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Abstract
This paper investigates the existence, multiplicity, and nonexistence of symmetric
positive solutions for the fourth-order n-dimensionalm-Laplace system

⎧
⎨

⎩

φm(x′′(t)))′′ =�(t)f(t,x(t)), 0 < t < 1,
x(0) = x(1) =

∫ 1
0 g(s)x(s)ds,

φm(x′′(0)) = φm(x′′(1)) =
∫ 1
0 h(s)φm(x′′(s))ds.

The vector-valued function x is defined by x = [x1, x2, . . . , xn]�,
�(t) = diag[ψ1(t), . . . ,ψi(t), . . . ,ψn(t)], where ψi ∈ Lp[0, 1] for some p≥ 1. Our methods
employ the fixed point theorem in a cone and the inequality technique. Finally, an
example illustrates our main results.

Keywords: Symmetric positive solutions; n-dimensional system;m-Laplace
operator; Matrix theory; Fixed point technique

1 Introduction
Consider the fourth-order n-dimensional m-Laplace system

(
φm

(
x′′(t)

))′′ = �(t)f
(
t, x(t)

)
, 0 < t < 1, (1.1)

subject to the following boundary conditions:

{
x(0) = x(1) =

∫ 1
0 g(s)x(s) ds,

φm(x′′(0)) = φm(x′′(1)) =
∫ 1

0 h(s)φm(x′′(s)) ds,
(1.2)

where

x(t) =
(
x1(t), x2(t), . . . , xn(t)

)T ,

�(t) = diag
[
ψ1(t),ψ2(t), . . . ,ψn(t)

]
,

f(t, x) =
(
f1(t, x), . . . , fi(t, x), . . . , fn(t, x)

)T ,

φm
(
x′′(t)

)
=

(
φm

(
x1

′′(t)
)
,φm

(
x2

′′(t)
)
, . . . ,φm

(
xn

′′(t)
))T ,
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g(s) = diag
[
g1(s), g2(s), . . . , gn(s)

]
,

h(s) = diag
[
h1(s), h2(s), . . . , hn(s)

]
.

Here, we understand that fi(t, x) means that fi(t, x1, x2, . . . , xn), i = 1, 2, . . . , n.
Therefore, system (1.1) means that

⎛

⎜
⎜
⎜
⎜
⎝

(φm(x1
′′(t)))′′

(φm(x2
′′(t)))′′
...

(φm(xn
′′(t)))′′

⎞

⎟
⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

ψ1(t) 0 · · · 0
0 ψ2(t) · · · 0
...

...
. . .

...
0 0 · · · ψn(t)

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎝

f1(t, x)
f2(t, x)

...
fn(t, x)

⎞

⎟
⎟
⎟
⎟
⎠

. (1.3)

Similarly, (1.2) means that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎛

⎜
⎝

x1(0)
x2(0)

...
xn(0)

⎞

⎟
⎠ =

⎛

⎜
⎝

x1(1)
x2(1)

...
xn(1)

⎞

⎟
⎠ =

∫ 1
0

⎛

⎜
⎝

g1(s) 0 ··· 0
0 g2(s) ··· 0
...

...
. . .

...
0 0 ··· gn(s)

⎞

⎟
⎠

⎛

⎜
⎝

x1(s)
x2(s)

...
xn(s)

⎞

⎟
⎠ ds,

⎛

⎜
⎝

φm(x1 ′′(0))
φm(x2 ′′(0))

...
φm(xn ′′(0))

⎞

⎟
⎠ =

⎛

⎜
⎝

φm(x1 ′′(1))
φm(x2 ′′(1))

...
φm(xn ′′(1))

⎞

⎟
⎠ =

∫ 1
0

⎛

⎜
⎝

h1(s) 0 ··· 0
0 h2(s) ··· 0
...

...
. . .

...
0 0 ··· hn(s)

⎞

⎟
⎠

⎛

⎜
⎝

φm(x1 ′′(s))
φm(x2 ′′(s))

...
φm(xn ′′(s))

⎞

⎟
⎠ ds.

(1.4)

And then it follows respectively from (1.3) and (1.4) that

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(φm(x1
′′(t)))′′ = ψ1(t)f1(t, x1(t), . . . , xn(t)), 0 < t < 1,

(φm(x2
′′(t)))′′ = ψ2(t)f2(t, x1(t), . . . , xn(t)), 0 < t < 1,

...
(φm(xn

′′(t)))′′ = ψn(t)fn(t, x1(t), . . . , xn(t)), 0 < t < 1,

(1.5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1(0) = x1(1) =
∫ 1

0 g1(s)x1(s) ds,
φm(x1

′′(0)) = φm(x1
′′(1)) =

∫ 1
0 h1(s)φm(x1

′′(s)) ds,
x2(0) = x2(1) =

∫ 1
0 g2(s)x2(s) ds,

φm(x2
′′(0)) = φm(x2

′′(1)) =
∫ 1

0 h2(s)φm(x2
′′(s)) ds,

...
xn(0) = xn(1) =

∫ 1
0 gn(s)xn(s) ds,

φm(xn
′′(0)) = φm(xn

′′(1)) =
∫ 1

0 hn(s)φm(xn
′′(s)) ds.

(1.6)

From above, we know that system (1.1)–(1.2) is equivalent to system (1.3)–(1.4), and
system (1.3)–(1.4) is equivalent to system (1.5)–(1.6); thus, system (1.1)–(1.2) is equivalent
to (1.5)–(1.6).

A vector-valued function x is called a solution of (1.1)–(1.2) if x ∈ C2([0, 1],Rn) with
φm(x′′) ∈ C2((0, 1),Rn), and satisfies (1.1) and (1.2). If, for each i = 1, 2, . . . , n, xi(t) ≥ 0 for
all t ∈ (0, 1) and there is at least one nontrivial component of x, then we say that x(t) =
(x1(t), x2(t), . . . , xn(t))T is positive on J .

For the case of n = 1 and �(t) ≡ 1 for t ∈ J , system (1.1)–(1.2) reduces to the prob-
lem studied by Zhang and Liu in [1]. By using the upper and lower solution method and
fixed-point theorems, the authors obtained some sufficient conditions for the existence of
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positive solutions for the above problem. For the case of n = 1, m = 2, g(t) ≡ 0, h(t) ≡ 0 for
t ∈ J and � ∈ C[0, 1] not � ∈ Lp[0, 1], system (1.1)–(1.2) reduces to the problem studied
by Graef et al. in [2]. By using Krasnosel’skii’s fixed-point theorem, the authors obtained
some existence and nonexistence results. For other related results on system (1.1)–(1.2),
we refer the reader to the references [3–27]. Moreover, for the latest development direc-
tion of the fourth order differential equations, see the references [28–31].

At the same time, we notice that a class of boundary value problems with integral bound-
ary conditions has attracted many authors (see [20, 32–42]). It is an important and inter-
esting problem, which contains two-point, three-point, and multi-point boundary value
problems as special cases; for instance, see [43–58] and the references cited therein.

Here we point out that our problem is new in the sense of fourth-order n-dimensional
m-Laplace systems with integral boundary conditions introduced here. To the best of
our knowledge, the existence of single or multiple positive solutions for fourth-order n-
dimensional m-Laplace systems (1.1)–(1.2) has not yet been studied, especially for the
case

�(t) = diag
[
ψ1(t), . . . ,ψi(t), . . . ,ψn(t)

]
,

where ψi ∈ Lp[0, 1] for some p ≥ 1. In consequence, our main results of the present work
will be a useful contribution to the existing literature on the topic of fourth-order n-
dimensional m-Laplace systems with integral boundary conditions. The existence, multi-
plicity, and nonexistence of symmetric positive solutions for the given problem are new,
though they are proved by applying the well-known method based on the fixed point the-
orem of cone expansion and compression of norm type.

Throughout this paper, we use i = 1, 2, . . . , n, unless otherwise stated.
Let J = [0, 1], R+ = [0, +∞), Rn

+ = R+ ×R+ × · · · ×R+︸ ︷︷ ︸
n

, and

x = [x1, x2, . . . , xn]� ∈Rn
+.

In addition, let the components of � , f , h, and g satisfy the following conditions:
(H1) ψi(t) ∈ Lp(J) for some 1 ≤ p ≤ +∞, and ψi(t) is nonnegative, symmetric on J , and

there exists N > 0 such that ψi(t) ≥ N a.e. on J ;
(H2) fi : J ×Rn

+ →R+ is continuous, and for all x ∈Rn
+, fi(t, x) is symmetric on J ;

(H3) gi, hi ∈ L1(J) are nonnegative, symmetric on J with

μi :=
∫ 1

0
gi(s) ds ∈ [0, 1), νi :=

∫ 1

0
hi(s) ds ∈ [0, 1). (1.7)

The organization of this article is as follows. In Sect. 2, we present some new properties
of Green’s function associated with system (1.1)–(1.2), and we list some definitions and
lemmas that will be used to prove our main results. Section 3 is devoted to prove the
existence, multiplicity, and nonexistence of symmetric positive solutions for system (1.1)–
(1.2). Finally, in Sect. 4, an example illustrating our main results is also presented.
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2 Preliminaries
In this part, we give some properties of Green’s function associated with system (1.1)–
(1.2), and we present some definitions and lemmas which are needed throughout this pa-
per.

Definition 2.1 (see [59]) Let E be a real Banach space over R. A nonempty closed set
P ⊂ E is said to be a cone provided that

(i) au + bv ∈ P for all u, v ∈ P and all a ≥ 0, b ≥ 0 and
(ii) u, –u ∈ P implies u = 0.

Every cone P ⊂ E induces a semi-ordering in E given by u ≤ v if and only if v – u ∈ P.

Definition 2.2 If x(t) = x(1 – t), t ∈ J , then x is said to be symmetric in J .
In our discussion, x = (x1, x2, . . . , xn)T is symmetric on J if and only if xi is symmetric

on J .

Next, we reduce system (1.1)–(1.2) to an integral system. It follows from system (1.5)–
(1.6) that system (1.1)–(1.2) can be written as follows:

⎧
⎪⎨

⎪⎩

(φm(x′′
i(t)))′′ = ψi(t)fi(t, x1(t), . . . , xn(t)), 0 < t < 1,

xi(0) = xi(1) =
∫ 1

0 gi(s)xi(s) ds,
φm(xi

′′(0)) = φm(xi
′′(1)) =

∫ 1
0 hi(s)φm(xi

′′(s)) ds,
(2.1)

where φm(s) = |s|m–2s, m > 1, φm∗ = φ–1
m , 1

m + 1
m∗ = 1.

Firstly, by means of the transformation

φm
(
xi

′′(t)
)

= –yi(t), (2.2)

we can convert system (2.1) into
{

yi
′′(t) = –ψi(t)fi(t, x(t)), 0 < t < 1,

yi(0) = yi(1) =
∫ 1

0 hi(s)yi(s) ds,
(2.3)

and
{

xi
′′(t) = –φm∗ (yi(t)), 0 < t < 1,

xi(0) = xi(1) =
∫ 1

0 gi(s)xi(s) ds.
(2.4)

Lemma 2.1 Assume that (H3) holds. Then system (2.4) has a unique solution xi(t) and xi(t)
can be expressed in the form

xi(t) = –
∫ 1

0
Hi(t, s)φm∗

(
yi(s)

)
ds, (2.5)

where

Hi(t, s) = G(t, s) +
1

1 – μi

∫ 1

0
G(τ , s)gi(τ ) dτ , (2.6)

G(t, s) =

{
t(1 – s), 0 ≤ t ≤ s ≤ 1,
s(1 – t), 0 ≤ s ≤ t ≤ 1.

(2.7)
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Proof The proof is similar to that of Lemma 2.1 in [60]. �

By (2.6) and (2.7), we can show that Hi(t, s) and G(t, s) have the following properties.

Proposition 2.1 Assume that (H3) holds. Then we have

Hi(t, s) > 0, G(t, s) > 0, ∀t, s ∈ (0, 1);

Hi(t, s) ≥ 0, G(t, s) ≥ 0, ∀t, s ∈ J .
(2.8)

Proposition 2.2 For all t, s ∈ J , we have

e(t)e(s) ≤ G(t, s) ≤ G(t, t) = t(1 – t) = e(t) ≤ e = max
t∈J

e(t) =
1
4

, (2.9)

G(1 – t, 1 – s) = G(t, s). (2.10)

Proposition 2.3 Assume that (H3) holds. Then, for all t, s ∈ J , we have

ρ ie(s) ≤ Hi(t, s) ≤ γ is(1 – s) = γ ie(s) ≤ 1
4
γ i, (2.11)

where

γ i =
1

1 – μi
, ρ i =

∫ 1
0 e(τ )gi(τ ) dτ

1 – μi
. (2.12)

Proof By (2.6) and (2.9), we have

Hi(t, s) = G(t, s) +
1

1 – μi

∫ 1

0
G(s, τ )gi(τ ) dτ

≥ 1
1 – μi

∫ 1

0
G(s, τ )gi(τ ) dτ

≥
∫ 1

0 e(τ )gi(τ ) dτ

1 – μi
s(1 – s)

= ρ ie(s), t ∈ J . (2.13)

In addition, noticing that G(t, s) ≤ s(1 – s), we have

Hi(t, s) = G(t, s) +
1

1 – μi

∫ 1

0
G(s, τ )gi(τ ) dτ

≤ s(1 – s) +
1

1 – μi

∫ 1

0
s(1 – s)gi(τ ) dτ

≤ s(1 – s)
[

1 +
1

1 – μi

∫ 1

0
gi(τ ) dτ

]

= s(1 – s)
1

1 – μi

= γ ie(s), t ∈ J . (2.14)

�
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Proposition 2.4 Assume that (H3) holds. Then, for all t, s ∈ J , we have

Hi(1 – t, 1 – s) = Hi(t, s). (2.15)

Proof The proof is similar to that of Proposition 2.1 of [60]. �

Lemma 2.2 Assume that (H1)–(H3) hold. Then system (2.3) has a unique solution

yi(t) = –
∫ 1

0
Hi

1(t, s)ψi(s)fi
(
s, x(s)

)
ds, (2.16)

where

Hi
1(t, s) = G(t, s) +

1
1 – νi

∫ 1

0
G(v, s)hi(v)dv. (2.17)

Proof The proof is similar to Lemma 2.1 of [60]. �

Remark 2.1 Assume that (H3) holds. Then, for all t, s ∈ J , it follows from (2.17) that

Hi
1(t, s) ≥ 0, ρ i

1e(s) ≤ Hi
1(t, s) ≤ γ i

1s(1 – s) ≤ 1
4
γ i

1, Hi
1(1 – t, 1 – s) = Hi

1(t, s),

where

ρ i
1 =

∫ 1
0 e(τ )hi(τ ) dτ

1 – νi
, γ i

1 =
1

1 – νi
.

Assume that xi is a solution of system (2.1). Then it follows from Lemma 2.1 that

xi(t) = –
∫ 1

0
Hi(t, s)φm∗

(
yi(s)

)
ds, (2.18)

and then, it follows from Lemma 2.2 that

xi(t) =
∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds. (2.19)

Let E = C[0, 1], X = E × E × · · · × E
︸ ︷︷ ︸

n

, and for all x = (x1, x2, . . . , xn)T ∈ X, the norm in X is

defined as

‖x‖ =
n∑

i=1

sup
t∈J

|xi|.

Then (X,‖ · ‖) is a real Banach space.
Define a cone K in X by

K =

{

x = (x1, x2, . . . , xn)T ∈ X : xi ≥ 0, xi(t) is symmetric and concave on J ,

min
t∈J

n∑

i=1

xi(t) ≥ δ‖x‖
}

, (2.20)
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where

δ = min
1≤i≤n

δi, δi =
ρ i(ρ i

1)m∗–1

γ i(γ i
1)m∗–1 .

We also define two sets Kr , Kr,R by

Kr = {x ∈ K : ‖x‖ < r}, Kr,R = {x ∈ K : r < ‖x‖ < R},

where 0 < r < R.
To make our research significant, let gi(t) �≡ 0, hi(t) �≡ 0 for any t ∈ J , i = 1, 2, . . . , n.

Remark 2.2 By the definition of ρ i, ρ i
1, γ i, γ i

1, we have 0 < δi < 1, and then 0 < δ < 1.

Let T : K → X be a map with components (T1, . . . , Ti, . . . , Tn). Here, we understand Tx =
(T1x, . . . , Tix, . . . , Tnx)T , where

(Tix)(t) =
∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds. (2.21)

From the proof of Lemma 2.1 and Lemma 2.2, we have the following remark.

Remark 2.3 From (2.21), we know that x ∈ X is a solution of system (1.1)–(1.2) if and only
if x is a fixed point of the map T.

Lemma 2.3 Assume that (H1)–(H3) hold. Then we have T(K) ⊂ K , and T : K → K is
completely continuous.

Proof For all x ∈ K , from (2.21), we know that

(Tix)′′ = –φm∗
(∫ 1

0
Hi

1(t, s)ψi(s)fi
(
s, x(s)

)
ds

)

≤ 0, (2.22)

which implies that Tix is concave on J .
In addition, it follows from (2.21) that

(Tix)(0) = (Tix)(1) ≥ 0.

Thus, for all t ∈ J , we have (Tix)(t) ≥ 0. Noticing that ψi(t) is symmetric on (0, 1), xi(t) is
symmetric on J , and fi(·, x) is symmetric on J , we have

(Tix)(1 – t) =
∫ 1

0
Hi(1 – t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

=
∫ 0

1
Hi(1 – t, 1 – s)φm∗

(∫ 1

0
Hi

1(1 – s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

d(1 – s)

=
∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(1 – s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

=
∫ 1

0
Hi(t, s)φm∗
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×
(∫ 0

1
Hi

1(1 – s, 1 – τ )ψi(1 – τ )fi
(
1 – τ , x(1 – τ )

)
d(1 – τ )

)

ds

=
∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

= (Tix)(t),

which shows that (Tix)(1 – t) = (Tix)(t), t ∈ J . And hence (Tix)(t) is symmetric on J .
In addition, according to (2.14), we know that

(Tix)(t) =
∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

≤ γ i(γ i
1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )ψi(τ )fi

(
τ , x(τ )

)
dτ

)

ds, ∀t ∈ J .

Then

‖Tx‖ =
n∑

i=1

sup
t∈J

(Tix)(t) ≤
n∑

i=1

γ i(γ i
1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )ψi(τ )fi

(
τ , x(τ )

)
dτ

)

ds.

Similarly, according to (2.13), we know that

min
t∈J

n∑

i=1

(Tix)(t) = min
t∈J

n∑

i=1

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

≥
n∑

i=1

ρ i(ρ i
1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )ψi(τ )fi

(
τ , x(τ )

)
dτ

)

ds

=
n∑

i=1

δiγ
i(γ i

1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )ψi(τ )fi

(
τ , x(τ )

)
dτ

)

ds

≥ δ‖Tx‖.

Thus, we have Tix ∈ K , then there is T(K) ⊂ K .
Next, we show T is completely continuous, and we need to show Ti is completely con-

tinuous.
Let l > 0 and define

f̂ i
l = sup

t∈J

{
fi
(
t, x(t)

)
: x ∈Rn

+,‖x‖ ≤ l
}

> 0.

We show that Ti is compact.
For each l > 0, let Bl = {x ∈ K : ‖x‖ ≤ l}. Then Bl is a bounded closed convex set in K .

∀(xm)m∈N ∈ K , it follows from (2.21) that

|Tixm| =
∣
∣
∣
∣

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , xm(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤ 1
4
γ i

(
1
4
γ i

1

)m∗–1∣∣
∣
∣

∫ 1

0
φm∗

(∫ 1

0
ψi(τ )fi

(
τ , xm(τ )

)
dτ

)

ds
∣
∣
∣
∣
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≤ 1
4
γ i

(
1
4
γ i

1

)m∗–1(
f̂ i
l
)m∗–1

∣
∣
∣
∣

∫ 1

0
φm∗

(∫ 1

0
ψi(τ ) dτ

)

ds
∣
∣
∣
∣

≤ 1
4
γ i

(
1
4
γ i

1

)m∗–1(
f̂ i
l
)m∗–1

∣
∣
∣
∣

∫ 1

0
φm∗

(‖ψi‖1
)

ds
∣
∣
∣
∣

=
1
4
γ i

(
1
4
γ i

1

)m∗–1(
f̂ i
l
)m∗–1(‖ψi‖1

)m∗–1

=
(

1
4
γ i

1

)m∗
(
f̂ i
l
)m∗–1(‖ψi‖1

)m∗–1.

Therefore, (Ti(Bl)) is uniformly bounded.
Next we show the equicontinuity of (Tixm)m∈N . Due to Hi(t, s) is continuous on J × J ,

then Hi(t, s) is uniformly continuous. Thus, for any ε > 0, there exist l1 > 0, t1, t2 ∈ J , if
|t1 – t2| < l1, we have

∣
∣(Tixm)(t2) – (Tixm)(t1)

∣
∣ =

∣
∣
∣
∣

∫ 1

0
Hi(t2, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , xm(τ )

)
dτ

)

ds

–
∫ 1

0
Hi(t1, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , xm(τ )

)
dτ

)

ds
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ 1

0

[
Hi(t2, s) – Hi(t1, s)

]

× φm∗
(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , xm(τ )

)
dτ

)

ds
∣
∣
∣
∣

≤
(

1
4
γ i

1

)m∗–1(‖ψi‖1
)m∗–1(f̂ i

l
)m∗–1

∫ 1

0

∣
∣Hi(t1, s) – Hi(t2, s)

∣
∣ds

≤ ε,

which shows that (Tixm)m∈N is equicontinuous on J . Therefore, it follows from the Arzelà–
Ascoli theorem that there exist a function T1

i ∈ C[0, 1] and a subsequence of (Tixm)m∈N
converging uniformly to T1

i on J .
We prove the continuity of Ti. Let (xm)m∈N be any sequence converging on K to x ∈ K ,

and let L > 0 be such that ‖xm‖ ≤ L for all m ∈N . Note that fi(t, x) is continuous on J ×KL.
It is not difficult to see that the dominated convergence theorem guarantees that

lim
m→∞(Tixm)(t) = (Tix)(t) (2.23)

for each t ∈ J . Moreover, the compactness of Ti implies that (Tixm)(t) converges uniformly
to (Tix)(t) on J . If not, then there exist ε0 > 0 and a subsequence (xmj )j∈N of (xm)m∈N such
that

sup
t∈J

∣
∣(Tixmj )(t) – (Tix)(t)

∣
∣ ≥ ε0, j ∈N . (2.24)

Now, it follows from the compactness of Ti that there exists a subsequence of (xmj )j∈N
(without loss of generality, assume that the subsequence is (xmj )j∈N ) such that (Tixmj )j∈N
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converges uniformly to y0 ∈ C[0, 1]. Thus, from (2.24), we easily see that

sup
t∈J

∣
∣y0(t) – (Tix)(t)

∣
∣ ≥ ε0, j ∈N . (2.25)

On the other hand, from the pointwise convergence (2.23) we obtain

y0(t) = (Tix)(t), t ∈ J .

This is a contradiction to (2.25). Therefore Ti is continuous.
Therefore Ti : K → K is completely continuous. This completes the proof of

Lemma 2.3. �

In the following lemma, we employ Hölder’s inequality to obtain some of the norm in-
equalities in our main results.

Lemma 2.4 (Hölder) Let e ∈ Lp[a, b] with p > 1, h ∈ Lq[a, b] with q > 1, and 1
p + 1

q = 1. Then
eh ∈ L1[a, b], and

‖eh‖1 ≤ ‖e‖p‖h‖q.

Let e ∈ L1[a, b] and h ∈ L∞[a, b]. Then eh ∈ L1[a, b], and

‖eh‖1 ≤ ‖e‖1‖h‖∞.

Finally, we state the well-known fixed point theorem of cone expansion and compression
of norm type.

Lemma 2.5 (see [59]) Let P be a cone in a real Banach space E. Assume �1, �2 are bounded
open sets in E with 0 ∈ �1 ⊂ �2, A : P ∩ (�2 \ �1) → P is completely continuous such that
either

(i) ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�1; ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�2 or
(ii) ‖Ax‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�1; ‖Ax‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�2.

Then A has at least one fixed point in P ∩ (�2 \ �1).

Remark 2.4 To make it clear for the reader what �1, �2, ∂�1, ∂�2, and �̄2 \ �1 mean, we
give typical examples of �1 and �2.

�1 =
{

x ∈ C[a, b] : ‖x‖ < r
}

, �2 =
{

x ∈ C[a, b] : ‖x‖ < R
}

,

�2 \ �1 =
{

x ∈ C[a, b] : r ≤ ‖x‖ ≤ R
}

,

where 0 < r < R, ‖x‖ = maxt∈[a,b] |x(t)|.

3 Main results
In this part, by using Lemmas 2.1–2.5, we show the existence, multiplicity, and nonex-
istence of symmetric positive solutions for system (1.1)–(1.2) under the following three
cases for ψi ∈ Lp[0, 1] : 1 < p < ∞, p = 1, and p = ∞.
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For convenience’s sake, we introduce the notations:

f β

i = lim sup
‖x‖→β

max
t∈J

fi(t, x)
φm(‖x‖)

, fiβ = lim inf‖x‖→β
min
t∈J

fi(t, x)
φm(‖x‖)

,

Di =
1
6

nγ i(γ i
1‖e‖q‖ωi‖p

)m∗–1, Di
1 =

(
1
6

)m∗

nγ i(γ i
1N

)m∗–1,

where β is 0 or ∞.
The first existence theorem deals with the case 1 < p < ∞.

Theorem 3.1 Assume that (H1)–(H3) hold. Furthermore, assume that one of the following
conditions is satisfied.

(C1) There exist two constants r, R with 0 < r ≤ δR such that fi(t, x) ≤ φm( r
Di

) for t ∈ J ,
0 ≤ ‖x‖ ≤ r, and fi(t, x) ≥ φm( R

δiDi
1

) for t ∈ J , δR ≤ ‖x‖ ≤ R;

(C2) fi0 > φm( 1
δiDi

1
) and f ∞

i < φm( 1
Di

) (particularly, fi0 = ∞ and f ∞
i = 0).

Then, system (1.1)–(1.2) has at least one symmetric positive solution.

Proof Case (1). Considering the condition (C1), for all x ∈ ∂Kr , we have ‖x‖ = r and
fi(t, x(t)) ≤ φm( r

Di
), i = 1, 2, . . . , n. Thus, for all t ∈ J , we have

‖Tx‖ =
n∑

i=1

sup
t∈J

(Tix)(t)

=
n∑

i=1

sup
t∈J

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

≤
n∑

i=1

γ i(γ i
1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )ψi(τ )φm

(
r

Di

)

dτ

)

ds

≤
n∑

i=1

γ i(γ i
1
)m∗–1 r

Di

∫ 1

0
e(s)φm∗

(∫ 1

0
‖e‖q‖ψi‖p dτ

)

ds

=
n∑

i=1

1
6
γ i(γ i

1‖e‖q‖ψi‖p
)m∗–1 r

Di

=
n∑

i=1

r
n

= ‖x‖. (3.1)

In addition, for all x ∈ ∂KR, we have ‖x‖ = R, and then it follows from (2.20) and (C1)
that

‖Tx‖ =
n∑

i=1

sup
t∈J

(Tix)(t)

=
n∑

i=1

sup
t∈J

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

≥
n∑

i=1

ρ i(ρ i
1N

)m∗–1
∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )φm

(
R

δiDi
1

)

dτ

)

ds
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=
n∑

i=1

(
1
6

)m∗

δiγ
i(γ i

1N
)m∗–1 R

δiDi
1

=
n∑

i=1

R
n

= ‖x‖. (3.2)

Case (2). Considering condition (C2), it follows from the definition of fi0 and fi0 >
φm( 1

δiDi
1

) that there exists r1 > 0 such that

fi(t, x) ≥ (
fi0 – εi

1
)
φm

(‖x‖)
, ∀t ∈ J , 0 ≤ ‖x‖ ≤ r1,

where εi
1 > 0 satisfies Di

1δi(fi0 – εi
1)m∗–1 ≥ 1, i = 1, 2, . . . , n. Then, for all t ∈ J , x ∈ ∂Kr1 , we

have

‖Tx‖ =
n∑

i=1

sup
t∈J

(Tix)(t)

=
n∑

i=1

sup
t∈J

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

≥
n∑

i=1

ρ i(ρ i
1N

)m∗–1
∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )

(
fi0 – εi

1
)
φm

(‖x‖)
dτ

)

ds

=
n∑

i=1

(
1
6

)m∗

δiγ
i(γ i

1N
)m∗–1(fi0 – εi

1
)m∗–1‖x‖

≥
n∑

i=1

‖x‖
n

= ‖x‖. (3.3)

Next, turning to f ∞
i < φm( 1

Di
), i = 1, 2, . . . , n, and we know that there exists R1 > 0 such

that

fi(t, x) ≤ (
f ∞
i + εi

2
)
φm

(‖x‖)
, ∀t ∈ J ,‖x‖ ≥ R1,

where εi
2 > 0 satisfies Di(f ∞

i + εi
2)m∗–1 ≤ 1, i = 1, 2, . . . , n.

Let

Mi = max
0≤‖x‖≤R1,t∈J

fi(t, x), i = 1, 2, . . . , n.

Thus, for all t ∈ J , x ∈ K , we have fi(t, x) ≤ Mi + (f ∞
i + εi

2)φm(‖x‖), i = 1, 2, . . . , n.
Letting

R1

n
> max

{
r1, R1,

(
Mi)m∗–1Di

(
1 – Di

(
f ∞
i + εi

2
)m∗–1)–1}
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then, for all t ∈ J , x ∈ ∂KR1 , we have

‖Tx‖ =
n∑

i=1

sup
t∈J

(Tix)(t)

=
n∑

i=1

sup
t∈J

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

≤
n∑

i=1

γ i(γ i
1‖e‖q‖ψi‖p

)m∗–1
∫ 1

0
e(s)φm∗

(∫ 1

0

(
Mi +

(
f ∞
i + εi

2
)
φm

(‖x‖))
dτ

)

ds

≤
n∑

i=1

(
Mi)m∗–1 Di

n
+

(
f ∞
i + εi

2
)m∗–1‖x‖Di

n

<
n∑

i=1

R1

n
–

Di

n
R1

(
f ∞
i + εi

2
)m∗–1 +

(
f ∞
i + εi

2
)m∗–1‖x‖Di

n

=
n∑

i=1

R1

n
= ‖x‖.

(3.4)

Applying Lemma 2.5 to (3.1) and (3.2), or (3.3) and (3.4) yields that T has at least one
fixed point x∗ ∈ Kr,R, or x∗ ∈ Kr1,R1 . Thus it follows from Remark 2.3 that system (1.1)–(1.2)
has at least one symmetric positive solution. This finishes the proof of Theorem 3.1. �

The following theorem deals with the case p = ∞.

Theorem 3.2 Assume that (H1)–(H3), (C1) or (H1)–(H3), (C2) hold. Then system (1.1)–
(1.2) has at least one symmetric positive solution.

Proof Let ‖e‖1‖ψi‖∞ replace ‖e‖q‖ψi‖p and repeat the argument above. �

Finally, we consider the case of p = 1.
Let

Di = nγ i(γ i
1
)m∗–1(‖ψi‖1

)m∗–1
(

1
4

)m∗–1

.

Theorem 3.3 Assume that (H1)–(H3), (C1) or (H1)–(H3), (C2) hold. Then system (1.1)–
(1.2) has at least one symmetric positive solution.

Proof Similar to the proof of Theorem 3.1. For all t ∈ J , x ∈ ∂Kr , we have

‖Tx‖ =
n∑

i=1

sup
t∈J

(Tix)(t)

=
n∑

i=1

sup
t∈J

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds
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≤
n∑

i=1

γ i(γ i
1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )ψi(τ )φm

(
r

Di

)

dτ

)

ds

=
n∑

i=1

γ i(γ i
1
)m∗–1 r

Di

(‖ψi‖1
)m∗–1

(
1
4

)m∗–1

=
n∑

i=1

r
n

= ‖x‖. (3.5)

Next, similar to the proof of Theorem 3.1, we can finish the proof. �

In the following theorems we only consider the case of 1 < p < ∞.

Theorem 3.4 Assume that (H1)–(H3) hold. Furthermore, assume that one of the following
conditions is satisfied.

(C3) There exists two constants r, R, which satisfy 0 < r ≤ δR, such that fi(t, x) ≥ φm( r
δiDi

1
)

for t ∈ J , 0 ≤ ‖x‖ ≤ r, and fi(t, x) ≤ φm( R
Di

) for t ∈ J , δR ≤ ‖x‖ ≤ R;
(C4) f 0

i < φm( 1
Di

) and fi∞ > φm( 1
δiDi

1
) (particularly, f 0

i = 0 and fi∞ = ∞),
where i = 1, 2, . . . , n. Thus, system (1.1)–(1.2) has at least one symmetric positive solution x∗.

Proof The proof is similar to that of Theorem 3.1, so we omit it here. �

Next, we discuss the multiplicity of system (1.1)–(1.2).

Theorem 3.5 Assume that (H1)–(H3) and the following conditions hold.
(C5) fi0 > φm( 1

δiDi
1

) and fi∞ > φm( 1
δiDi

1
) (particularly, fi0 = fi∞ = ∞);

(C6) there exists a constant b > 0 such that maxt∈J ,‖x‖=b fi(t, x) < φm( b
Di

).
Then system (1.1)–(1.2) has at least two symmetric positive solutions x∗, x∗∗ with

0 <
∥
∥x∗∗∥∥ < b <

∥
∥x∗∥∥. (3.6)

Proof Choose two constants r, R with 0 < r < b < R. It follows from (C5) that
if fi0 > φm( 1

δiDi
1

), then by means of the proof of (3.3), we obtain that

‖Tx‖ > ‖x‖, ∀x ∈ ∂Kr ; (3.7)

if fi∞ > φm( 1
δiDi

1
), then by means of the proof of (3.3), we obtain that

‖Tx‖ > ‖x‖, ∀x ∈ ∂KR. (3.8)

On the other hand, it follows from (C6) that

‖Tx‖ =
n∑

i=1

sup
t∈J

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

≤
n∑

i=1

γ i(γ i
1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
‖e‖q‖ψi‖pfi

(
τ , x(τ )

)
dτ

)

ds
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<
n∑

i=1

γ i(γ i
1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
‖e‖q‖ψi‖pφm

(
b
Di

)

dτ

)

ds

=
n∑

i=1

1
6
γ i(γ i

1‖e‖q‖ψi‖p
)m∗–1 b

Di

= b = ‖x‖, ∀x ∈ ∂Kb. (3.9)

Applying Lemma 2.5 to (3.7), (3.8), and (3.9) yields that T has a fixed point x∗∗ ∈ Kr,b

and a fixed point x∗ ∈ Kb,R. Then it follows from Remark 2.3 that system (1.1)–(1.2) has at
least two symmetric positive solutions x∗ and x∗∗. Noticing (3.9), we obtain ‖x∗‖ �= b and
‖x∗∗‖ �= b. Therefore (3.6) holds, and the proof of Theorem 3.5 is complete. �

Similarly, the following Theorem 3.6 can be obtained.

Theorem 3.6 Assume that (H1)–(H3) and the following conditions hold.
(C7) f 0

i < φm( 1
Di

) and f ∞
i < φm( 1

Di
);

(C8) There exists a constant B > 0 such that mint∈J ,‖x‖=B fi(t, x) > φm( B
δiDi

1
).

Then system (1.1)–(1.2) has at least two symmetric positive solutions x∗ and x∗∗ with

0 <
∥
∥x∗∗∥∥ < B <

∥
∥x∗∥∥.

Theorem 3.7 Assume that (H1)–(H3) hold. If there exist 2n positive numbers bk , dk ,
k = 1, 2, . . . , n, with b1 < δd1 < d1 < b2 < δd2 < d2 < · · · < bn < δdn < dn, such that

(C9) fi(t, x) ≤ φm( bk
Di

) for t ∈ J , δbk ≤ ‖x‖ ≤ bk and fi(t, x) ≥ φm( dk
δiDi

1
) for t ∈ J , δdk ≤

‖x‖ ≤ dk , k = 1, 2, . . . , n; or
(C10) fi(t, x) ≥ φm( bk

δiDi
1

) for t ∈ J , δbk ≤ ‖x‖ ≤ bk and fi(t, x) ≤ φm( dk
Di

) for t ∈ J , δdk ≤
‖x‖ ≤ dk , k = 1, 2, . . . , n.

Then system (1.1)–(1.2) has at least n symmetric positive solutions xk , and xk satisfy

bk ≤ ‖xk‖ ≤ dk , k = 1, 2, . . . , n.

Finally, we discuss the existence result corresponding to the case when system (1.1)–
(1.2) has no symmetric positive solutions.

Theorem 3.8 Assume that conditions (H1)–(H3) hold and fi(t, x) < φm( ‖x‖
Di

), ∀t ∈ J , ‖x‖ > 0.
Then system (1.1)–(1.2) has no positive solution.

Proof Assume to the contrary that x is a positive solution of system (1.1)–(1.2), then for
any 0 < t < 1, we have x ∈ K , xi(t) > 0, and

‖x‖ =
n∑

i=1

sup
t∈J

xi(t)

=
n∑

i=1

sup
t∈J

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

≤
n∑

i=1

γ i(γ i
1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )ψi(τ )fi

(
τ , x(τ )

)
dτ

)

ds
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<
n∑

i=1

γ i(γ i
1
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )ψi(τ )φm

(‖x‖
Di

)

dτ

)

ds

≤
n∑

i=1

γ i(γ i
1
)m∗–1 ‖x‖

Di

∫ 1

0
e(s)φm∗

(∫ 1

0
‖e‖q‖ψi‖p dτ

)

ds

=
n∑

i=1

1
6
γ i(γ i

1‖e‖q‖ψi‖p
)m∗–1 ‖x‖

Di

= ‖x‖.

This is a contradiction, and this completes the proof. �

Similarly, we have the following results.

Theorem 3.9 Assume that (H1)–(H3) hold and fi(t, x) > φm( ‖x‖
δiDi

1
), ∀t ∈ J , ‖x‖ > 0,

i = 1, 2, . . . , n. Then system (1.1)–(1.2) has no positive solution.

Proof Assume that x is a positive solution of system (1.1)–(1.2). Then, for any 0 < t < 1,
we have x ∈ K , xi(t) > 0, and

‖x‖ =
n∑

i=1

sup
t∈J

xi(t)

=
n∑

i=1

sup
t∈J

∫ 1

0
Hi(t, s)φm∗

(∫ 1

0
Hi

1(s, τ )ψi(τ )fi
(
τ , x(τ )

)
dτ

)

ds

≥
n∑

i=1

ρ i(ρ i
1N

)m∗–1
∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )fi

(
τ , x(τ )

)
dτ

)

ds

=
n∑

i=1

δiγ
i(γ i

1N
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )fi

(
τ , x(τ )

)
dτ

)

ds

>
n∑

i=1

δiγ
i(γ i

1N
)m∗–1

∫ 1

0
e(s)φm∗

(∫ 1

0
e(τ )φm

( ‖x‖
δiDi

1

)

dτ

)

ds

≥
n∑

i=1

(
1
6

)m∗

δiγ
i(γ i

1N
)m∗–1 ‖x‖

δiDi
1

= ‖x‖.

This leads to a contradiction, and this finishes the proof. �

4 An example
In the following example, we select n = 2, m = 2, p = 2, and N = 1.

Example 4.1 Consider the following system:

⎧
⎪⎨

⎪⎩

(φ2(x′′(t)))′′ = �(t)f(t, x(t)), 0 < t < 1,
x(0) = x(1) =

∫ 1
0 g(s)x(s) ds,

φ2(x′′(0)) = φ2(x′′(1)) =
∫ 1

0 h(s)φ2(x′′(s)) ds,
(4.1)
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where

g(t) =

(
1
2 0
0 1

2

)

, h(t) =

(
1
2 0
0 1

3

)

,

�(t) =

(
6 0
0 3

)

, f(t, x) =

(
(1 + sinπ t)x6

1

x4
2

)

.

Then, by calculations, we obtain that m∗ = 2, μ1 = μ2 = ν1 = 1
2 , ν2 = 1

3 , γ 1 = γ 2 = γ 1
1 = 2,

γ 2
1 = 3

2 , ρ1 = ρ2 = ρ1
1 = 1

6 , ρ2
1 = 1

12 , δ1 = 1
144 , δ2 = 1

216 , δ = 1
216 , D1 = 8√

30 , D2 = 3√
30 , D1

1 = 2
9 ,

D2
1 = 1

6 , and

H1(t, s) = H1
1 (t, s) = H2(t, s) = G(t, s) +

∫ 1

0
G(s, τ ) dτ ,

H2
1 (t, s) = G(t, s) +

1
2

∫ 1

0
G(s, τ ) dτ ,

where

G(t, s) =

{
t(1 – s), 0 ≤ t ≤ s ≤ 1,
s(1 – t), 0 ≤ s ≤ t ≤ 1.

Clearly, conditions (H1)–(H3) hold. Next, we show that the condition (C1) of Theo-
rem 3.1 holds. Choosing r = 1

2 , R = 65 × 6√3, we obtain that

φ2

(
r

D1

)

=
1
2

×
√

30
8

=
√

30
16

, φ2

(
R

δ1D1
1

)

= 144 × 9
2

× 65 × 6√3 = 3 × 68 × 6√3,

φ2

(
r

D2

)

=
1
2

×
√

30
3

=
√

30
6

, φ2

(
R

δ2D2
1

)

= 216 × 6 × 65 × 6√3 = ×69 × 6√3,

f1(t, x) = (1 + sinπ t)x6
1 ≤ 2 × r6 = 2 ×

(
1
2

)6

=
1

32
, for t ∈ J , 0 ≤ ‖x‖ ≤ r,

f1(t, x) = (1 + sinπ t)x6
1 ≥ (δ1R)6 =

(
1

144
× 65 × 6√3

)6

= 3 × (54)6,

for t ∈ J , δR ≤ ‖x‖ ≤ R,

f2(t, x) = x4
2 ≤ r4 =

(
1
2

)4

=
1

16
, for t ∈ J , 0 ≤ ‖x‖ ≤ r,

f1(t, x) = x4
2 ≥ (δ2R)4 =

(
1

216
× 65 × 6√3

)4

= 3
2
3 × 68, for t ∈ J , δR ≤ ‖x‖ ≤ R.

Therefore, fi(t, x) ≤ φ2( r
Di

), for all t ∈ J , 0 ≤ ‖x‖ ≤ r, and fi(t, x) ≥ φ2( R
δiDi

1
), for all t ∈ J ,

δR ≤ ‖x‖ ≤ R, i = 1, 2.
Therefore, it follows from Theorem 3.1 that system (4.1) has at least one symmetric

positive solution.

5 Conclusion
In this paper, we obtained several sufficient conditions for the existence, multiplicity,
and nonexistence of symmetric positive solutions for the fourth-order n-dimensional m-
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Laplace system with integral boundary conditions. Our results will be a useful contribu-
tion to the existing literature on the topic of fourth-order n-dimensional m-Laplace sys-
tems.
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