

ds
∣
∣∣∣

≤
∫ 1

0

∣
∣∇W (t, sx)

∣
∣|x|ds

≤
∫ 1

0
ε|sx||x|ds

≤ ε|x|2 (7)

for all t ∈ R and |x| ≤ σ . Let ε0 = 1
4C2

, then there exists σ0 > 0 such that (7) holds for all
t ∈ R and |x| ≤ σ0. Set

� =
σ0

C∞
, α =

1
4
�2 > 0,
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which implies 0 < ‖u‖L∞ ≤ σ0 for all u ∈ S. Then it follows from the definition of I , (7) and
(2) that

I(u) =
1
2
‖u‖2 –

∫

R
W

(
t, u(t)

)
dt +

∫

R

(
f (t), u(t)

)
dt

≥ 1
2
‖u‖2 –

1
4C2

∫

R

∣∣u(t)
∣∣2 dt – δ

∫

R

∣∣u(t)
∣∣dt

≥ 1
4
‖u‖2 – δC1‖u‖.

By the definitions of � and α, there exists δ0 > 0 such that I |S≥ α for any f satisfying (2). �

Lemma 2.2 Suppose that the conditions of Theorem 1.1 hold, then there is e ∈ E such that
‖e‖ > � and I(e) ≤ 0, where � is defined in Lemma 2.1.

Proof It follows from (W 3) that there exist T > 0, ξ > 0, and ε1 > 0 such that

W (t, x) ≥
(

π2

2T2 + ε1

)
|x|2

for all t ∈ [–T , T] and |x| > ξ . Set ζ = max{|W (t, x)||t ∈ [–T , T], |x| ≤ ξ}, hence we have

W (t, x) ≥
(

π2

2T2 + ε1

)(|x|2 – ξ 2) – ζ .

Set

Q1(t) =

⎧
⎨

⎩
sin(ωt)e, t ∈ [–T , T],

0, t ∈ R \ [–T , T],

where ω = π
T , e = (1, 0, . . . , 0). It can be easily checked that ( π2

2T2 + ε1)m > M, where

M =
1
2

∫ T

–T

∣
∣Q̇1(t)

∣
∣2 dt, m =

∫ T

–T

∣
∣Q1(t)

∣
∣2 dt.

By (4), for every r ∈ R \ {0}, the following inequality holds:

I(rQ1) =
1
2

∫ T

–T

∣
∣rQ̇1(t)

∣
∣2 dt –

∫ T

–T
W

(
t, rQ1(t)

)
dt +

∫ T

–T

(
f (t), rQ1(t)

)
dt

≤ |r|2
2

∫ T

–T

∣
∣Q̇2(t)

∣
∣2 dt –

(
π2

2T2 + ε1

)
|r|2

∫ T

–T

∣
∣Q1(t)

∣
∣2 dt

+ |r|δm1/2 + 2T
((

π2

2T2 + ε1

)
ξ 2 + ζ

)

= –
((

π2

2T2 + ε1

)
m – M

)
|r|2 + |r|δm1/2 + 2T

((
π2

2T2 + ε1

)
ξ 2 + ζ

)
,

which implies that there exists r ∈ R \ {0} such that ‖rQ1‖ > � and I(rQ1) < 0. Set e(t) =
rQ1(t). Then ‖e‖ > � and I(e) < 0. �
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Lemma 2.3 Suppose that the conditions of Theorem 1.1 hold, then I satisfies the (C) con-
dition.

Proof Assume that {un} ⊂ E is a sequence such that {I(un)} is bounded and ‖I ′(un)‖(1 +
‖un‖) → 0 as n → ∞. Then there exists a constant M1 > 0 such that

∣
∣I(un)

∣
∣ ≤ M1,

∥
∥I ′(un)

∥
∥(

1 + ‖un‖
) ≤ M1. (8)

Now we prove that {un} is bounded in E. Arguing in an indirect way, we assume that
‖un‖ → +∞ as n → ∞. Set zn = un

‖un‖ , then ‖zn‖ = 1, which implies that there exists a
subsequence of {zn}, still denoted by {zn}, such that zn ⇀ z0 in E. By (4) and (8), we get

∣∣
∣∣

∫

R

W (t, un(t))
‖un‖2 dt –

1
2

∣∣
∣∣ =

∣∣
∣∣–

I(un)
‖un‖2 +

∫

R

(f (t), un(t))
‖un‖2 dt

∣∣
∣∣

≤ M1 + δ‖un‖
‖un‖2 , (9)

which implies that

∣
∣∣
∣

∫

R

W (t, un(t))
‖un‖2 dt

∣
∣∣
∣ ≤ 1 (10)

for n large enough. The following discussion is divided into two cases.
Case 1: z0 ≡ 0. Let s > δC1

2 . From (W 1) and (W 4), we can deduce that there exists M2 > 0
such that

∣
∣W (t, x)

∣
∣ ≤ M2

(|x|2 + |x|τ ) ∀t ∈ R, (11)

and

∣∣(∇W (t, x), x
)∣∣ ≤ M2

(|x|2 + |x|τ ) ∀t ∈ R. (12)

By the compactness of the embedding, one can obtain

lim sup
n→∞

∫

R

∣
∣W

(
t, szn(t)

)∣∣dt ≤ M2 lim sup
n→∞

∫

R

(
s2|zn|2 + sτ |zn|τ

)
dt = 0. (13)

Set λn = s
‖un‖ . It follows from (8)–(13), (W 2), and (W 5) that

M1 ≥ I(un)

= I(λnun) +
1 – λ2

n
2

‖un‖2

+
∫

R

(
W

(
t,λnun(t)

)
– W

(
t, un(t)

))
dt + (1 – λn)

∫

R

(
f (t), un(t)

)
dt

= I(λnun) +
(

1 – λ2
n

2
– λn

)〈
I ′(un), un

〉

+
(

λn‖un‖2 +
(

(1 – λn)2

2
+ λn

)∫

R

(
f (t), un(t)

)
dt

)
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+
∫

R

((
1 – λ2

n
2

– λn

)(∇W
(
t, un(t)

)
, un(t)

)
+ W

(
t,λnun(t)

)
– W

(
t, un(t)

))
dt

≥ I(szn) + o(1) +
(

s – δC1

(
(1 – λn)2

2
+ λn

))
‖un‖

+
∫

|un|≥r∞

((
1 – λ2

n
2

– λn

)(∇W
(
t, un(t)

)
, un(t)

)

+ W
(
t,λnun(t)

)
– W

(
t, un(t)

))
dt

+
∫

|un|≤r∞

((
1 – λ2

n
2

– λn

)(∇W
(
t, un(t)

)
, un(t)

)

+ W
(
t,λnun(t)

)
– W

(
t, un(t)

))
dt

≥ s2

2
–

∫

R
W

(
t, szn(t)

)
dt +

∫

R

(
f (t), szn(t)

)
dt + o(1)

– d2

∫

|un|≥r∞
λμ

n
∣∣un(t)

∣∣μ dt +
∫

|un|≤r∞

(
–

λ2
n + λn

2
(∇W

(
t, un(t)

)
, un(t)

)
)

dt

≥ s2

2
– δC1

∫

R

∣∣zn(t)
∣∣dt – d2sμ

∫

|un|≥r∞

∣∣zn(t)
∣∣μ dt + o(1)

+ M2

∫

|un|≤r∞

(
–

λ2
n + λn

2
(∣∣un(t)

∣∣2 +
∣∣un(t)

∣∣τ )
)

dt

≥ s2

2
–

M2

2

∫

|un|≤r∞

(
λ2

n
∣
∣un(t)

∣
∣2 + λn

∣
∣un(t)

∣
∣2 + λ2

n
∣
∣un(t)

∣
∣τ + λn

∣
∣un(t)

∣
∣τ )dt + o(1)

≥ s2

2
–

M2

2

∫

|un|≤r∞

(
s2∣∣zn(t)

∣
∣2 + r∞s

∣
∣zn(t)

∣
∣ + rτ–2

∞ s2∣∣zn(t)
∣
∣2 + rτ–1

∞ s
∣
∣zn(t)

∣
∣)dt + o(1)

≥ s2

2
– o(1)

for s and n large enough, which is a contradiction. Hence ‖un‖ is still bounded in this case,
which implies that {un} is bounded in E.

Case 2: z0 �≡ 0. Let � = {t ∈ R||z0(t)| > 0}. Then we can see that meas(�) > 0, where meas

denotes the Lebesgue measure. Since ‖un‖ → +∞ as n → ∞ and |un(t)| = |zn(t)| · ‖un‖,
then we have |un(t)| → +∞ as n → ∞ for a.e. t ∈ �. By (W 2), (W 3), and Fatou’s lemma,
we can obtain

lim inf
n→∞

∫

R

W (t, un(t))
‖un‖2 dt ≥ lim inf

n→∞

∫

�

W (t, un(t))
‖un‖2 dt

= lim inf
n→∞

∫

�

W (t, un(t))
|un|2

∣∣zn(t)
∣∣2 dt

= +∞,

which contradicts (10). So ‖un‖ is bounded in this case. �

By a standard argument, we see that {un} has a convergent subsequence in E. Hence I
satisfies the (C) condition.
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Proof of Theorem 1.1 The proof of this theorem is divided into two steps.
Step 1: We show that there exists a function u0 ∈ E such that I ′(u0) = 0 and I(u0) < 0. Let

f (t) = (f1(t), f2(t), . . . , fN (t)), where fi(t) ∈ C(R, R) (i = 1, 2, . . . , N ). Since f �≡ 0, there exists
i0 ∈ [1, N] ∩ Z such that fi0 (t) �≡ 0. Without loss of generalization, we assume that there
exist an interval (a, b) ⊂ R and a constant A > 0 such that

fi0 (t) ≥ A for all t ∈ (a, b).

We choose a function ψ0 ∈ C∞
0 (a, b) satisfying

⎧
⎪⎪⎨

⎪⎪⎩

ψ0(t) = –fi0 (t), t ∈ ( 3a+b
4 , a+3b

4 ),

ψ0(t) ≤ 0, t ∈ (a, b) \ ( 3a+b
4 , a+3b

4 ),

|ψ ′
0(t)| ≤ 2, t ∈ (a, b).

Set ψ(t) = (ψ1(t),ψ2(t), . . . ,ψN (t)), where ψj(t) = 0 for all j ∈ [1, N] ∩ Z \ {i0} and ψi(t) =
ψ0(t) for j = i0. Therefore, ψ ∈ E and we can deduce that

∫

R

(
f (t),ψ(t)

)
dt =

∫ b

a
fi0 (t)ψ0(t) dt ≤ –

∫ a+3b
4

3a+b
4

f 2
i0 (t) dt ≤ –

A2

2
(b – a) < 0.

Hence we have

I(rψ) =
1
2

∫

R

∣
∣rψ̇(t)

∣
∣2 dt –

∫

R
W

(
t, rψ(t)

)
dt +

∫

R

(
f (t), rψ(t)

)
dt

≤ r2

2

∫

R

∣∣ψ̇(t)
∣∣2 dt – M2

(
r2

∫

R

∣∣ψ(t)
∣∣2 dt + rτ

∫

R

∣∣ψ(t)
∣∣τ

)
dt + r

∫

R

(
f (t),ψ(t)

)
dt

< 0

for r > 0 small enough. Then we obtain

c0 = inf
{

I(u) : u ∈ B�

}
< 0,

where � is defined in Lemma 2.1 and B� = {u ∈ E|‖u‖ ≤ �}. By Ekeland’s variational prin-
ciple, there exists a sequence {un} ⊂ B� such that

c0 ≤ I(un) ≤ c0 +
1
n

,

and

I(w) ≤ I(un) –
1
n

‖w – un‖

for all w ∈ B� . Then, by a standard procedure, we can show that {un} is a (C) sequence
of I . Therefore, it follows from Lemma 2.3 that there exists a function u0 ∈ E such that
I ′(u0) = 0 and I(u0) < 0.

Step 2: By the mountain pass theorem and Lemmas 2.1–2.3, there exists ũ0 ∈ E such that
I ′ (̃u0) = 0 and I (̃u0) > 0.

Then we finish the proof of Theorem 1.1. �
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