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Abstract
In this paper we consider the existence and regularity of solutions to the following
nonlocal Dirichlet problems:

⎧
⎪⎨

⎪⎩

(–�)su – λ u
|x|2s + up = f (x), x ∈ �,

u > 0, x ∈ �,

u = 0, x ∈ R
N \ �,

where (–�)s is the fractional Laplacian operator, s ∈ (0, 1), � ⊂ R
N is a bounded

domain with Lipschitz boundary such that 0 ∈ �, f is a nonnegative function that
belongs to a suitable Lebesgue space.

Keywords: Fractional Laplacian; Hardy potential; Regularizing effect

1 Introduction
Recently, the fractional Laplacian has more and more applications in physics, chemistry,
biology, probability and finance. The fractional Laplacian (–�)s is a pseudo-differential
operator defined by

(–�)su = aN ,sP.V .
∫

RN

u(x) – u(y)
|x – y|N+2s dy, s ∈ (0, 1),

where P.V . stands for the Cauchy principal value and aN ,s is a constant given by

aN ,s =
(∫

RN

1 – cos x
|x|N+2s

)–1

= 22s–1π– N
2

�( N+2s
2 )

|�(–s)| .

For some equivalent definitions of (–�)s, see [1–5].
The operator (–�)s is well defined as long as u belongs to the space C1,1

loc ∩ Ls, where

Ls =
{

u ∈ L1
loc :

∫

RN

|u(x)|
1 + |x|N+2s < ∞

}

.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-018-0980-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-018-0980-4&domain=pdf
mailto:huangshuibo2008@163.com


Mi et al. Boundary Value Problems  (2018) 2018:61 Page 2 of 12

In this paper, we establish existence and regularity of solutions to the following nonlocal
problem:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su – λ u
|x|2s + up = f (x), x ∈ �,

u > 0, x ∈ �,

u = 0, x ∈R
N \ �,

(1.1)

where s ∈ (0, 1), p > 0, � ⊂ R
N is a bounded domain with Lipschitz boundary such that

0 ∈ �, f is a positive measurable function in �.
Before stating our main theorem and related results, we give some notions used in this

paper.

Definition 1.1 Let s ∈ (0, 1), � ⊂R
N , define the fractional Sobolev space

Hs(�) =
{

u ∈ L2(�) :
|u(x) – u(y)|
|x – y| N+2s

2
∈ L2(� × �)

}

,

and the space Hs
0(RN ), defined as

Hs
0
(
R

N)
=

{
u ∈ Hs(

R
N)

: u = 0, x ∈R
N \ �

}
,

endowed with the norm

‖u‖Hs
0(�) =

(∫

Q

|u(x) – u(y)|2
|x – y|N+2s

) 1
2

,

where Q = R
N ×R

N \ (C� × C�).

The Hardy inequality plays an important role in this paper [6–8],

�N ,s

∫

RN

u2

|x|2s dx ≤ aN ,s

2

∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2s dx dy, u ∈ C∞

0
(
R

N)
, (1.2)

where

�N ,s = 22s �
2( N+2s

4 )
�2( N–2s

4 )

is optimal and not attained.
We need to make precise the sense of solutions that we will handle here and distinguish

two types of solutions, according to the regularity of f .

Definition 1.2 Assume 0 < λ < �N ,s. For f ∈ H–s(�) we say that u ∈ Hs
0(�) is a finite en-

ergy solution to problem (1.1) if, for any w ∈ Hs
0(�),

aN ,s

2
〈
(–�)su, w

〉
– λ

∫

�

uw
|x|2s dx +

∫

�

upw dx = 〈f , w〉,
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where 〈·, ·〉 is the natural duality product between Hs
0 and H–s, be defined as

〈
(–�)su, w

〉

Hs
0(RN ) := P.V .

∫

RN

∫

RN

(u(x) – u(y))(w(x) – w(y))
|x – y|N+2s dx dy.

Definition 1.3 For f ∈ Lm(�), m ≥ 1, we say that u ∈ L1(�) is a weak solution to problem
(1.1) if up ∈ L1(�), u = 0 in R

N \ � and the following equality holds:
∫

�

u(–�)sφ dx – λ

∫

�

u
|x|2s φ dx +

∫

�

upφ dx =
∫

�

f φ dx, ∀φ ∈ Hs
0(�).

Recently a great attention has been devoted to understanding the role of the Hardy po-
tential in the solvability of fractional elliptic problem; see for instance [9–13] and the ref-
erences therein. In particular, Abdellaoui et al. [12] obtained regularity of solutions to the
following nonlocal nonlinear problem:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su – λ u
|x|2s = f (x), x ∈ �,

u > 0, x ∈ �,

u = 0, x ∈ R
N \ �,

(1.3)

with f ∈ Lm(�) and 0 < λ < �N ,s, where �N ,s appears in the Hardy inequality (1.2). The
main results of [12] can be summarized as follows:

• If f ∈ Lm(�), m > N
2s , the unique energy solution u ∈ Hs

0(�) to problem (1.3) with
λ ≤ �N ,s satisfies u ≤ C|x|–γ for some constants C and γ .

• If 2N
N+2s ≤ m < N

2s , the unique energy solution u to problem (1.3) verifies u ∈ Lm∗∗
s (�),

m∗∗
s = mN

N–2ms , provided λ < �N ,s
4N(m–1)(N–2ms)

m2(N–2ms)2 .
• If 1 < m < 2N

N+2s , the unique weak solution u to problem (1.3) verifies
u ∈ Lm∗∗

s (�) ∩ W s1,m∗
s

0 (�) for all s1 < s and m∗
s = mN

N–ms , provided λ < �N ,s
4N(m–1)(N–2ms)

m2(N–2ms)2 .
The main objective of this work is to explain the combined influence of the Hardy po-

tential and lower order terms on the existence and regularity of solutions to problem (1.1).
The influence of the Hardy potential for fractional Laplacian was studied in [12], the main
effect of the Hardy potential in (1.3) is that the weak solutions to problem (1.3) satisfy
u(x) ≥ C|x|–γ for some constants C and γ , this fact shows that u(x) is unbounded in a
neighborhood of the origin, instead of u(x) ∈ L∞(�). On the other hand, it is well known
that the lower order term up produces a regularizing effect; see [14–17] and the refer-
ences therein. Therefore, thanks to the regularizing properties of the lower order term,
we will prove that summability of finite energy the solution to problem (1.1) increases as
the power of the lower order term increases; see (1.4) below.

According to such a definition, we can now state our existence results for problem (1.1).

Theorem 1.4 Assume λ ≤ �N ,s. Then, for any f ∈ Lm(�) with 1 ≤ m ≤ 1+ 1
p , problem (1.1)

has a weak solution. More precisely, u ∈ Hs
0(�) ∩ Lp+1(�).

In the case where f ∈ Lm(�) with m > 1 + 1
p , we will prove the following existence result.

Theorem 1.5 Let f ∈ Lm(�) with m > 1 + 1
p , and

λ ≤ �N ,s
4p(m – 1)

(p(m – 1) + 1)2 .
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Then there exists a finite energy solution u to problem (1.1) that verifies

‖u‖Lms,p (�) ≤ C‖f ‖Lm(�), (1.4)

where

ms,p =
N(p(m – 1) + 1)

N – 2s
.

Remark 1.6 Obviously,

N(p(m – 1) + 1)
N – 2s

→ +∞ as p → ∞.

Thus the summability of the solution to problem (1.1) increases as p increases.

Remark 1.7 When s = 1, the above theorem was proved by Adimurthi et al. [18].

The paper is organized as follows. In Sect. 2 we collect some useful tools, such as
Sobolev’s imbedding theorem and a certain algebraic inequality. Furthermore, we also ob-
tain a prior estimate of the absorption term up by analyzing the associated approximating
problems. The proofs of Theorem 1.4 and 1.5 will be given in Sect. 3.

2 Useful tools and preliminaries
In this paper, we will use the classical truncating method. Given u a measurable function
we consider the k-truncation of u defined by

Tk(u) =

⎧
⎨

⎩

u, |u| ≤ k,

k u
|u| , |u| > k.

The remainder of the truncation Tk(u) is defined as Gk(u) = u – Tk(u).
We will also need the classical Sobolev theorem; for an elementary proof of this inequal-

ity, see [1].

Lemma 2.1 Let s ∈ (0, 1) and N > 2s. There exists a constant C(N , s) such that for any
measurable and compactly supported function f : RN →R,

‖f ‖L2s∗ (RN ) ≤ C(N , s)
∫

RN

∫

RN

|f (x) – f (y)|2
|x – y|N+2s dx dy, (2.1)

where 2∗
s = 2N

N–2s is called the Sobolev critical exponent.

The next algebraic inequality will be used in our article.

Lemma 2.2 Let s1, s2 ≥ 0 and a > 0. Then

(s1 – s2)
(
sa

1 – sa
2
) ≥ 4a

(a + 1)2

(
s

a+1
2

1 – s
a+1

2
2

)2. (2.2)

Proof The complete proof is given in [12], for the reader’s convenience, we include here a
sketch of the proof.
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If s1 = 0 or s2 = 0, This conclusion is obvious. We can assume s1 > s2 > 0, let x := s2/s1,
then (2.2) is equivalent to

(1 – x)
(
1 – xa) ≥ 4a

(a + 1)2

(
1 – x

a+1
2

)2, x ∈ (0, 1). (2.3)

Set

h(x) := (1 – x)
(
1 – xa)(a + 1)2 – 4a

(
1 – x

a+1
2

)2.

Rewrite h as

h(x) := (a – 1)2(1 – x
a+1

2
)2 – (a + 1)2(x

1
2 – x

a
2
)2.

For a > 1, we claim that

(a – 1)
(
1 – x

a+1
2

) ≥ (a + 1)
(
x

1
2 – x

a
2
)
.

Define

h1(x) := (a – 1)
(
1 – x

a+1
2

)
– (a + 1)

(
x

1
2 – x

a
2
)
.

Clearly,

h′
1(x) =

a + 1
2

(
–(a – 1)x

a–1
2 – x

1
2 + ax

a–2
2

)
.

Thus h′
1(x) ≤ 0, here the following Young inequality will be used:

x
a
2 –1 ≤ a – 1

a
x

a–1
2 +

1
a

x– 1
2 .

Therefore h1(x) ≥ h1(1) = 0, which shows that (2.3) holds.
For a < 1. Firstly we show that

(1 – a)
(
1 – x

a+1
2

) ≥ (a + 1)
(
x

a
2 – x

1
2
)
.

In order to do this, define

h2(x) := (1 – a)
(
1 – x

a+1
2

)
– (a + 1)

(
x

a
2 – x

1
2
)
.

By Young’s inequality, we obtain h′
2(x) ≤ 0 for all x ∈ (0, 1) and hence h2(x) ≥ h1(1) = 0,

which shows that (2.3) holds again. Therefore, (2.2) holds. �

Now we consider the following approximation problems:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(–�)sun – λ un
|x|2s+ 1

n
+ up

n = fn(x), x ∈ �,

un > 0, x ∈ �,

un = 0, x ∈R
N \ �,

(2.4)

where fn(x) = f (x)
1+ 1

n
.
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Lemma 2.3 Let f ∈ Lm(�), m ≥ 1. Then, for every n ∈ R, there exists a solution un ∈ Hs
0(�)

to problem (2.4) such that

∫

�

upm
n ≤

∫

�

f m. (2.5)

Proof To show estimate (2.5), we will consider the case m > 1 and m = 1 separately.
Case m > 1. Choose φ = up(m–1)

n as a test function in (2.4), we get

aN ,s

2

∫

�

∫

�

(un(x) – un(y))(up(m–1)
n (x) – up(m–1)

n (y))
|x – y|N+2s +

∫

�

upm
n

=
∫

�

fup(m–1)
n + λ

∫

�

up(m–1)+1
n

|x|2s .

Then (1.2) and (2.2) yield

aN ,s

2

(
4p(m – 1)

(p(m – 1) + 1)2 –
λ

�N ,s

)∫

�

∫

�

(u
p(m–1)+1

2
n (x) – u

p(m–1)+1
2

n (y))2

|x – y|N+2s

+
∫

�

upm
n ≤

∫

�

fup(m–1)
n .

Therefore
∫

�

upm
n ≤

∫

�

fup(m–1)
n , (2.6)

provided

λ ≤ 4p(m – 1)�N ,s

(p(m – 1) + 1)2 .

Applying Hölder’s inequality on the right-hand-side of (2.6), we obtain

∫

�

fup(m–1)
n ≤ ‖f ‖Lm(�)

(∫

�

upm
n

) 1
m′

,

where m′ = m
m–1 , which together with (2.6), implies that (2.5) holds.

Case m = 1. Using Tk (un)
k as a test function in (2.4), we get

aN ,s

2k

∫

�

∫

�

(un(x) – un(y))(Tk(un(x)) – Tk(un(y)))
|x – y|N+2s

–
λ

k

∫

�

unTk(un)
|x|2s +

∫

�

up
n

Tk(un)
k

=
∫

�

fn
Tk(un)

k
.

Since for any σ ∈R
N , σ = Tk(σ ) + Gk(σ ),

(
un(x) – un(y)

)(
Tk

(
un(x)

)
– Tk

(
un(y)

))

=
(
Tk

(
un(x)

)
– Tk

(
un(y)

))2 +
(
Tk

(
un(x)

)
– Tk

(
un(y)

))(
Gk

(
un(x)

)
– Gk

(
un(y)

))
.
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Moreover, by Lemma 4 in [19], we know that

(
Tk

(
un(x)

)
– Tk

(
un(y)

))(
Gk

(
un(x)

)
– Gk

(
un(y)

)) ≥ 0,

and using Hardy’s inequality (1.2), we get

aN ,s

2k

(

1 –
λ

�N ,s

)∫

�

∫

�

(Tk(un(x)) – Tk(un(y)))2

|x – y|N+2s +
∫

�

up
n

Tk(un)
k

≤
∫

�

fn
Tk(un)

k
.

Since λ < �N ,s, we have

∫

�

up
n

Tk(un)
k

≤
∫

�

f
Tk(un)

k
≤

∫

�

f .

Fatou’s lemma implies, for k → ∞, that estimate (2.5) holds. �

3 Proof of main results
Let us begin with the proof of Theorem 1.4.

Proof of Theorem 1.4 Set fn = f
1+ 1

n
, obviously, fn → f in L1(�) as n → ∞. Let φ = Tk(un) as

a test function in (2.4), we have

aN ,s

2

∫

�

∫

�

(un(x) – un(y))(Tk(un(x)) – Tk(un(y)))
|x – y|N+2s

– λ

∫

�

unTk(un)
|x|2s + 1

n
+

∫

�

up
nTk(un) =

∫

�

fnTk(un). (3.1)

Since for any σ ∈R, σ = Tk(σ ) + Gk(σ ),

(
un(x) – un(y)

)(
Tk

(
un(x)

)
– Tk

(
un(y)

))

=
(
Tk

(
un(x)

)
– Tk

(
un(y)

))2

+
(
Tk

(
un(x)

)
– Tk

(
un(y)

))(
Gk

(
un(x)

)
– Gk

(
un(x)

))
. (3.2)

Moreover, by Lemma 4 in [19], we know that

(
Tk

(
un(x)

)
– Tk

(
un(y)

))(
Gk

(
un(x)

)
– Gk

(
un(y)

)) ≥ 0. (3.3)

Therefore, (3.1)–(3.2) lead to

aN ,s

2

∫

�

∫

�

(Tk(un(x)) – Tk(un(y)))2

|x – y|N+2s +
∫

�

up
nTk(un) ≤ k

∫

�

|f | + λ

∫

�

u2
n

|x|2s . (3.4)

Recall that

∫

�

u2
n

|x|2s =
∫

�

(Tk(un) + Gk(un))2

|x|2s

=
∫

�

T2
k (un)
|x|2s +

∫

�

G2
k(un)
|x|2s + 2

∫

�

Tk(un)Gk(un)
|x|2s . (3.5)
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On the other hand, using Gk(un) as a test function in (2.4), we have

aN ,s

2

∫

�

∫

�

|Gkun(x) – Gkun(x)|2
|x – y|N+2s – λ

∫

�

unGk(un)
|x|2s

+
∫

�

up
nGk(un) ≤

∫

�

fGk(un). (3.6)

Moreover, unGk(un) = G2
k(un) + Tk(un)Gk(un), thus this fact combined with (3.6), implies

that

aN ,s

2

∫

�

∫

�

|Gkun(x) – Gkun(x)|2
|x – y|N+2s – λ

∫

�

G2
k(un)
|x|2s +

∫

�

up
nGk(un)

≤ k
∫

�

fn + kλ

∫

�

Gk(un)
|x|2s . (3.7)

Applying the Young inequality on the right-hand-side of (3.7), we get

∫

�

Gk(un)
|x|2s ≤ 1

2

∫

�

G2
k(un)
|x|2s +

1
2

∫

�

1
|x|2s .

Taking into account that λ < �N ,s, by the Hardy inequality we obtain

∫

�

∫

�

|Gk(un(x)) – Gk(un(y))|2
|x – y|N+2s ≤ C(f , k,λ,�N ,s).

Therefore {Gk(un)}n∈R is uniformly bounded in Hs
0(�), it implies

∫

�

G2
k(un)
|x|2s ≤ C(f , k,λ,�N ,s).

Then we get

∫

�

u2
n

|x|2s =
∫

�

(Tk(un) + Gk(un))2

|x|2s

=
∫

�

T2
k (un)
|x|2s +

∫

�

G2
k(un)
|x|2s + 2

∫

�

Tk(un)Gk(un)
|x|2s

≤ C(f , k,λ,�N ,s). (3.8)

Putting together (3.4)–(3.5) and (3.8), it follows that

aN ,s

2

∫

�

∫

�

(Tk(un(x)) – Tk(un(y)))2

|x – y|N+2s +
∫

�

Tp+1
k (un) ≤ C(f , k,λ,�N ,s).

We deduce that Tk(un) is uniformly bounded in Hs
0(�) ∩ Lp+1(�). Then we pass to the

limit in the approximation problem (2.4); up to a subsequence, there exists a function
u ∈ Hs

0(�) ∩ Lp+1(�).
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Now we want to prove that up
n → u in L1(�). Let ψi(σ ) be defined by

ψi(σ ) =

⎧
⎪⎪⎨

⎪⎪⎩

1, σ ≥ t,

0, |σ | < t,

–1, σ ≤ –t.

(3.9)

Choosing φ = ψi(un) as a test function in (2.4), we get

∫

�

up
nψi(un) ≤

∫

�

f ψi(un),

which implies that

∫

{un>t}∩�

up
n ≤

∫

{un>t}∩�

f .

Let E is any measurable subset of �. For any t > 0 we have

∫

E
up

n ≤ tp|E| +
∫

E∩{un>t}
up

n ≤ tp|E| +
∫

{un>t}
|f |.

The above fact and f ∈ L1(�) allow us to say that, for any given ε > 0, there exists tε such
that

∫

{un>tε}
|f | ≤ ε.

Hence
∫

E
up

n ≤ tp
ε |E| + ε.

Therefore

lim|E|→0

∫

E
up

n ≤ ε.

Thus we prove that lim|E|→0
∫

E up
n = 0. Vitali’s theorem implies that up

n → up in L1(�) i.e.

lim
n→∞

∫

�

up
n =

∫

�

up. �

Let us show Theorem 1.5, that is, the existence of solution to problem (1.1) in the case
where f ∈ Lm(�) with m > p+1

p .

Proof of Theorem 1.5 Define β = p(m – 1), that satisfies p + β = βm′. Using φ = uβ
n as a test

function in (2.4), we have

aN ,s

2

∫

�

∫

�

(un(x) – un(y))(uβ
n (x) – uβ

n (y))
|x – y|N+2s +

∫

�

up+β
n =

∫

�

fnuβ
n + λ

∫

�

uβ+1
n

|x|2s .
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Now, by Lemma 2.2, we get

(
un(x) – un(y)

)(
uβ

n (x) – uβ
n (y)

) ≥ 4β

(β + 1)2

(
u

β+1
2

n (x) – u
β+1

2
n (y)

)2. (3.10)

Using Hardy’s inequality, we have

∫

�

uβ+1
n

|x|2s =
∫

�

(u
β+1

2
n )2

|x|2s ≤ aN ,s

2�N ,s

∫

�

(u
β+1

2
n (x) – u

β+1
2

n (y))2

|x – y|N+2s . (3.11)

We conclude that

aN ,s

2

(
4β

(β + 1)2 –
λ

�N ,s

)∫

�

∫

�

(u
β+1

2
n (x) – u

β+1
2

n (y))2

|x – y|N+2s +
∫

�

up+β
n

≤ ‖f ‖Lm(�)

(∫

�

uβm′
n

) 1
m′

.

With this choice of β , by Lemma 2.3 we obtain

∫

�

∫

�

(u
β+1

2
n (x) – u

β+1
2

n (y))2

|x – y|N+2s ≤ C‖f ‖Lm(�).

By Lemma 2.1, we arrive at

(∫

�

u
(β+1)2∗s

2
n

) 1
2∗s ≤ C‖f ‖Lm(�).

Furthermore,

(β + 1)2∗
s

2
=

N(p(m – 1) + 1)
N – 2s

= ms,p.

As a consequence there exists a function u ∈ L
(β+1)2∗s

2 (�).
Finally, we want to prove that up

n → up in L1(�). Using (3.10) as a test function in (2.4),
we have

∫

�

up
nψi(un) ≤

∫

�

f ψi(un).

For any t > 0 and E ⊂ � is measurable. we get

∫

E
up

n ≤ tp|E| +
∫

E∩{un>t}
up

n ≤ tp|E| +
∫

{un>t}
|f |.

There exists tε such that

∫

E
up

n ≤ tp
ε |E| + ε.
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We see that |E| → 0 implies

∫

E
up

n ≤ ε,

i.e., the sequence up
n is equiintegrable. Consequently

lim
n→∞

∫

�

up
n =

∫

�

up.

Thus we have proved the existence result. �

4 Conclusion
In this paper, we main study the regularizing effect of a nonlinear term up, and the influ-
ence of the Hardy potential on the existence of solutions to fractional Laplacian equations.
Specifically, the positive effect of the nonlinear term up is shown.
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