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Abstract
In this paper, we consider the existence of multiple solutions of the homogeneous
Dirichlet problem for a (p,q)-elliptic system with nonlinear product term as follows:

⎧
⎪⎨

⎪⎩

–�pu = λα(x)|u|α(x)–2u|v|β(x) + Fu(x,u, v) in �,

–�qv = λβ(x)|u|α(x)|v|β(x)–2v + Fv(x,u, v) in �,

u = 0 = v on ∂�.

We emphasize that the potential F(x,u, v) might contain a nonlinear product term
which includes F(x,u, v) = |u|θ1(x)|v|θ2(x) ln(1 + |u|) ln(1 + |v|) as a prototype, and does
not require F(x,u, v) → +∞ as |u| + |v| → +∞. With novel growth conditions on
F(x,u, v), we develop a new method to check the Cerami compactness condition.
Through arguments of critical point theory, we prove the existence of multiple
constant-sign solutions for our elliptic system without requiring the well-known
Ambrosetti–Rabinowitz condition. Moreover, we also give a result guaranteeing the
existence of infinitely many solutions.
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1 Introduction
We consider the existence of multiple solutions of the Dirichlet problem for the (p, q)-
elliptic system with nonlinear product term as follows:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = λα(x)|u|α(x)–2u|v|β(x) + Fu(x, u, v) in �,

–�qv = λβ(x)|u|α(x)|v|β(x)–2v + Fv(x, u, v) in �,

u = 0 = v on ∂�.

(P)

Here � ⊂R
N is a smooth bounded domain, –�pu := –div(|∇u|p–2∇u) is the p-Laplacian,

α(·),β(·) > 1 belong to the space C(�), F : � × R × R → R is a function of class C1, and
λ > 0 is a parameter. The main feature of the above problem is the presence of the nonlinear
product term.
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Our goal is to obtain existence results for problem (P) without requiring the usual
Ambrosetti–Rabinowitz condition. To this end, we provide novel growth conditions on
the potential F(x, u, v) allowing us to develop a new method to check the Cerami com-
pactness condition, which is crucial to applying critical point theory.

The Ambrosetti–Rabinowitz type conditions are rather restrictive and exclude signif-
icant classes of nonlinearities. Numerous papers deal with the elliptic equations with-
out the Ambrosetti–Rabinowitz type conditions, some of them even weakening growth
condition such as f (x, t)/|t|p–2t → +∞ as |t| → +∞ (see [1–8]). It is worth mention-
ing that there are some results related to system (P) without the Ambrosetti–Rabinowitz
type growth conditions, but requiring conditions such as F(x, u, v)/(|u|p + |v|q) → +∞ as
|u|p + |v|q → +∞ (see [9, 10]). In [11] for N = 1 and λ = 0, the authors study problem (P)
without the Ambrosetti–Rabinowitz type condition, but requiring the integral coercive
condition

∫ T
0 F(t, u, v) dt → +∞ as |u| + |v| → +∞.

Recently, in [12] the authors extended the results in [13] establishing an existence result
of multiple solutions for a Dirichlet problem with variable exponents involving an elliptic
system without Ambrosetti–Rabinowitz condition as follows:

⎧
⎪⎪⎨

⎪⎪⎩

–�p(x)u = λα(x)|u|α(x)–2u|v|β(x) + Fu(x, u, v) in �,

–�q(x)v = λβ(x)|u|α(x)|v|β(x)–2v + Fv(x, u, v) in �,

u = 0 = v on ∂�.

We point out that in these results the condition F(x, u, v)/(|u|p(x) + |v|q(x)) → +∞ as |u|p(x) +
|v|q(x) → +∞ is required.

In the present paper, we extend in the case of (P) the results in [12] obtaining multiple
constant-sign solutions. A relevant contribution consists in the fact that the restrictive
requirement F(x, u, v) → +∞ as |u| + |v| → +∞ is not needed anymore. A typical form of
the admissible potential is F(x, u, v) = |u|θ1(x)|v|θ2(x) ln(1 + |u|) ln(1 + |v|).

Before stating our main results, we list the following conditions:

(Hα,β) α(·)
p + β(·)

q < 1 on �.

(H0) F : � ×R×R →R is a C1-function, and

∣
∣Fu(x, u, v)u

∣
∣ +

∣
∣Fv(x, u, v)v

∣
∣ ≤ C

(
1 + |u|γ + |v|δ), ∀(x, u, v) ∈ � ×R,

with p < γ < p∗, q < δ < q∗, where

p∗ =

⎧
⎨

⎩

Np
N–p , p < N ,

∞, p ≥ N ,

q∗ =

⎧
⎨

⎩

Nq
N–q , q < N ,

∞, q ≥ N .

(H1) There exist constants M, C1∗, C2∗ > 0, and continuous functions 1 < θ1(·) < p, 1 <
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θ2(·) < q, θ1(·)
p + θ2(·)

q ≡ 1 on � such that

C1∗|u|θ1(x)|v|θ2(x)

≤ C2∗
(

Fu(x, u, v)u
ln(e + |u|) +

Fv(x, u, v)v
ln(e + |v|)

)

≤ 1
p

Fu(x, u, v)u +
1
q

Fv(x, u, v)v – F(x, u, v), ∀|u| + |v| ≥ M, x ∈ �,

and

Fu(x, u, v)u ≥ 0 and Fv(x, u, v)v ≥ 0, ∀|u| + |v| ≥ M,∀x ∈ �.

(H2) F(x, u, v) = o(|u|p + |v|q) uniformly for x ∈ � as u, v → 0.
(H3) F satisfies Fu(x, u, v) = 0, Fv(x, u, v) = 0, ∀x ∈ �, ∀u, v ∈R with uv = 0.
(H4) F(x, –u, –v) = F(x, u, v), ∀x ∈ �, ∀u, v ∈ R.

(Hp,q) p = q.
Our results are stated as follows.

Theorem 1.1 If λ > 0 is small enough and assumptions (Hα,β), (H0), (H2), (H3) hold, then
problem (P) has at least four nontrivial constant-sign solutions.

Theorem 1.2 If λ > 0 is small enough and assumptions (Hα,β), (H0)–(H3) hold, then prob-
lem (P) has at least eight nontrivial constant-sign solutions.

Theorem 1.3 If assumptions (Hα,β), (H0), (H1), (H4), and (Hp,q) hold, then there are in-
finitely many pairs of symmetric solutions to problem (P).

Remark
(i) Let

F(x, u, v) = |u|θ1(x)|v|θ2(x) ln
(
1 + |u|) ln

(
1 + |v|),

with 1 < θ1(x) < p, 1 < θ2(x) < q, θ1(x)
p + θ2(x)

q = 1,∀x ∈ �. Then F satisfies conditions
(H0)–(H4), but F does not satisfy the Ambrosetti–Rabinowitz condition, and does
not satisfy F(x, u, v) → +∞ as |u| + |v| → +∞.

(ii) We do not assume any monotonicity condition on F(x, ·, ·).
(iii) Our method can be applied to other relevant cases, for instance,

F(x, u, v) = |u|θ1(x)|v|θ2(x)[ln
(
1 + ln

(
1 + |u|))][ln(

1 + ln
(
1 + |v|))].

The rest of the paper is organized as follows. In Sect. 2 we do some preparation work
focusing on certain Sobolev spaces and Nemytskii operators. In Sect. 3 we prove our main
results.

2 Preliminary results
In order to study problem (P), we first recall some basic properties of the space W 1,p

0 (�)
that will be used later (for details, see [14–19]).
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Denote

Lp(�) =
{

u : � →R

∣
∣
∣ u is measurable,

∫

�

∣
∣u(x)

∣
∣p dx < ∞

}

.

Endowed with the norm

|u|p =
(∫

�

∣
∣u(x)

∣
∣p dx

) 1
p

,

(Lp(�), | · |p) becomes a Banach space.
The space W 1,p(�) is defined by

W 1,p(�) =
{

u ∈ Lp(�) | ∇u ∈ (
Lp(�)

)N}
,

and is endowed with the norm

‖u‖p = |u|p + |∇u|p.

We denote by W 1,p
0 (�) the closure of C∞

0 (�) in W 1,p(�).

Proposition 2.1 (see [14, 16, 18])
(i) W 1,p(�) and W 1,p

0 (�) are separable reflexive Banach spaces.
(ii) If η ∈ [1, p∗), then the embedding of W 1,p(�) into Lη(�) is compact.

(iii) There is a constant C > 0 such that

|u|p ≤ C|∇u|p, ∀u ∈ W 1,p
0 (�).

We know from Proposition 2.1 that |∇u|p and ‖u‖p are equivalent norms on W 1,p
0 (�).

From now on we will use |∇u|p to replace ‖u‖p as the norm on W 1,p
0 (�), and use |∇v|q to

replace ‖v‖q as the norm on W 1,q
0 (�).

Proposition 2.2 (see [18, 20]) The first eigenvalue λp of –�p on W 1,p
0 (�) is positive.

Denote X = W 1,p
0 (�) × W 1,q

0 (�). The norm ‖ · ‖ on X is defined by

∥
∥(u, v)

∥
∥ = max

{‖u‖p,‖v‖q
}

.

For any (u, v) and (φ,ψ) in X, let

�1(u) =
∫

�

1
p
|∇u|p dx, �2(v) =

∫

�

1
q
|∇v|q dx,

�(u, v) = �1(u) + �2(v), �(u, v) =
∫

�

(
λ|u|α(x)|v|β(x) + F(x, u, v)

)
dx.

From Proposition 2.1, conditions (Hα,β), (H0), and the continuity of Nemytskii operator
(see [13, Proposition 2.2] as well as [18]), it follows that �1,�2,�,� ∈ C1(X,R) and

(
�′(u, v), (φ,ψ)

)
=

(
D1�(u, v),φ

)
+

(
D2�(u, v),ψ

)
,
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(
� ′(u, v), (φ,ψ)

)
=

(
D1�(u, v),φ

)
+

(
D2�(u, v),ψ

)
,

where

(
D1�(u, v),φ

)
=

∫

�

|∇u|p–2∇u∇φ dx =
(
�′

1(u),φ
)
,

(
D2�(u, v),ψ

)
=

∫

�

|∇v|q–2∇v∇ψ dx =
(
�′

2(v),ψ
)
,

(
D1�(u, v),φ

)
=

∫

�

[

λα(x)|u|α(x)–2u|v|β(x) +
∂

∂u
F(x, u, v)

]

φ dx,

(
D2�(u, v),ψ

)
=

∫

�

[

λβ(x)|u|α(x)|v|β(x)–2v +
∂

∂v
F(x, u, v)

]

ψ dx.

The integral functional associated with problem (P) is

ϕ(u, v) = �(u, v) – �(u, v).

Without loss of generality, we may assume that F(x, 0, 0) = 0,∀x ∈ �. Then we have

F(x, u, v) =
∫ 1

0

[
u∂2F(x, tu, tv) + v∂3F(x, tu, tv)

]
dt, ∀x ∈ �, (1)

where ∂j denotes the partial derivative of F with respect to its jth variable. From (1) and
assumptions (H0)–(H1), it holds

∣
∣F(x, u, v)

∣
∣ ≤ c

(|u|γ + |v|δ + 1
)
, ∀x ∈ �, (2)

with a constant c > 0.
Through Proposition 2.1, assumptions (Hα,β)–(H0), and the continuity of Nemytskii op-

erator (see [13, Proposition 2.2] as well as [18]), it follows that ϕ ∈ C1(X,R) and satisfies

(
ϕ′(u, v), (φ,ψ)

)
=

(
D1ϕ(u, v),φ

)
+

(
D2ϕ(u, v),ψ

)
,

with

(
D1ϕ(u, v),φ

)
=

(
D1�(u, v),φ

)
–

(
D1�(u, v),φ

)
,

(
D2ϕ(u, v),ψ

)
=

(
D2�(u, v),ψ

)
–

(
D2�(u, v),ψ

)
.

We recall that (u, v) ∈ X is a critical point of ϕ if

(
ϕ′(u, v), (φ,ψ)

)
= 0, ∀(φ,ψ) ∈ X.

The dual space of X will be denoted by X∗. Then, for any H ∈ X∗, there exist uniquely
f ∈ (W 1,p

0 (�))∗ and g ∈ (W 1,q
0 (�))∗ such that H(u, v) = f (u) + g(v) for all (u, v) ∈ X. Denote

by ‖ · ‖∗, ‖ · ‖∗,p and ‖ · ‖∗,q the norms of X∗, (W 1,p
0 (�))∗and (W 1,q

0 (�))∗, respectively. Since
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X∗ = (W 1,p
0 (�))∗ × (W 1,q

0 (�))∗ and

‖H‖∗ = ‖f ‖∗,p + ‖g‖∗,q,

we have

∥
∥ϕ′(u, v)

∥
∥∗ =

∥
∥D1ϕ(u, v)

∥
∥∗,p +

∥
∥D2ϕ(u, v)

∥
∥∗,q.

It is seen that � is a convex functional and that the following result holds.

Proposition 2.3 (see [16, 18, 21])
(i) �′ : X → X∗ is a continuous, bounded, and strictly monotone operator;

(ii) �′ is a mapping of type (S+), i.e., if (un, vn) ⇀ (u, v) in X and

lim
n→+∞

(
�′(un, vn) – �′(u, v), (un – u, vn – v)

) ≤ 0,

then (un, vn) → (u, v) in X ;
(iii) �′ : X → X∗ is a homeomorphism.

We set forth a useful coercivity property for the potential F .

Lemma 2.4 Assume (Hα,β ) and that F(x, u, v) verifies

C1|u|θ1(x)|v|θ2(x) min
{
ln

(
1 + |u|), ln

(
1 + |v|)} ≤ F(x, u, v), ∀|u| + |v| ≥ M,∀x ∈ �, (3)

with a constant C1 > 0. Fix x0 ∈ � and ε > 0 such that B(x0, ε) ⊂ �. Setting

h0(x) =

⎧
⎨

⎩

0, |x – x0| > ε,

ε – |x – x0|, |x – x0| ≤ ε,

there holds

ϕ
(
t

1
p h0, t

1
q h0

) → –∞ as t → +∞. (4)

Proof It is known from hypothesis (Hα,β) that

α(x)
p

+
β(x)

q
< 1 on �,

which implies

1
t

∫

�

λ
∣
∣t

1
p h0

∣
∣α(x)∣∣t

1
q h0

∣
∣β(x) dx → 0 as t → +∞.

By (3) there exists a positive constant C2 > 0, for which one has

F(x, u, v) ≥ C1|u|θ1(x)|v|θ2(x) min
{
ln

(
1 + |u|), ln

(
1 + |v|)} – C2, ∀u, v ∈R,∀x ∈ �.
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Therefore we may write

1
t

F
(
x, t

1
p h0, t

1
q h0

)

≥ 1
t

C1
∣
∣t

1
p h0

∣
∣θ1(x)∣∣t

1
q h0

∣
∣θ2(x)

min
{
ln

(
1 + t

1
p h0

)
, ln

(
1 + t

1
q h0

)}
– C2

≥ C1|h0|θ1(x)|h0|θ2(x) ln
(
1 +

∣
∣t

1
p+q h0

∣
∣
)

– C2 → +∞ as t → +∞,∀x ∈ B(x0, ε).

Using the equality

1
t

{∫

�

∣
∣∇t

1
p h0

∣
∣p dx +

∫

�

∣
∣∇t

1
q h0

∣
∣q dx

}

=
∫

�

|∇h0|p dx +
∫

�

|∇h0|q dx,

it is readily seen that 1
t ϕ(t

1
p h0, t

1
q h0) → –∞ as t → +∞, thus (4) is valid, which completes

the proof. �

3 Proofs of main results
The solutions to system (P) are understood in the weak sense.

Definition 3.1 We call (u, v) ∈ X a weak solution of problem (P) if

∫

�

|∇u|p–2∇u · ∇φ dx =
∫

�

[
λα(x)|u|α(x)–2u|v|β(x) + Fu(x, u, v)

]
φ dx, ∀φ ∈ W 1,p

0 (�),
∫

�

|∇v|q–2∇v · ∇ψ dx =
∫

�

[
λβ(x)|u|α(x)|v|β(x)–2v + Fv(x, u, v)

]
ψ dx, ∀ψ ∈ W 1,q

0 (�).

The energy functional corresponding to problem (P) is

ϕ(u, v) = �(u, v) – �(u, v)

=
∫

�

[
1
p
|∇u|p +

1
q
|∇v|q

]

dx –
∫

�

[
λ|u|α(x)|v|β(x) + F(x, u, v)

]
dx, ∀(u, v) ∈ X.

Definition 3.2 We say that ϕ satisfies the Cerami condition in X, if any sequence
{(un, vn)} ⊂ X such that {ϕ(un, vn)} is bounded and ‖ϕ′(un, vn)‖∗(1 + ‖(un, vn)‖) → 0 as
n → ∞ has a convergent subsequence.

Lemma 3.3 If hypotheses (Hα,β ), (H0), and (H1) hold, then ϕ satisfies the Cerami condition.

Proof Let {(un, vn)} ⊂ X be a Cerami sequence, i.e., one has ϕ(un, vn) → c and
‖ϕ′(un, vn)‖∗(1 + ‖(un, vn)‖) → 0. If {(un, vn)} is bounded, then {(un, vn)} contains a weakly
convergent subsequence in X. We may assume that (un, vn) ⇀ (u, v), so � ′(un, vn) →
� ′(u, v) in X∗. Since ϕ′(un, vn) = �′(un, vn) – � ′(un, vn) → 0 in X∗, we infer �′(un, vn) →
�′(u, v) in X∗. Recalling from Proposition 2.3(iii) that �′ is a homeomorphism, we derive
(un, vn) → (u, v), which establishes that ϕ satisfies the Cerami condition.

Next we show the boundedness of the Cerami sequence {(un, vn)} arguing by contradic-
tion. Suppose there exist c ∈R and {(un, vn)} ⊂ X satisfying

ϕ(un, vn) → c,
∥
∥ϕ′(un, vn)

∥
∥∗

(
1 +

∥
∥(un, vn)

∥
∥
) → 0,

∥
∥(un, vn)

∥
∥ → +∞.
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Since ‖( 1
p un, 1

q vn)‖ ≤ C‖(un, vn)‖, we obtain

(

ϕ′(un, vn),
(

1
p

un,
1
q

vn

))

→ 0.

For n sufficiently large, it turns out that

c + 1 ≥ ϕ(un, vn) –
(

ϕ′(un, vn),
(

1
p

un,
1
q

vn

))

=
∫

�

(
1
p
|∇un|p +

1
q
|∇vn|q

)

dx –
∫

�

F(x, un, vn) dx

–
{∫

�

1
p
|∇un|p dx –

∫

�

1
p

Fu(x, un, vn)un dx
}

–
{∫

�

1
q
|∇vn|q dx –

∫

�

1
q

Fv(x, un, vn)vn dx
}

+
∫

�

λ

(
α(x)

p
+

β(x)
q

– 1
)

|un|α(x)|vn|β(x) dx

=
∫

�

[
1
p

Fu(x, un, vn)un +
1
q

Fv(x, un, vn)vn – F(x, un, vn)
]

dx

+
∫

�

λ

(
α(x)

p
+

β(x)
q

– 1
)

|un|α(x)|vn|β(x) dx.

This leads to
∫

�

[
1
p

Fu(x, un, vn)un +
1
q

Fv(x, un, vn)vn dx – F(x, un, vn)
]

dx

≤ C1 +
∫

�

λ

(

1 –
α(x)

p
–

β(x)
q

)

|un|α(x)|vn|β(x) dx, (5)

with a constant C1 > 0.
From condition (H1) and (5) we get

∫

�

[ |Fu(x, un, vn)un|
ln(e + |un|) +

|Fv(x, un, vn)vn|
ln(e + |vn|)

]

dx

≤ 1
C2∗

∫

�

[
Fu(x, un, vn)un

p
+

Fv(x, un, vn)vn

q
– F(x, un)

]

dx + C2

≤ 1
C2∗

∫

�

λ

(

1 –
α(x)

p
–

β(x)
q

)

|un|α(x)|vn|β(x) dx + C3,

with constants C2, C3 > 0.
Since ‖ϕ′(un, vn)‖∗(1 + ‖(un, vn)‖) → 0, by the preceding inequality and (H0), we have

∫

�

[|∇un|p + |∇vn|q
]

dx

=
∫

�

[
Fu(x, un, vn)un + Fv(x, un, vn)vn

]
dx

+
∫

�

λ
(
α(x) + β(x)

)|un|α(x)|vn|β(x) dx + o(1)
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≤
∫

�

∣
∣Fu(x, un, vn)un

∣
∣ε

[
ln

(
e + |un|

)]1–ε

∣
∣
∣
∣Fu(x, un, vn)

un

ln(e + |un|)
∣
∣
∣
∣

1–ε

dx

+
∫

�

∣
∣Fv(x, un, vn)vn

∣
∣ε

[
ln

(
e + |vn|

)]1–ε

∣
∣
∣
∣Fv(x, un, vn)

vn

ln(e + |vn|)
∣
∣
∣
∣

1–ε

dx + C4

+
∫

�

λ
(
1 + α(x) + β(x)

)|un|α(x)|vn|β(x) dx

≤ C5
(
1 +

∥
∥(un, vn)

∥
∥
)√

ε

∫

�

[
(1 + |un|γ + |vn|δ)1+ε + C6

(1 + ‖(un, vn)‖)
√

ε
ε

]ε[ |Fu(x, un, vn)un|
ln(e + |un|)

]1–ε

dx

+ C5
(
1 +

∥
∥(un, vn)

∥
∥
)√

ε
∫

�

[
(1 + |un|γ + |vn|δ)1+ε + C6

(1 + ‖(un, vn)‖)
1√
ε

]ε[ |Fv(x, un, vn)vn|
ln(e + |vn|)

]1–ε

dx

+ C7 +
∫

�

λ
(
1 + α(x) + β(x)

)|un|α(x)|vn|β(x) dx

≤ C8
(
1 +

∥
∥(un, vn)

∥
∥
)√

ε

∫

�

λ
(
1 + α(x) + β(x)

)|un|α(x)|vn|β(x) dx + C9,

with constants Ci > 0 for 4 ≤ i ≤ 9 and ε ∈ (0, 1).
Due to the fact that α(·)

p + β(·)
q < 1 on �, there exists a small enough ε > 0 such that α(·)

p +
β(·)

q < 1 – 2
√

ε on �. Then, by Young’s inequality, we get

∫

�

[|∇un|p + |∇vn|q
]

dx

≤ C10
(
1 +

∥
∥(un, vn)

∥
∥
)√

ε

(

1 +
∫

�

|un|p(1–2
√

ε) dx +
∫

�

|vn|q(1–2
√

ε) dx
)

+ C9,

with a constant C10 > 0.
When ε > 0 is sufficiently small, it is straightforward to reach a contradiction. Thus

{(un, vn)} is bounded, which completes the proof. �

In order to prove Theorem 1.1, consider the truncation F++(x, u, v) = F(x, S(u), S(v)),
where S(t) = max{0, t}. For any (u, v) ∈ X, we say (u, v) belong to the first, the second, the
third, and the fourth quadrant of X, if u ≥ 0 and v ≥ 0, u ≤ 0 and v ≥ 0, u ≤ 0 and v ≤ 0,
u ≥ 0 and v ≤ 0, respectively.

Proof of Theorem 1.1 On the basis of hypothesis (H3), it is easy to check that F++ ∈ C1(�×
R

2,R), and

F++
u (x, u, v) = Fu

(
x, S(u), S(v)

)
, F++

v (x, u, v) = Fv
(
x, S(u), S(v)

)
.

Let us consider the auxiliary problem

⎧
⎪⎪⎨

⎪⎪⎩

–�pu = λα(x)|S(u)|α(x)–2S(u)|S(v)|β(x) + F++
u (x, u, v) in �,

–�qv = λβ(x)|S(u)|α(x)|S(v)|β(x)–2S(v) + F++
v (x, u, v) in �,

u = v = 0 on ∂�.

(P++)
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The corresponding functional is expressed by

ϕ++(u, v) = �(u, v) – �++(u, v), ∀(u, v) ∈ X,

where

�++(u, v) =
∫

�

[
λ
∣
∣S(u)

∣
∣α(x)∣∣S(v)

∣
∣β(x) + F

(
x, S(u), S(v)

)]
dx, ∀(u, v) ∈ X.

Let σ > 0 satisfy σ ≤ 1
4 min{λp,λq}, where λp and λq are the first eigenvalues of –�p and

–�q, respectively. By assumptions (H0) and (H2), we have

F(x, u, v) ≤ σ

(
1
p
|u|p +

1
q
|v|q

)

+ C(σ )
(|u|γ + |v|δ), ∀(x, u, v) ∈ � ×R

2,

with a constant C(σ ) > 0 depending on σ . Notice that λp,λq > 0 (see Proposition 2.2) and

∫

�

1
p
|∇u|p dx – σ

∫

�

1
p
|u|p dx ≥ 3

4

∫

�

1
p
|∇u|p,

∫

�

1
q
|∇v|q dx – σ

∫

�

1
q
|v|q dx ≥ 3

4

∫

�

1
q
|∇v|q.

Denote

ε = min{γ – p, δ – q}.

When ‖u‖p is small enough, by Proposition 2.1 we have

C(σ )
∫

�

|u|γ dx = C(σ )|u|γγ
≤ C11‖u‖γ

p

≤ C12‖u‖ε
p

∫

�

1
p
|∇u|p dx

≤ 1
4

∫

�

1
p
|∇u|p dx,

with constants C11, C12 > 0. Similarly, if ‖v‖q is small enough, we obtain

C(σ )
∫

�

|v|δ dx ≤ 1
4

∫

�

1
q
|∇v|q dx.

Then, when λ > 0 is sufficiently small, for any (u, v) ∈ X with small enough norm, through
Young’s inequality, we find the estimate

ϕ++(u, v) = �(u, v) – �++(u, v)

≥ 1
2

∫

�

1
p
|∇u|p dx +

1
2

∫

�

1
q
|∇v|q dx –

∫

�

λ|u|α(x)|v|β(x) dx

≥ 1
4

∫

�

1
p
|∇u|p dx +

1
4

∫

�

1
q
|∇v|q dx.
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We conclude that if λ > 0 is sufficiently small, there exist r > 0 and ε > 0 such that
ϕ++(u, v) ≥ ε for every (u, v) ∈ X and ‖(u, v)‖ = r.

For a possibly smaller ε > 0, let �0 be an open ball of radius ε contained in �. Set

α+
�0

:= max
x∈�0

α(x), β+
�0

:= max
x∈�0

β(x).

By (Hα,β) we may suppose that ε > 0 is small enough such that

α+
�0

p
+

β+
�0

q
< 1.

Fix u0, v0 ∈ C2
0(�0) which are positive in �0. From hypothesis (H2) it follows that

ϕ++(
t

1
p u0, t

1
q v0

)

= �
(
t

1
p u0, t

1
q v0

)
– �++(

t
1
p u0, t

1
q v0

)

≤ �
(
t

1
p u0, t

1
q v0

)
+

∫

�

[∣
∣t

1
p u0

∣
∣p +

∣
∣t

1
q v0

∣
∣q]dx

– λ

∫

�

∣
∣t

1
p u0

∣
∣α(x) · ∣∣t 1

q v0
∣
∣β(x) dx

≤ t�(u0, v0) + t
∫

�

[|u0|p + |v0|q
]

dx

– λt
α+
�0
p +

β+
�0
q

∫

�

|u0|α(x)|v0|β(x) dx < 0 as t → 0+.

The discussion above enables us to see through local minimization that ϕ++(u, v) has at
least one nontrivial critical point (u∗

1, v∗
1) with ϕ++(u∗

1, v∗
1) < 0. Furthermore, from assump-

tion (H3) it is clear that (u∗
1, v∗

1) is situated in the first quadrant of X.
Using S(–u∗

1) ∈ W 1,p(·)
0 (�) as a test function and invoking assumption (H3), we have

∫

�

∣
∣∇u∗

1
∣
∣p–2∇u∗

1∇S
(
–u∗

1
)

dx

=
∫

�

[
λα(x)

∣
∣S

(
u∗

1
)∣
∣α(x)–2S

(
u∗

1
)∣
∣S

(
v∗

1
)∣
∣β(x) + Fu

(
x, S

(
u∗

1
)
, S

(
v∗

1
))]

S
(
–u∗

1
)

dx

=
∫

�

Fu
(
x, S

(
u∗

1
)
, S

(
v∗

1
))

S
(
–u∗

1
)

dx = 0,

thus u∗
1 ≥ 0. Similarly, we can prove v∗

1 ≥ 0. Therefore, (u∗
1, v∗

1) is a nontrivial constant-
sign solution of (P) with ϕ(u∗

1, v∗
1) < 0. From condition (H3) it follows that u∗

1, v∗
1 are both

nontrivial. Along the same lines, we can show that (P) possesses a nontrivial constant-
sign solution (u∗

i , v∗
i ) in the ith quadrant of X such that ϕ(u∗

i , v∗
i ) < 0, i = 2, 3, 4. Hence

system (P) has at least four nontrivial constant-sign solutions. The proof of Theorem 1.1
is complete. �

Proof of Theorem 1.2 According to the proof of Theorem 1.1, if λ > 0 is small enough,
there exist r > 0 and ε > 0 such that ϕ++(u, v) ≥ ε for every (u, v) ∈ X with ‖(u, v)‖ = r.
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From (H1) and (1) we infer that

F(x, u, v) ≥ C2|u|θ1(x)|v|θ2(x) min
{
ln

(
1 + |u|), ln

(
1 + |v|)} – C3, (6)

with positive constants C2, C3, for all (x, u, v) ∈ � ×R×R.
Fix x∗ ∈ � and ε > 0 such that B(x∗, ε) ⊂ �. Define h∗ ∈ C0(B(x∗, ε)) by

h∗(x) =

⎧
⎨

⎩

0, |x – x∗| ≥ ε,

ε – |x – x∗|, |x – x∗| < ε.

From Lemma 2.4 we know that ϕ++(t
1
p h∗, t

1
q h∗) → –∞ as t → +∞. Since ϕ++(0, 0) = 0,

ϕ++ satisfies the geometry conditions of the mountain pass theorem. Similar to the proof
of Lemma 3.3, it follows that ϕ++ fulfils the Cerami condition. So ϕ++ has at least one non-
trivial critical point (u1, v1) with ϕ++(u1, v1) > 0, and by assumption (H3) the components
u1, v1 are both nontrivial. As in the proof of Theorem 1.1, it is easy to see that (u1, v1) is in
the first quadrant of X. Thus, (u1, v1) is a nontrivial constant-sign solution of problem (P)
in the first quadrant of X with ϕ(u1, v1) > 0. Recall from Theorem 1.1 that (P) has also a
nontrivial constant-sign solution (u∗

1, v∗
1) in the first quadrant of X verifying ϕ(u∗

1, v∗
1) < 0.

As before we can see that (P) admits constant-sign solutions (ui, vi) and (u∗
i , v∗

i ) in the
ith quadrant in X (i = 1, 2, 3, 4) satisfying ϕ(ui, vi) > 0 and ϕ(u∗

i , v∗
i ) < 0, and ui, vi, u∗

i , v∗
i are

all nontrivial, which completes the proof of Theorem 1.2. �

In order to prove Theorem 1.3, we need to do some preparation. Note that X is a reflexive
and separable Banach space (see [22, Sect. 17], [18]), so there are sequences {ej} ⊂ X and
{e∗

j } ⊂ X∗ such that

X = span{ej, j = 1, 2, . . .}, X∗ = spanW∗{
e∗

j , j = 1, 2, . . .
}

,

and

〈
e∗

j , ej
〉

=

⎧
⎨

⎩

1, i = j,

0, i �= j.

For convenience, we set Xj = span{ej}, Yk =
⊕k

j=1Xj, Zk =
⊕∞

j=kXj.

Lemma 3.4 For γ , δ ≥ 1 with γ < p∗ and δ < q∗, denote

βk = sup
{|u|γ + |v|δ | ∥∥(u, v)

∥
∥ = 1, (u, v) ∈ Zk

}
.

Then there holds limk→∞ βk = 0.

Proof Obviously, 0 < βk+1 ≤ βk , so we have βk → β ≥ 0 as k → ∞. Let (uk , vk) ∈ Zk satisfy

∥
∥(uk , vk)

∥
∥ = 1, 0 ≤ βk – |uk|γ – |vk|δ <

1
k

.
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Then there exists a subsequence of {(uk , vk)} (still denoted by (uk , vk)) such that (uk , vk) ⇀

(u, v), and

〈
e∗

j , (u, v)
〉
= lim

k→∞
〈
e∗

j , (uk , vk)
〉
= 0, ∀j.

This implies (u, v) = (0, 0), thus (uk , vk) ⇀ (0, 0). Since the embedding of W 1,p
0 (�) into

Lγ (�) is compact, we get uk → 0 in Lγ (�). Similarly, we have vk → 0 in Lδ(�). Hence
we derive βk → 0 as k → ∞. The proof is complete. �

In order to prove Theorem 1.3, we need the following lemma whose proof can be found
in [23, Theorem 4.7]. If the Cerami condition is replaced by the Palais–Smale condition,
it is proven in [24, Theorem 3.6].

Lemma 3.5 Suppose ϕ ∈ C1(X,R) is even and satisfies the Cerami condition. Let V + and
V – ⊂ X be closed subspaces of X with codim V + + 1 = dim V –, and suppose there hold

(10) ϕ(0, 0) = 0;
(20) ∃τ > 0 and R > 0 such that ∀(u, v) ∈ V +: ‖(u, v)‖ = R ⇒ ϕ(u, v) ≥ τ ;
(30) ∃ρ > 0 such that ∀(u, v) ∈ V –: ‖(u, v)‖ ≥ ρ ⇒ ϕ(u, v) ≤ 0.

Denoting

� =
{

g ∈ C0(X, X) | g is odd, g(u, v) = (u, v) if (u, v) ∈ V – and
∥
∥(u, v)

∥
∥ ≥ ρ

}
,

it holds
(a) ∀δ > 0, ∀g ∈ �, one has S+

δ ∩ g(V –) �= ∅, where

S+
δ =

{
(u, v) ∈ V + | ∥∥(u, v)

∥
∥ = δ

}
;

(b) the number

� := inf
g∈�

sup
(u,v)∈V –

ϕ
(
g(u, v)

) ≥ τ

is a critical value of ϕ.

Proof of Theorem 1.3 According to assumptions (Hα,β ), (H0), (H1), and (H4), the functional
ϕ is even and satisfies the Cerami condition (see Lemma 3.3). Setting V +

k = Zk , then V +
k is

a closed linear subspace of X and V +
k ⊕ Yk–1 = X.

Take mutually distinct points xn ∈ � and define hn ∈ C0(B(xn, εn)) by

hn(x) =

⎧
⎨

⎩

0, |x – xn| ≥ εn,

εn – |x – xn|, |x – xn| < εn,

for εn > 0 with B(xn, εn) ⊂ �.
From (H1) and (1), we obtain the estimate

C0|u|θ1(x)|v|θ2(x) min
{
ln

(
1 + |u|), ln

(
1 + |v|)} ≤ F(x, u, v), ∀|u| + |v| ≥ M,∀x ∈ �,

with a constant C0 > 0. Consequently, the requirement (3) in Lemma 2.4 is fulfilled.
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Note that (Hp,q) yields p = q, and from Lemma 2.4 we have ϕ(thn, thn) → –∞ as t → +∞.
Without loss of generality, we may assume that

supp hi ∩ supp hj = ∅, ∀i �= j. (7)

Setting V –
k = span{(h1, h1), . . . , (hk , hk)}, we will prove for every pair of spaces V +

k and V –
k

that the functional ϕ satisfies the conditions of Lemma 3.5 and has a sequence of critical
values

�k := inf
g∈�

sup
(u,v)∈V –

k

ϕ
(
g(u, v)

) → +∞ as k → +∞.

This results in the fact that there are infinitely many pairs of symmetric solutions to prob-
lem (P).

For any k = 1, 2, . . . , we check that there exist ρk > Rk > 0 such that
(A1) bk := inf{ϕ(u, v) | (u, v) ∈ V +

k ,‖(u, v)‖ = Rk} → +∞ (k → +∞);
(A2) ak := max{ϕ(u, v) | (u, v) ∈ V –

k ,‖(u, v)‖ = ρk} ≤ 0.
First, we prove assertion (A1).
By direct computation based on (2) and the expression of βk in Lemma 3.4, we find that

ϕ(u, v) =
∫

�

1
p
|∇u|p dx +

∫

�

1
q
|∇v|q dx

–
∫

�

λ|u|α(x)|v|β(x) dx –
∫

�

F(x, u, v) dx

≥ 1
p
‖u‖p

p – C13|u|γγ +
1
q
‖v‖q

q – C13|v|δδ – C14

≥ 1
p
‖u‖p

p – C13β
γ

k ‖u‖γ
p +

1
q
‖v‖q

q – C13β
δ
k‖v‖δ

q – C14

≥ 1
pq

∥
∥(u, v)

∥
∥min{p,q} – C15βk

∥
∥(u, v)

∥
∥max{γ ,δ} – C16

=
1

2pq
(2pqC15βk)min{p,q}/(min{p,q}–max{γ ,δ}) – C16,

with positive constants C13, . . . , C16 for all (u, v) ∈ Zk with

∥
∥(u, v)

∥
∥ = Rk = (2pqC15βk)1/(min{p,q}–max{γ ,δ}).

Therefore ϕ(u, v) ≥ 1
2pq Rmin{p,q}

k –C16, ∀(u, v) ∈ Zk with ‖(u, v)‖ = Rk , which yields bk → +∞
as k → ∞.

Next we prove assertion (A2).
Recall that assumption (Hp,q) ensures p = q. From (7) and the definition of hn, it is easy

to see that

ϕ(hi + hj, hi + hj) = ϕ(hi, hi) + ϕ(hj, hj), ∀i �= j.

Since (6) and Lemma 2.4 guarantee

ϕ(thi, thi) → –∞ as t → +∞,∀i = 1, 2, . . . ,
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we have

ϕ(th, th) → –∞ as t → +∞

for all (h, h) ∈ V –
k with ‖(h, h)‖ = 1. Then one can provide ρk from which assertion (A2)

follows.
Now it is sufficient to combine (A1) and (A2) for completing the proof of Theorem 1.3. �
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14. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents. Lecture Notes

in Mathematics, vol. 2017. Springer, Heidelberg (2011)
15. Fan, X.L., Zhao, D.: On the spaces Lp(x) (�) andWm,p(x) (�). J. Math. Anal. Appl. 263, 424–446 (2001)



Li et al. Boundary Value Problems  (2018) 2018:67 Page 16 of 16

16. Fan, X.L., Zhang, Q.H.: Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal. 52, 1843–1852
(2003)
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