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estimate on this generator which can be applied to derive the decaying property. Our
study is inspired by L. Lu & J-M. Wang [Appl. Math. Lett,, 54:7-14, 2016] whose energy
decay result is improved upon in our paper. Our method, different from the one used
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1 Introduction
Thanks to its wide applicability, the Schrodinger equation

iu+ Au+f(Vu,u,x,t) =0, (x,t) e R" xR,

where A = Z;’zl % is the Laplacian on R”, has been receiving extensive attention from
the mathematical control community; see [2—8] and the references cited therein. Specifi-
cally, the systems described by the Schrédinger equation have received extensive studies
for their stability in the past three decades. Among the vast references in this direction,
Lagnese [9] proved a stability result via “connecting” it to the stability property of the plate
equation 87x + A%u + Lo.t = 0 (while the study of the stability and stabilization of the plate
equation has a relatively long history). Machtyngier and Zuazua [4] studied the boundary
and internal stabilization problem via the multiplier method (the main idea has originated
from stability studies for wave equations). In [7, 10], some collocated boundary stabiliza-
tion problems were investigated. Zuazua [2] provided a nice survey on the recent studies
on the control properties for the Schrédinger equation.

This paper is devoted to the study of the stabilization of the Schrédinger equation via a
damped wave equation through a common end point. More precisely, we are concerned
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in this paper with the system

10,0+ 02u=0 in (0,1) x (0,00),
32v—02v+bdv=0 in (0,1) x (0,00),
u(1,) =v(1,-) = u(0,-) — k3,v(0, -)

= 9,1(0,-) — ikdu(0,-) =0 in (0,00),

(1.1)

where i = /=1 is the imaginary unit, and k € R \ {0} and b € (0, c0) are fixed arbitrarily.
System (1.1) was recently studied by Lu and Wang [1] with the intension to understand
better the transmission of dissipation effect from a damped wave equation to a damping-
free Schrodinger equation where the energy can be exchanged by (1.1);.

The natural phase space for system (1.1) is
H ={(f,g h) € (0, 1;C) x H'(0, 1;C) x L*(0,1;C); g(1) = 0}. (1.2)
Let us define an unbounded linear operator A in H by

D(A) = {(f,g, h) € HX(0,1;C?) x H'(0,1;C);
f(1) =g(1) = h(1) = f(0) - kh(0) = g'(0) — ikf"(0) = 0}, (1.3)
A(frg7 = (!f//; h,g - l’)h), V(f,g, € D(A)

We can prove as in [1] that A is the infinitesimal generator of a strongly continuous semi-
group {e"!} on H. Therefore, (1.1) admits for every triple (1°, u!,1°) € H a unique solution
(u,v) € SY if further (u°, u!,1°) € D(A), then (u,v) € S'. Here S° and S* are defined by

SO.- @([0, 00); L2(0, 1)) x [@([0, 00); HY(0, 1)) n @1([0’ 00); L2(0, 1))] and (1.4)
st := [e([0,00); H2(0,1)) N €' ([0, 00); L*(0,1))]

x [€([0,00); H*(0,1)) N € ([0, 00); H'(0, 1)) ]. (1.5)

We associate with system (1.1) the following energy functional:
1! 2 2 2
E(t) = 3 (|u(x, t)| + |8xv(x, t)| + |8tv(x, t)| )dx, Vt € [0, 00). (1.6)
0

As indicated before, the study of this paper is directly inspired by [1]. And therefore, it

is worth recalling the main results in [1] as follows.

Theorem A (see [1]) Let A be defined as in (1.3), E as in (1.6), and H as in (1.2).

« A is the infinitesimal generator of a strongly continuous semigroup {€},c(0.00) of
contractions on H. In particular, we have: For every triple (u°,v°,v') € H, the boundary
value problem (1.1) admits a unique solution (u, V) e S such that u(-,0) = u°,

v(-,0) =0 and 3,v(-,0) = v%; if, in addition, (u°,°,v') € D(A) (see (1.3)), then
(u,v) e SL.
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o The spectrum o (A) of A consists merely of eigenvalues of A, and is distributed as
follows:

_ b AP 1
Mj=-3+ 2 +O(™), asj /1 oo. (1.7)
Ay =—lj— 2Pm2%i+ O(1), Neky<0

o« E(t)\(Oast / oo.

Note especially that Lu and Wang [1] proved that E(t) decreases to 0 as t — +00. But
due to the fact that lim;_, ., e Xy = 0, E(£) cannot decay uniformly (see the last section of
the paper for a brief proof of this statement). Recently, the non-uniform decay properties
have been investigated extensively in the literature for PDEs; see [11, 12]. Our main result

gives a more accurate decay rate for the energy E(Z).

Theorem 1.1 Let E, defined as in (1.6), be the energy associated with system (1.1). There
exists M € (0,00) such that, for every solution (u,v) € St with u(-,0) = u°, v(-,0) = 1°, and
atV(',O) = Vly

M 2 2 2
£ = 24+ 1L+ 17 B Ve 10,00, 1)
By [13, Theorem 2.4], this theorem follows immediately from the following theorem.

Theorem 1.2 Let A be defined by (1.3). There exists C € (0, 00) such that*
|RGy;A)| pgpy < CR)% ¥y eR. (1.9)

Throughout this paper, C is a generic constant which can assume a different value at
each occurrence.

The rest of the paper is organized as follows. With the aid of the idea of Green’s functions,
we provide in Sect. 2 an explicit formulae for the resolvent R(iy; A). The main results of

this paper are proved in Sect. 3. Some concluding remarks are included in Sect. 4.

2 Green's functions and the resolvent R(iy; A)

We would like to calculate in this section the resolvent R(iy; A) with y € R by using the
idea of Green’s functions. Let (¢, %, n) € H. Consider the equation (Aidy — A)(f,g, h) =
(¢, ¥, ) with idy denoting the identity operator on H, or equivalently, the boundary value
problem (BVP)

f"+ Aif =g, h=xg-v, g —Ar+b)g=—(A+b)y¥—n,
f(1) =g(1) =£(0) - kh(0) = g'(0) - ikf"(0) = 0.

(2.1)
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Denote by F/ and @, j = 1,2, 3, the Green’s functions for BVP (2.1). By using the idea of
Green’s functions, every solution (f, g, 1) to BVP (2.1) can be expressed by

f@&) =i f) F\(x,£)(&) dE + [} F2(x, )y () dé
+ [y P, )n(8) de,

W) = [} G'(x,6)p(&) dE — (. + b) [, G*(x, )y (§) d&
— s G}, &)n(&) s, ’

h(x) = & [} G (x,£)p(&) dE — A(h + b) [y G*(x, €)Y (§) dt
— [y G}, E)n(E) dE -y (x)

Vx e [0,1]. (2.2)

The Green'’s functions for BVP (2.1) should assume the form

F'(x,8) = o11e"EVH gV

+h(x — £)[511e% VA 4 e G-V
F2(x,£) = 01 65OV 4 gy OV,
F3(x,&) = 037e@ VA 4 gy o660V
G (x%,£) = g1y @ EIWAIHD) 4 ), GEIVATHD), (2.3)
G*(x,§) = £,‘21€("75)\/m + Cope~3EWAGAD)

+ B(x — £)[Ep e VAR 4 &) o~ EIVAGHD)]
G3(x,&) = ¢ EVAOAD) 4 o o= (x=5)VA(4D)

+hx— 5)[5‘316(x7‘§)*/m + 51326—(*5) D)),
where [ is the Heaviside function, namely

0 ifu=<o,
1 ifu>0,

h(u) =

and the coefficients oy, g (j = 1,2,3, k = 1,2), 611, 612, Six (f = 2,3, k = 1,2) are yet to be
determined later (see (2.4), (2.5), (2.6), and (2.7)). The Green’s functions should also satisfy

f(1)=0 = FY1,&)=F*(1,&)=F3(1,&) =0,
g1 = G'(1,§)=G*L§)=G*(L£) =0,
f0)=kh(0) = iF'(0,&) - AkG'(0,&)
= F2(0,£) + kA(A + b)G*(0,&) + k8o (€)
=F3(0,£) + AkG3(0,£) = 0, ’
g0)=ikf'(0) =  kdF'(0,&) +0,G(0,%)
= k9,F%(0,£) —i(A + b)3,G*(0,€)
= ko, F3(0,£) —i3,G3(0,€) =0

o

V& €10,1].

This, together with the notion of Green’s functions, implies

S+ G52 =G631+GS=011+012=0,
S/ A + D) = Soan/A(A + b) = S31/A(A + D) — S3o4/A(X + ) (24)
=611V -M = G1av/-Ai = 3,
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o111V 4 e (1=VA - 5 16V 5 om(1-6) VA
= ——L_sinh((1 — £)v/—=Al),

24/
11OV o ) o-(1-6VATT) _ ()
o115 VM 4 01065V + ¢pinke EVIED) 4 cinkef VAR o, [
0’11/( —)»ie‘é‘/‘_“ - 0'12/(\/ —)uing__M

+ e VAR + b)e VIO — oy SRR+ B)ef VAP = 0
09 eIV 4 ) o= (1=6)V=2 )
o1 e1-EWROSD) | o o (I-OVATD) = _ &) U-EVATHD) _ &) o= (1-6)VAG+D)
= sy S (1~ E)VAT B,
021675V H 4 G0V H 4 oo kA (A +b)e EVARHE) , V&el0,1],
+GaakA (A + b)YV — ks (),
o1k “hiesVH Oypik/—Aie VA
+ ¢l (A + B) /A + D)e EVA0D) _ ¢y (& + b)/A(k + D)V D) =

V& €[0,1], (2.5)

(2.6)
and
(7316(1_"’&)«/_—)‘i + 0'326_(1_“3)«/__)‘i = 0,
e OVATHD | o (-OVATAD) = _ &, (1-6VATED) _ &, o~ (1-6IWA0HE)
=——2L _sinh((1 - &)/A(A + D)),

o e SO VIO B | o
031675V M 4 g5y ef VR 4 gy Mk EVIOAD) o g akef VIO —
o31iky/—Aie VA — ggyik/—AiefYH

+ 631V Ak + B)e sV o /A(h + D)ef VA0 = 0
(2.7)
By Cramer’s rule, we can deduce from (2.4) that
0 1

. det(] ) 1
o1 = T = =5 (2.8)

det(m_m) 4'\/ —Al

10

. det( ) 1
O12 = 1 =~ = (2.9)

det(mim) 4‘\/ —Ai

0o 1
. . det( i D) 1
621 =631 = 1 1 = ATk (2.10)
det( i i) (A +b)
1 0
det(a/x(m‘b) 1) 1

G2 =63 = 2 = (2.11)

1 1 - .
det( g _vigan)  WAR0)

We deduce o1; from (2.5) by Cramer’s rule that

— L sinh((1-&)V=AD) e 1OV

N sinh((1-£)v/=1i) e 0 0

det 0 0 1-EVA0D) - (1-6)VAGAD)

0 AV ke V0D ket VAOAD)

o = 0 —kv/=hieEY A 3B VO] _ f50B)es VAUTD)
e N R W 0 o

det 0 0 1-6)VAGD) e~ (1-6)VAG+D)
e e &V £V ike-EVA0AD) i keE VAOD)

I/ =rieEVH /TR VR i b)e EVAORD) _ /R byt VAO+D)
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0 e(1=6)V/2.(+D) e~ (1=6)VA(A+D)
_ leT sinh((1 — &)+/—Ai) det VA irke—EVA0AD) i keEVAOAD)
- ke REVR JrOAB)e s VEGHD) _ /Byt VAUD)

A
&Y Hsinh((1 - £)V-AD)[VAG + b) cosh(VA(A + b)) — irk>v/=isinh(VA(A + B))]
NAEY.)
1 VAQK + B) cosh(/A(k + b))[el2-DV=Hi _ g=V=4i)
NVASY 24/-2iA
iAk2/=Aisinh(y/A(k + B))[el2-DVHi 4 g=VH] 2.12)
2/—AiA ’ '
where A is given by
p1-EW3i (1= 0 0
0 0 S1-6)VAT+D) N
Asdet] e VT ke~ 6T Y Naen)
k/=hie VR _k/—hieEVH Ak + B)etVROD R0+ B)efVAUeD)
PUE VAN e~ (1-6)V=ii S1-OVARFD)  p~(1-6)VA(itD)
= det In/—rie$VH /= niefVH ot (i)»ke‘é VARAD) ) fef VAOAD) )
-V -(1-6)Vh 1-6VA(+D) e~ (1-6)VA(k+D)
B WECTREN R e ( A+ D)e VIR Gt b)ewmb))

= /A + b)[e«/)»()»+b)+\/i)»i _ e~/)\()h+b)—\/—Ti - ei./x(xm)h/fxi _ eﬂ/)\(xm)ﬂ/fxi]

_ ikkz\/__)\i[e./x(ub)h/fxi 4 eV —VR _ = EGAD VA _ eﬂ/x(mb)ﬂ/fTi]

= 4/A(r + b) cosh(y/A(% + b)) sinh(v/=A)
- 4iAk2\/—_Aisinh( A + b)) cosh(v/—1i). (2.13)

Similarly, we can deduce from (2.5) that 012, 11, 12 can be expressed as follows:

-EV=0 57 Sinh(1-§)V=21) 0 0
det 0 0 A1-E)ATHD) ~(1-6)/I07D)
eV 0 inke 5 VAHD) ke VAO+D)
o = ky/—ie §VH 0 OTB)e S VIO _ /byt VA
12 A
eV Hsinh((1 - £)v/=20)[VA(L + b) cosh(v/A(k + b)) + iAk*/=Aisinh(v/A(k + B))]
V=AA ’
(2.14)
AWM —(1-E)V-A ‘wlm sinh((1-&)~/=A1) 0
det 0 0 0 o~ (1-6)VA(R+D)
EV-A £V 0 inke VA(A+D)
ky/=Tie§V R kR 0 — JACTB)eE D)
G111 =
A
ke OVAAD) sinh((1 - £) /1) (2.15)

A
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and
J-EVE (-6 0 - zfm sinh((1-£)v/=A)

det 0 0 (1-6)V/AT+E) 0

iV Vi i2ke=§VAGAD) 0

ey = RTINS TE T eO 0
12 A
kel=EVA04B) sinh((1 - £)v/=Ai)

_ i . (2.16)

We can deduce from (2.6) that 0,1, 092, 621, 622 can be expressed as follows:

ke’(l’é)‘/i“[%o(é)\/)\()» + b) cosh(v/A(A + b)) — A(A + b) sinh((1 — &€)/A(A + D))]

021 = ’

A
(2.17)

ke=OV=H[280(8)/A(h + B) cosh(v/A(k + B)) — A(% + b) sinh((1 — £)/A(k + B))]
= :

022 = —
(2.18)
2ik2 /= Ai8o (& )e~T-EVIED) cosh(/—Ai)
r+b)A
sinh(v/=21) sinh((1 — £)/A(k + b))efVA0+D)
A
. ixk2 /=i cosh(v/=Ai) sinh((1 — &)3/A(A + b))l VA O+D)
AL\ + D) ’
2ik2 /=18 (& )e-HVA0+D) cogh(y/— A1)
A+b)A
_ sinh(v/=Ai) sinh((1 - §)VAQR + B))e V0D
A
iAk?v/=2icosh(v/=A1) sinh((1 - &)/A(A + B))e EVA0D)
- AVAG-+ D) :

G621 =—

(2.19)

G2 =

(2.20)

We can deduce from (2.7) that 031, 033, 631, 632 can be expressed as follows:

ske =V sinh((1 — £)/A(k + b))
; ,

(1-6)V/=Al o —
. Akell-EV=A s1nh(il E)VA0 + b)) (2.22)

ixk2y/=xi cosh(v/—Ai) sinh((1 — £)v/A(A + b))efVA0+D)
JAO ¥ b)A

_ sinh(v/=Ai) sinh((1 - &) VA + B))ef V20D
A ’

ink2v/=iicosh(v/=A1) sinh((1 — £)V/A(k + b))e s V204D
VAL +b)A

_ sinh(v/=Ai) sinh((1 - &) VA + B))e s VAP
7 .

031 = — (221)

31 =

(2.23)

32 =—

(2.24)

Let us remind that A in the above formulas is given explicitly by (2.13).



Wang Boundary Value Problems (2018) 2018:60 Page 8 of 14

3 Proof of the main results
We seek to obtain in this section the lower bound for |A| (see (2.13) for the definition
of A). As mentioned in Sect. 2, we need merely consider the situation X € iR. For the sake

of clarity, we distinguish X into two cases.

Case 1 (A € C\ {0} and A = |A]i) In this case, VA(A + b) = p(JA]) + iq(|A[), where

b
p(u) = and
21+ T+ G o
1+1+(b/p)?
q(u) = p — Y € (0, 00).
Obviously, we have
b
p(u) < 2 and q(u)>u, VYue(0,00), and
3.2
() b Yu e |: b oo) .-
>—, —_—, .
P> Vre|
Mainly using the triangle inequality, we can deduce from (2.13) that
1A] > [3]3 ePUD+ m{ AR B)| 1), 2Ty 200D 4 g-20(2D-20F]
A2/ —Ad
+ ‘1 —zm‘ —2¢|T —2p |A]) 2¢|T} (3'3)
But
|1 _ e_zi/x(x+b)| > 1 — g 2003
>1-ex b
> p 5
b b
> whenever |A| > ——, 3.4
+b ET (34)

where the “>” in the second line follows if and only if [A| > %, and p(-) is given by (3.1).

And similarly, we have

A(A + D) [1 4 eV L g 200D e—zpux\)—zm]
A2/ =Ai
4 [1 b b 288(b +2)*
< e m + W < 3210) whenever [A| > max(b, ) (3.5)
and
b 6(2+b
e 2V | =2 (ID-2VIT < 30+ whenever [A| > % (3.6)
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3
Al> AlzeYH,
1A= 35 p M7
288(b+2)® 6(2+5b
Va € C with A = [A]i and with |A|zmax<b, /E%J; . (b+ )). (3.7)

Case 2 (A € C\ {0} and A = —|A[i) In this case, /A(A + b) = p(|A]) —iq(]A]), where p and q
are given by (3.1). Substitute this into (2.13) to obtain

A =4i[p(|Al) —iq(IAl) ] cosh(p(1A]) —iq(IA])) sin(y/[2])
— 4ik>[1|3 sinh(p(17]) — ig(IA1)) cos(v/TA])
= 4i[p(IA]) —iq(IA])]
x [cosh(p(141)) cos(a(1#1)) ~ sinb(p(141) sin(a(121)]sin(/7)

- 4ik2|A|% [sinh(p(|k|)) cos(q(|k|)) - icosh(p(|k|)) sin(q(|)»|))] cos(\/W)
=4a(|A]) + 4B (1AL (3.8)

Here « and B are given explicitly as

a(p) = sin(y/m)[p(u) sinh(p(u)) sin(q (i) + a(w) cosh(p(u)) cos(q(u))]
S

— k213 cos( /1) cosh(p()) sin(q()),
B(11) = sin( /) (1) cosh(p(y2)) cos(q(ue)) — () sinh(p() sin(q(o)] [+ TH € 100D

~ k% cos( /1) sinh(p()) cos(q(1))

(3.9

and satisfy

()| + |BG)[* = () sin(/1) cos (1)) ~ k21412 cos(y/7m) sin(q(1w) |

PGk sin(2 /i) sinh(2p(1))
2

, [cosh(2p()) - 1[lq(w)|? sin*(\/z) + k*1® cos? (/)]
2

. lp(1)1 sin® (/1) [cosh(2p(1)) + cos(2q(1))]
2

- b*[u? sin®(/i) + 2 cos®(/1)] bekaM%
- 16 8
Wb Mgbz( 4ebk2)

32 T 32 b

2[,)2
> M32 whenever u > max(

16e2k* 1 b
, (3.10)

T’ﬁ’\/—4—8
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“«_»

where the “=" in the first line follows from a series of elementary calculations and rear-

rangements, the “>" in the third line follows from (3.2) and

3> w henever p > L and
— W Y —,
M =Ta =t
bebk*p2
‘p(u )k? M2 sin(24/w) s1nh(2p( ))| T, Vi € (0,00).

By (3.10), we deduce from (3.8) that

|AP = 16|a(I1])|* + 16](1A1)|°
b2|)\|2
>

(3.11)

) , 16e*k* 1 b
with A = —|A[i, || > max

> kY Jag)

Having the above analysis results at our disposal, we are now in a position to prove the

main results.

Proof of Theorem 1.2 1t is equivalent to proving

12200y < OV BN, + 11200, *+ 1012201
1812101y < COV D220 + 191200y, + 01200 |- VAEIR, (3.12)
1112201, < CONM U120 + 1V 1210 + 1711220,

where (f, g, h) and (¢, ¥, n) are related by (2.2).
Let us consider first the term fol G?*(x, &)y (£) d&. Combine (2.2), (2.3), (2.19), and (2.20),
to obtain

R 1
P = /0 G, )/ (&) de
4ik®/=1iy (0) sinh((x — 1)/A(k + b)) cosh(+v/—Ai)

(A+b)A
. - 1
B 2 sinh(v/—Ai) C(;Sh(x«/)»()» + b)) /0 v (E) sinh((l g T(A " b)) de
2iak2y/= i cosh(v/=Ai) sinh(x/A(A + D))
' AVAG+b)

1
x/o Y (&) sinh((1 - &)y/A(k + b)) d&

1 * .
+WA 1//(E)s1nh((x—§) A(A+b))d$. (3.13)

The derivative @’ of ¥ reads

1;/(36) _ 41k2\/71// 0)/A(A + b) cosh((x — 1)/A(x + b)) cosh(v/—1i)
) i+ b)A

B 2 sinh(v/=Ai)/A(k + B) sinh(x/A(A + D))
A
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1
X /0 ¥ (€)sinh((1 - £)y/A(A + b)) dE

N 2irk?v/=Aicosh(v/—Ai) cosh(x/A(A + b))
A

1
x/ ¥ (&) sinh((1 - £)y/A(A + b)) dE
0

+ % /0 ¥ (&) cosh((x — £)y/A(A + b)) dE. (3.14)

Since g € H'(0,1) satisfies g(1) = 0 in the trace sense, it suffices to estimate ||g’|| 12(0,1) in-
stead of ||gl1(,1)- Therefore, we only need to analyze || $/||Lz<0,1).
By a density argument, we can prove

[ O] < 1¥ 10, (3.15)

By Young’s inequality (see [14, Theorem 2.24, p. 33]), we have

[

1 2
suwniz(o,n[ /0 |cosh(x¢x(x+b))|dx] <Y1y (3.16)

2
dx

/0 Y(&) cosh((x —E)WVA+ b)) d&

where the “<” in the second line follows from

1 2
[/ |cosh(xy/A(A + b)) dx] < m[g)i]|cosh(x\/)h()L +b)) \2
0 x€|0,

SRR oD

’

in which we used (3.2) when we establish the last “<”,
Mainly using Hélder’s inequality, we have

[ 1cosh((x — 1)/A(0- + b))|? dx
= % fol [cosh(2(x — 1)p(|1])) + cos(2(x — 1)q(|A]))] dx

cosh(2(x-1)p(|A])) +cos(2(x-1)q([A])) b
2

=< MaXxe[o,1] <e’,

(3.17)
fol | sinh(x/A(h + D))|2dx <e? and fol | cosh(x/A(h + B))|2 dx < €,
| fy w(&)sinh((1 - £)V/A0. + b)) d |
< W 1220y MaXecpo | sinh((1 — E)V/AT = D) < 11125,
By some routine calculations, we have
| «/TM\/WCosh(\/TM)l < 62+b)
(D) A = b’
| sinh(ﬁ)m| < 6(2+D)
A =75
|)L«/—_Mcosh(«/—_)d) | < 3(2+b)/TA]
A = b
16e22k* 1 288(b+2)% 6(2+b)
whenever |A| > max(T, ﬁ’b’ o ) (3.18)
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(3.14), together with (3.15), (3.16), (3.17), and (3.18), implies

9216(1 + k*)(2 + b)2e?
b2

|G+ )Y |12y < AP 121 0y (3.19)

. . 2b 14 2
whenever A € iR satisfies |A| > max(16ebzk , %,b, 288(b+2)7 | 6Q+b)y

¥z b
Applying the approach used in deducing (3.19) from (3.14) via the “steps” (3.15), (3.16),

(3.17), and (3.18), we can prove

1200 < CP (112500 + 1V B0 + 10112201, (3.20)
which, together with (2.2)3, implies

112201y < COY (181220, + 191210 + 171220)- (3.21)
We can also prove

[

< CO (W01 * 1711 7201))- (322)

2
dx

1 1
/ F2(0, ) () dE + / P, &)n(E) de
0 0

where the constant C > 0 is independent of (¢, ¥, n) and A.
Now it remains to analyze the term fol Fl(x,&)¢(£) d&. But

1 A0 + b) cosh(~/A(\ + b))
1 - _
| P e - =
/1 ¢ (&)[cosh((1 +x — £)v/=2i) — cosh((1 - x — £)v/=1i)]
x A d§
. irk2/=Aisinh(v/A(A + b))
-\
/1 ¢(&)[sinh((1 +x — &)8/=Ai) — sinh((1 — x — £)v/=Ai)]
x 1 dé

N VM /x(h + b) cosh(v/A(h + D)) + irk2/—Aisinh(v/A(x + B))]
-

* ¢(€) sinh((1 - £)v/~Ai)
X /0 d&

A

L [ peewovT
= [ e
. VA0 + b) cosh(v/A(A + b))eDVHi
V=i
* (&) sinh(§ v/ -7i)
X/o %

(3.23)
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To provide in detail a way to analyze fol Fl(x,&)¢(£) d&, we continue as follows:

2

/1 ¢(&)[cosh((1 +x — £)+/=Ai) — cosh((1 — x — £)v/=Ai)] i

A
52/:|¢(s)|2ds/xl[

C 1
<o f p(e)[* de.

cosh((1 —x — &)v/—1i)
A

cosh((1 +x — £)+/=Ai)
A

2
+

2
J«

Employing the same idea, we analyze the rest of (3.23) term-by-term, and then collect all
the information together to obtain

[

This, together with (3.22), implies

1 2
/()Pl(x,§)¢($)d5 deC||¢||i2(o,1)'

120y < COO2 (1012201 + 1 12000 *+ I0220)): (3.24)

where the constant C > 0 is independent of (¢, ¥, n) and A.
Combining (3.20), (3.21), and (3.24), we know that (3.12) is proved, so is Theorem 1.2. [J

4 Concluding comments and an open question

By analyzing carefully Green’s functions for boundary value problems associated with or-
dinary differential equations (i.e., (2.1)), we prove that the infinitesimal generator of the
semigroup associated with system (1.1) satisfies the resolvent estimate (1.9), thereby prov-
ing that the energy of system (1.1) decays polynomially.

Having a very simple underlying idea, our method is based on Green’s functions and
relies on heavy calculations. Our method can be modified to treat other transmission sys-
tems of 1-D partial differential equations where one of the equations is damped in the
whole interval. However, according to the deductions based on our idea, it seems very
hard to find the optimal decay rate of the energy of system (1.1). Therefore, one of our
next concerns is to understand better the following question.

Open question Could the decay rate (¢ + 1)~! given in estimate (1.8) be improved?

As indicated before, the above question seems difficult to solve with merely the method
used in this paper. To close this section, we prove by a contradiction argument that the
energy E (defined in (1.6)) can NOT decay exponentially. Assume to the contrary that E(¢)
decays exponentially, or equivalently, there exists a pair (Mo, yo) € (0, 00)? such that, for
everyw e H,

|e“w|,, < Moe ™ |Iwll, V2 € [0,00), (4.1)

where H is given by (1.2), and A by (1.3).
Write, for every Ao € C with y <feA <0,

o0
Rkw=/ e e wdt, VYweH. (4.2)
0



Wang Boundary Value Problems (2018) 2018:60 Page 14 of 14

By (4.1), R, is well defined and belongs to L(H). Moreover, by (4.2), R; satisfies
(AMdy —A)Ryw=w, VweH, and R,(Aidy-Aw=w, VYweDA).

Therefore, A belongs to p(A), the resolvent set of A, and moreover, R, = R(A;A), the
resolvent of A.

Thus, we proved just now that A belongs to p(A) whenever A € C satisfies yp < Re X < 0.
This contradicts (1.7),. The proof is complete.

Acknowledgements
The author is supported by NSFC (#11701050 and #11571244), by JG Program (#2017JG13) of Chengdu Normal
University, and by SCJYT Program (#182B0098) of Sichuan Province, China.

Funding
Not applicable.

List of abbreviations
Not applicable.

Availability of data and materials
Not applicable.

Ethics approval and consent to participate
Not applicable.

Competing interests
There is no conflict of interest in this paper.

Consent for publication
Not applicable.

Authors’ contributions
This piece of work is credited to CW. Author read and approved the final manuscript.

Endnote
@ Throughout this paper, (-} = /1 + |-

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 9 August 2017 Accepted: 16 April 2018 Published online: 24 April 2018

References
1. Ly, L, Wang, J-M.: Transmission problem of Schrodinger and wave equation with viscous damping. Appl. Math. Lett.
54,7-14(2016)
. Zuazua, E.: Remarks on the controllability of the Schrédinger equation. In: Quantum Control: Mathematical and
Numerical Challenges. CRM Proc. Lecture Notes, vol. 33, pp. 193-211. Am. Math. Soc., Providence (2003)
. Machtyngier, E.: Exact controllability for the Schrodinger equation. SIAM J. Control Optim. 32, 24-34 (1994)
. Machtyngier, E.,, Zuazua, E.: Stabilization of the Schrodinger equation. Port. Math. 51, 243-256 (1994)
Phung, K-D.: Observability and control of Schrédinger equation. SIAM J. Control Optim. 40, 211-230 (2001)
Lebeau, G.: Controle de I'équation de Schrodinger. J. Math. Pures Appl. 71, 267-291 (1992)
. Guo, B.Z, Shao, Z.C.: Regularity of a Schrédinger equation with Dirichlet control and collocated observation. Syst.
Control Lett. 54, 1135-1142 (2005)
8. Dautray, R, Lions, J.L.: Analyse Mathématique et Calcul Numérique pour les Sciences et les Techniques, vol. 1. Masson,
Paris (1984)
9. Lagnese, J.. Boundary Stabilization of Thin Plates. SIAM Studies in Appl. Math., vol. 10. SIAM, Philadelphia (1989)
10. Krstic, M., Guo, B.Z, Smyshlyaev, A.: Boundary controllers and observers for the linearized Schrédinger equation. SIAM
J. Control Optim. 49, 1479-1497 (2011)
11. Liu, Z, Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Z. Angew.
Math. Phys. 56, 630-644 (2005)
12. Burg, N.: Décroissance de I'énergie locale de I'équation des ondes pour le probléme extérieur et absence de
résonance au voisinage du réel. Acta Math. 180(1), 1-29 (1998)
13. Borichev, A, Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347(2),
455-478 (2010)
14. Adams, RA, Fournier, JJF.: Sobolev Spaces, 2nd edn. Pure and Applied Mathematics (Amsterdam), vol. 140.
Elsevier/Academic Press, Amsterdam (2003)

N

NOo L AW



	Polynomial energy decay of a wave-Schrodinger transmission system
	Abstract
	MSC
	Keywords

	Introduction
	Green's functions and the resolvent R(igamma;A)
	Proof of the main results
	Concluding comments and an open question
	Acknowledgements
	Funding
	List of abbreviations
	Availability of data and materials
	Ethics approval and consent to participate
	Competing interests
	Consent for publication
	Authors' contributions
	Endnote 
	Publisher's Note
	References


