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Abstract
In this paper, we study the global existence and blow-up of solutions for an
isothermal viscous Cahn–Hilliard equation with inertial term, which arises in
isothermal fast phase separation processes. Based on the Galerkin method and the
compactness theorem, we establish the existence of the global generalized solution.
Using a lemma on the ordinary differential inequality of second order, we prove the
blow-up of the solution for the initial-boundary problem.
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1 Introduction
In this paper, we are concerned with the following initial-boundary problem:

δutt + ut – k�ut + �2u = �f (u), x ∈ �, t > 0, (1.1)

u|∂� = 0, �u|∂� = 0, t ≥ 0, (1.2)

u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), x ∈ �, (1.3)

where � ⊂ R
n (n ≤ 3) is a bounded domain with smooth boundary, δ > 0 is an inertial

parameter, k ≥ 0 is a viscosity coefficient, and f (s) is a given nonlinear function.
Equation (1.1) was proposed in [1] to model rapid spinodal decompositions in a bi-

nary alloy. Zheng and Milani [2] proved that the dynamical systems generated by problem
(1.1)–(1.3) admit exponential attractors and inertial manifolds. Zheng and Milani [3] show
that the dynamical systems admit global attractors and that these global attractors are at
least upper-semicontinuous with respect to the vanishing of the perturbation parameter.
Gatti et al. [4] considered problem (1.1)–(1.3). Their result is the construction of a ro-
bust family of exponential attractors, whose common basins of attraction are the whole
phase-space. They [5] also considered the same problem in the three-dimensional setting.
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Grasselli et al. [6] studied a differential model describing nonisothermal fast phase sep-
aration processes taking place in a three-dimensional bounded domain.

⎧
⎪⎪⎨

⎪⎪⎩

(ϑ + χ )t + ∇ · q = 0,

σqt + q = –∇ϑ ,

kχtt + χt – �(–�χ + αχt + φ(χ ) – ϑ) = 0,

where σ ∈ [0, 1]. This model consists of a viscous Cahn–Hilliard equation characterized by
the presence of an inertial term χtt , χ being the order parameter, which is linearly coupled
with an evolution equation for the (relative) temperature ϑ .

The blow-up of solutions for the fourth order equation has been intensively studied.
Chen and Lu [7] considered the initial-boundary value problem for the nonlinear wave
equation

utt – 2buxxt + αuxxxx = f (ux)x.

They obtained the blow-up of the solution and the energy decay of the solutions. Wang
[8] studied the equation

utt + �2u + μut + au = |u|p–2u.

He gave necessary and sufficient conditions for global existence and finite time blow-up
of solutions. Escudero et al. [9] discussed a fourth order parabolic equation involving the
Hessian

ut + �2u = det
(
D2u

)
= λf .

The authors proved the global existence versus blow-up results. Qu and Zhou [10] studied
the following:

ut + D4u = |u|p–1u –
∫

�

– |u|p–1u dx.

By using the method of potential wells, they obtained a threshold result of global exis-
tence and blow-up for the sign-changing weak solutions and the conditions under which
the global solutions become extinct in finite time. In this paper, we consider the global
existence and blow-up of solutions for problem (1.1)–(1.3). To prove the blow-up of solu-
tions, we establish a new functional and consider the solution of the Bernoulli type equa-
tion. Basing on the required estimates and using a lemma on the ordinary differential in-
equality of second order, we prove the blow-up of the solution for the initial-boundary
problem. The main method is nontrivial because of both the nonlinearity of �f (u) and
more delicate estimates which are necessary to overcome some delicate technical points.

The plan of this paper is as follows. In Sect. 2, we prove the existence and uniqueness
of the global generalized solution for the initial-boundary value problems (1.1)–(1.3) by
the Galerkin method. We also give some sufficient conditions of the blow-up of the solu-
tions for the initial-boundary value problems (1.1)–(1.3) in Sect. 3. Finally, in Sect. 4, we
discussed the decay rate of energy. For simplicity, we set δ = 1 in this paper.
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2 Existence of the global solution
We are going to prove the existence and uniqueness for problems (1.1)–(1.3) by the
Galerkin method and the compactness theorem in this section.

Let yi(x) be the orthonormal basis in L2(�) composed of the eigenfunctions of the eigen-
value problem

⎧
⎨

⎩

�y + λy = 0,

y|∂� = 0
(2.1)

corresponding to eigenvalue λi (i = 1, 2, . . .).
Let

uN (x, t) =
N∑

i=1

γNi(t)yi(x) (2.2)

be the Galerkin approximate solution for problem (1.1)–(1.3), where γNi(t) are the unde-
termined functions and N is a natural number. Suppose that the initial value functions
ϕ(x) may be expressed as

ϕ(x) =
∞∑

i=1

μiyi(x), ψ(x) =
∞∑

i=1

νiyi(x), (2.3)

where μi and νi (i = 1, 2, . . .) are constants.
Substituting the approximate solution uN (x, t) into Eq. (1.1), multiplying both sides by

ys(x), we obtain

(
uNtt + uNt – k�uNt + �2uN , ys

)
=

(
�f (uN ), ys

)
, s = 1, 2, . . . , N , (2.4)

where (·, ·) denotes the inner product of L2(�).
Substituting the approximate solution uN (x, t) and the approximations

ϕN (x) =
N∑

i=1

μiyi(x), ψN (x) =
N∑

i=1

νiyi(x)

of the initial value functions into the initial condition (1.3), we get

γNs(0) = μs, γ̇Ns(0) = νs, s = 1, 2, . . . , N , (2.5)

where γ̇Ns(t) = d
dt γNs(t).

In order to prove the existence of the global generalized solution for problem (1.1)–(1.3),
we make a series of estimations for the approximate solution uN (x, t).

Lemma 2.1 Suppose that ϕ ∈ H2(�) and ψ ∈ L2(�) satisfy the boundary condition (1.2),
f ∈ C1(R), 0 ≤ F(s) =

∫ s
0 f (η) dη, and |f ′(s)| ≤ C1|s|2 +C2, where C1 > 0, C2 > 0 are constants.

Then the following estimate holds:

∥
∥uN (·, t)

∥
∥2

H2 +
∥
∥uNt(·, t)

∥
∥2 ≤ C, t ∈ [0, T], (2.6)

where and in the sequel C > 0 is a constant which only depends on T .
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Proof Let wn be the unique solution of the problem

�wn = un,

wn|∂� = 0.

Substituting the approximate solution uN (x, t) into Eq. (1.1), multiplying both sides by
2wNt , we obtain

(
uNtt + uNt – k�uNt + �2uN , 2wNt

)
=

(
�f (uN ), 2wNt

)
.

Integrating by parts with respect to x on �, we have

d
dt

[
∥
∥∇wNt(·, t)

∥
∥2 +

∥
∥∇uN (·, t)

∥
∥2 + 2

∫ 1

0
F(un) dx

]

+ 2
∥
∥∇wNt(·, t)

∥
∥2 + 2k

∥
∥uNt(·, t)

∥
∥2 ≤ 0.

Hence, we know

‖∇wNt‖ ≤ C, (2.7)

‖∇uN‖ ≤ C. (2.8)

By the Sobolev imbedding theorem, it follows from (2.7) and (2.8) that

‖uN‖Lq ≤ C, for any q < ∞ (n = 2), (2.9)

‖uN‖L6 ≤ C (n = 3). (2.10)

Multiplying both sides of (2.4) by 2γNst(t), summing up for s = 1, 2, . . . , N , we have

(
uNtt + uNt – k�uNt + �2uN , 2uNt

)
=

(
�f (uN ), 2uNt

)
.

Integrating by parts with respect to x on �, we get

d
dt

[∥
∥uNt(·, t)

∥
∥2 +

∥
∥�uN (·, t)

∥
∥2] + 2‖uNt‖2 + 2k

∥
∥∇uNt(·, t)

∥
∥2

≤ 1
4k

∥
∥f ′(uN )∇uN (·, t)

∥
∥2 + k

∥
∥∇uNt(·, t)

∥
∥2.

By |f ′(s)| ≤ C1|u|2 + C2, hence

d
dt

[∥
∥uNt(·, t)

∥
∥2 +

∥
∥�uN (·, t)

∥
∥2] + 2‖uNt‖2 + k

∥
∥∇uNt(·, t)

∥
∥2

≤ C
∥
∥uN

∥
∥4

∞ + C. (2.11)

On the other hand, by the Gagliardo–Nirenberg inequality, (2.9), and (2.10), we see

‖u‖∞ ≤ C‖�u‖a‖u‖1–a
q ≤ C‖�u‖a, a =

2
q + 2

(n = 2),

‖u‖∞ ≤ C‖�u‖1/2‖u‖1/2
6 ≤ C‖�u‖1/2 (n = 3).
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Therefore, by (2.11),

d
dt

[∥
∥uNt(·, t)

∥
∥2 +

∥
∥�uN (·, t)

∥
∥2] + 2‖uNt‖2 + k

∥
∥∇uNt(·, t)

∥
∥2

≤ C‖�uN‖2 + C. (2.12)

Then, integrating (2.12) on [0, t] and using the Gronwall inequality, we deduce

∥
∥uN (·, t)

∥
∥2

H2 +
∥
∥uNt(·, t)

∥
∥2 ≤ CeT(‖ϕ‖2

H2 + ‖ψ‖2 + 1
)
, t ∈ [0, T]. (2.13)

Immediately, we get (2.6) from (2.13). The proof is completed. �

Lemma 2.2 Suppose that the conditions of Lemma 2.1 hold. If f ∈ C3(R), ϕ ∈ H4(�),
ψ ∈ H2(�), and |f ′′(s)| ≤ C3|s|+ C4, |f ′′′(s)| ≤ C, then the approximate solution for problem
(1.1)–(1.3) satisfies the following estimate:

∥
∥uN (·, t)

∥
∥2

H4 +
∥
∥uNt(·, t)

∥
∥2

H2 +
∥
∥uNtt(·, t)

∥
∥2 ≤ C(T), 0 ≤ t ≤ T . (2.14)

Proof Multiplying both sides of (2.4) by 2λ2
s γNst(t), summing up for s = 1, 2, . . . , N , we have

(
uNtt + uNt – k�uNt + �2uN , 2�2uNt

)
=

(
�f (uN ), 2�2uNt

)
.

Integrating by parts with respect to x, we get

d
dt

(∥
∥�uNt(·, t)

∥
∥2 +

∥
∥�2uN (·, t)

∥
∥2) + 2

∥
∥�uNt(·, t)

∥
∥2 + 2k

∥
∥∇�uNt(·, t)

∥
∥2

= 2
∫

�

�f (uN ) · �2uNt dx.

On the other hand, we know

2
∫

�

�f (uN ) · �2uNt dx = –2
∫

�

∇�f (uN ) · ∇�uNt dx

and

∇�f (uN ) = f ′′′(uN )|∇uN |2∇uN + 3f ′′(uN )∇uN�uN + f ′(uN )∇�uN .

By (2.13), we know that ‖u‖∞ ≤ C, hence

2
∫

�

�f (uN ) · �2uNt dx

≤ C
(∥
∥|∇uN |3∥∥2 + ‖∇uN�uN‖2 + ‖∇�uN‖2) + k

∥
∥∇�uNt(·, t)

∥
∥2.

Thus,

d
dt

(∥
∥�uNt(·, t)

∥
∥2 +

∥
∥�2uN (·, t)

∥
∥2) + 2

∥
∥�uNt(·, t)

∥
∥2 + k

∥
∥∇�uNt(·, t)

∥
∥2

≤ C
(∥
∥∇uN (·, t)

∥
∥2

L6 +
∥
∥∇uN (·, t)

∥
∥2

L4

∥
∥�uN (·, t)

∥
∥2

L4 +
∥
∥∇�uN (·, t)

∥
∥2). (2.15)
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By (2.13) and the Sobolev imbedding theorem, we see that

‖∇uN‖Lq ≤ C, for any q < ∞ (n = 2),

‖∇uN‖L6 ≤ C (n = 3).

Using the Gagliardo–Nirenberg inequality, we conclude

∥
∥�uN (·, t)

∥
∥2

L4 ≤ C
∥
∥�2uN (·, t)

∥
∥a∥∥∇uN (·, t)

∥
∥1–a

Lq

≤ C
∥
∥�2uN (·, t)

∥
∥ + C, where a =

q + 4
4 + 4q

(n = 2),

∥
∥�uN (·, t)

∥
∥2

L4 ≤ C
∥
∥�2uN (·, t)

∥
∥3/8∥∥∇uN (·, t)

∥
∥5/8

L6 ≤ C
∥
∥�2uN (·, t)

∥
∥ + C (n = 3).

On the other hand, by boundary conditions (1.2), we obtain

‖∇�uN‖2 ≤ C‖�2uN‖2.

Substituting the above inequalities into (2.15), we get

d
dt

(∥
∥�uNt(·, t)

∥
∥2 +

∥
∥�2uN (·, t)

∥
∥2) ≤ C(T) +

∥
∥�2uN (·, t)

∥
∥2.

Integrating the above inequality, and using the Gronwall inequality, we have

∥
∥�uNt(·, t)

∥
∥2 +

∥
∥�2uN (·, t)

∥
∥2 ≤ C(T)

(‖ϕ‖2
H4 + ‖ψ‖2

H2 + 1
)
, t ∈ [0, T]. (2.16)

Similarly, multiplying both sides of (2.4) by γNstt(t), summing up for s = 1, 2, . . . , N , we de-
duce

(
uNtt + uNt – k�uNt + �2uN , uNtt

)
=

(
�f (uN ), uNtt

)
.

Integrating by parts with respect to x and using the Cauchy inequality, we have

∥
∥uNtt(·, t)

∥
∥2

L2

= –
∫

�

uNtuNtt dx + k
∫

�

�uNtuNtt dx –
∫

�

�2uN uNtt dx +
∫

�

�f (uN )uNtt dx

≤ 2
∥
∥uNt(·, t)

∥
∥2 + 2k2∥∥�uNt(·, t)

∥
∥2 + 2

∥
∥�2uN (·, t)

∥
∥2

+ 2
∥
∥�f (uN )

∥
∥2 +

1
2
∥
∥uNtt(·, t)

∥
∥2.

Therefore, we conclude

∥
∥uNtt(·, t)

∥
∥2

L2 ≤ C(T), t ∈ [0, T]. (2.17)

Immediately, we get (2.14) from (2.16) and (2.17). This completes the proof. �
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Theorem 2.1 Suppose that ϕ ∈ H4(�) and ψ ∈ H2(�) satisfy the boundary conditions
(1.2), f ∈ C3(R), 0 ≤ F(s) =

∫ s
0 f (η) dη, |f ′(s)| ≤ C1|s|2 +C2, |f ′′(s)| ≤ C3|s|+C4, and |f ′′′(s)| ≤

C. Then problem (1.1)–(1.3) has a unique global generalized solution

u ∈ C
(
[0, T]; H4(�)

) ∩ C1([0, T]; H2(�)
) ∩ C2([0, T]; L2(�)

)
. (2.18)

Proof From (2.14) we know that uN ∈ C([0, T]; H4(�)), uNt ∈ C([0, T]; H2(�)), uNtt ∈
C([0, T]; L2(�)). Using the Sobolev imbedding theorem, we have DkuN ∈ C([0, T] × �),
0 ≤ k ≤ 2. It follows from the above two relations and the Ascoli–Arzelá theorem that
there exist a function u(x, t) and a subsequence of uN (x, t), still denoted by uN (x, t), such
that as N → ∞, uN (x, t) uniformly converges to u(x, t) in [0, T] × �. The corresponding
subsequence of �uN (x, t) also uniformly converges to �u(x, t) in [0, T] × �. According to
the compactness theorem, the subsequence DkuN (x, t) (0 ≤ k ≤ 4), DkuNt(x, t) (0 ≤ k ≤ 2),
and uNtt(x, t) weakly converge to Dku(x, t) (0 ≤ k ≤ 4), Dkut(x, t) (0 ≤ k ≤ 2), and utt(x, t)
in L2([0, T]×�), respectively. Hence, we know that u(x, t) satisfies (2.18). Therefore u(x, t)
is the generalized solution for problem (1.1)–(1.3). It is easy to prove the uniqueness of the
solutions for problem (1.1)–(1.3). This completes the proof of the theorem. �

3 Blow-up of solutions
In the previous sections, we have seen that the solution of problem (1.1)–(1.3) is globally
existent, provided that F(s) ≥ 0. In this section, we will prove the blow-up of the solution
for F(s) < 0. For this purpose, we need the following lemma.

Lemma 3.1 ([7]) Assume that u′ = G(t, u), v′ ≥ G(t, v), G ∈ C([0,∞) × (–∞,∞)), and
u(t0) = v(t0), t0 ≥ 0, then when t ≥ t0, v(t) ≥ u(t), where u′ = d

dt u(t).

Let w be the unique solution of the problem

�w = u,

w|∂� = 0.

We have the following theorem.

Theorem 3.1 Suppose that
(1) f (s)s ≤ γ F(s), F(s) ≤ –α|s|p+1, where F(s) =

∫ s
0 f (u) du, γ > 2, α > 0, and p > 1 are

constants.
(2) ϕ ∈ H4(�), ψ ∈ H2(�) and

E(0) =
∥
∥∇wt(0)

∥
∥2 + ‖∇ϕ‖2 + 2

∫

�

F
(
ϕ(x)

)
dx

≤ –2
2p

p–1

( α(γ –2)
p+3 )

2
p–1 (1 – e– p–1

4 )
4

p–1
< 0,

then the generalized solution u(x, t) of problem (1.1)–(1.3) blows up in finite time, i.e.,

‖∇w‖2 +
∫ t

0

∥
∥u(·, τ )

∥
∥2 dτ +

∫ t

0

∥
∥∇w(·, τ )

∥
∥2 dτ +

∫ t

0

∫ τ

0
‖u‖2 ds dτ → ∞, as t → T∗.
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Proof Let

E(t) =
∫

�

|∇wt|2 dx + 2k
∫ t

0

∫

�

∣
∣uτ (x, τ )

∣
∣2 dx dτ +

∫

�

|∇u|2 dx

+ 2
∫

�

F(u) dx + 2
∫ t

0

∫

�

∣
∣∇wτ (x, τ )

∣
∣2 dx dτ .

A simple calculation shows that

dE(t)
dt

= 2
∫

�

∇wt∇wtt dx + 2k
∫

�

|ut|2 dx + 2
∫

�

∇u∇ut dx

+ 2
∫

�

f (u)ut dx + 2
∫

�

|∇wt|2 dx

= –2
∫

�

utwtt dx + 2k
∫

�

ut�wt dx – 2
∫

�

�uut dx

+ 2
∫

�

f (u)ut dx – 2
∫

�

wtut dx

= –2
∫

�

[
wtt – k�wt + �u – f (u) + wt

]
ut dx.

Noticing equation (1.1), we know that

dE(t)
dt

=
∫

�

∇[
wtt – k�wt + �u – f (u) + wt

]2 dx = 0,

which implies

E(t) = E(0), t > 0. (3.1)

Moreover, we easily see

γ

∫

�

F(u) dx = 2E(0) – 2‖∇wt‖2 – 4k
∫ t

0
‖uτ‖2 dτ – 2‖∇u‖2

– 2
∫ t

0
|∇wt|2 dτ + (γ – 2)

∫

�

F(u) dx. (3.2)

Now, we define

H(t) = ‖∇w‖2 +
∫ t

0

∥
∥u(·, τ )

∥
∥2 dτ +

∫ t

0

∥
∥∇w(·, τ )

∥
∥2 dτ +

∫ t

0

∫ τ

0
‖u‖2 ds dτ . (3.3)

It is obvious that

dH(t)
dt

= 2
∫

�

∇w∇wt dx +
∫

�

∣
∣u(·, t)

∣
∣2 dx

+
∫

�

∣
∣∇w(·, t)

∣
∣2 dx +

∫ t

0

∫

�

|u|2 dx dτ . (3.4)
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Further, we have

d2H(t)
dt2 = 2

∫

�

[

|∇wt|2 – wutt + u(·, t)ut + ∇w∇wt +
1
2
|u|2

]

dx

= 2
∫

�

[

|∇wt|2 – wutt + w(·, t)�ut + ∇w∇wt +
1
2
|u|2

]

dx

= 2
∫

�

[

|∇wt|2 + w
(
ut + �2u – �f (u)

)
+ ∇w∇wt +

1
2
|u|2

]

dx

= 2
∫

�

[

|∇wt|2 – ∇w∇wt – |∇u|2 – f (u)u + ∇w∇wt +
1
2
|u|2

]

dx

≥ 2‖∇wt‖2 – 2‖∇u‖2 – 2γ

∫

�

F(u) dx + ‖u‖2

≥ 2‖∇wt‖2 – 2‖∇u‖2 + ‖u‖2 – 2E(0) + 2‖∇ut‖2 + 2
∫ t

0
‖ut‖2 dτ

+ 2‖∇u‖2 + 2
∫ t

0
|∇wt|2 dτ – 2(γ – 2)

∫

�

F(u) dx

≥ 2‖∇wt‖2 + ‖u‖2 – 2E(0) – 2(γ – 2)
∫

�

F(u) dx + 2‖∇ut‖2 > 0. (3.5)

Integrating (3.5), we conclude that

H ′(t) ≥ –2E(0)t – 2(γ – 2)
∫ t

0

∫

�

F
(
u(x, τ )

)
dx dτ + H ′(0). (3.6)

Integrating (3.6), we deduce

H(t) ≥ –2E(0)t2 – 2(γ – 2)
∫ t

0

∫ τ

0

∫

�

F
(
u(x, s)

)
dx ds dτ + H ′(0)t + H(0). (3.7)

Combining (3.5, (3.6) with (3.7), we derive

H ′′(t) + H ′(t) + H(t)

≥ 2α(γ – 2)
[∫

�

|u|p+1 dx +
∫ t

0

∫

�

|u(x, τ )|p+1 dx dτ

+
∫ t

0

∫ τ

0

∫

�

|u(x, s)|p+1 dx ds dτ

]

+ ‖u‖2 – 2E(0)
(

1 + t +
t2

2

)

+ H ′(0)(1 + t) + H(0) + 2‖∇wt‖2 + 2‖∇ut‖2. (3.8)

Substituting (3.4) into (3.8), we get

H ′′(t) + 2
∫

�

∇w∇wt dx +
∫

�

∣
∣u(·, t)

∣
∣2 dx +

∫

�

∣
∣∇w(·, t)

∣
∣2 dx

+
∫ t

0

∫

�

|u|2 dx dτ + H(t)

≥ 2α(γ – 2)
[∫

�

|u|p+1 dx +
∫ t

0

∫

�

∣
∣u(x, τ )

∣
∣p+1 dx dτ
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+
∫ t

0

∫ τ

0

∫

�

∣
∣u(x, s)

∣
∣p+1 dx ds dτ

]

+ ‖u‖2 – 2E(0)
(

1 + t +
t2

2

)

+ H ′(0)(1 + t) + H(0) + 2‖∇wt‖2 + 2‖∇ut‖2. (3.9)

Recalling H ′′(t) > 0, H(t) ≥ 0, and

2
∫

�

∇w∇wt dx ≤ ‖∇w‖2 + ‖∇wt‖2,

therefore, from (3.9) we obtain

H ′′(t) + H(t)

≥ α(γ – 2)
[∫

�

|u|p+1 dx +
∫ t

0

∫

�

∣
∣u(x, τ )

∣
∣p+1 dx dτ

+
∫ t

0

∫ τ

0

∫

�

∣
∣u(x, s)

∣
∣p+1 dx ds dτ

]

– E(0)
(

1 + t +
t2

2

)

+
1
2

H ′(0)(1 + t) +
1
2

H(0). (3.10)

On the other hand, the Hölder inequality implies that

|�| p–1
2

∫

�

|u|p+1 dx ≥ ‖u‖p+1,

∫ t

0

∫

�

|u|2 dx dτ ≤ t
p–1
p+1 |�| p–1

p+1

(∫ t

0

∫

�

|u|p+1 dx dτ

) 2
p+1

,

∫ t

0

∫ τ

0

∫

�

|u|2 dx ds dτ ≤
(

t2

2

) p–1
p+1 |�| p–1

p+1

(∫ t

0

∫ τ

0

∫

�

|u|p+1 dx ds dτ

) 2
p+1

.

Thus

∫ t

0

∫

�

|u|p+1 dx dτ ≥ t
1–p

2 |�| 1–p
2

(∫ t

0

∫

�

|u|2 dx dτ

) p+1
2

,

∫ t

0

∫ τ

0

∫

�

|u|p+1 dx ds dτ ≥ 2
p–1

2 t1–p
(∫ t

0

∫ τ

0

∫

�

|u|2 dx ds dτ

) p+1
2

.

Substituting the above inequalities into (3.10), and by the fact (x + y + z)n ≤ 22(n–1)(xn + yn +
zn), x, y, z > 0, n > 1, we know that

H ′′(t) + H(t)

≥ α(γ – 2)|�| 1–p
2

[

‖u‖p+1 + t
1–p

2

(∫ t

0

∫

�

|u|2 dx dτ

) p+1
2

+ 2
p–1

2 t1–p
(∫ t

0

∫ τ

0

∫

�

|u|2 dx ds dτ

) p+1
2

]

– E(0)
(

1 + t +
t2

2

)

+
1
2

H ′(0)(1 + t) +
1
2

H(0)
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≥ α(γ – 2)|�| 1–p
2 2

1
2 – 3

2 pt1–pH
p+1

2 – F(0)
(

1 + t +
t2

2

)

+
1
2

H ′(0)(1 + t) +
1
2

H(0), t ≥ 1. (3.11)

In addition, note from (3.6) and (3.7) that H ′(t) → +∞ and H(t) → +∞ as t → ∞. There-
fore, we see that there is t0 ≥ 1 such that when t ≥ t0, H ′(t) > 0 and H(t) > 0. Multiplying
(3.11) by 2H ′(t), we get

d
dt

[
H ′2 + H2] ≥ Mt1–p d

dt
H

p+3
2 + I(t), t ≥ t0, (3.12)

where

M =
α(γ – 2)|�| 1–p

2 2 1
2 – 3

2 p

p + 3
,

I(t) =
[
–4F(0)t + 2H ′(0)

]
[

–E(0)
(

1 + t +
t2

2

)

+
1
2

H ′(0)(1 + t) +
1
2

H(0)
]

.

It follows from (3.12) that

d
dt

[
tp–1(H ′2 + H2) – MH

p+3
2

] ≥ tp–1I(t), t ≥ t0.

Integrating the above inequality over (t0, t), we easily see

tp–1(H ′2 + H2) – MH
n+3

2

≥
∫ t

t0

τ p–1I(τ ) dτ + tp–1
0

(
H ′2(t0) + H2(t0)

)
– MH

n+3
2 (t0), t ≥ t0. (3.13)

Note that when t → ∞, the right-hand side of (3.13) approaches positive infinity, hence,
there is t1 > t0 such that when t ≥ t1, the right-hand side of (3.13) is larger than or equal to
zero. We thus have

tp–1(H ′ + H
)2 ≥ tp–1(H ′2 + H2) ≥ MH

p+3
2 (t), t ≥ t0,

that is,

H ′ + H ≥ t
1–p

2 M1H
p+3

4 (t), t ≥ t0,

where M1 = M1/2.
Now, we consider the initial value problem of the ordinary differential equation

S′(t) + S(t) = M1t
1–p

2
(
S(t)

) p+3
4 (t),

S(t1) = H(t1).
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Therefore, we conclude that

S(t) = e–(t–t1)
[

H
1–p

4 (t1) –
M1(p – 1)

4

∫ t

t1

τ
1–p

2 e– p–1
4 (τ–t1) dτ

]

≡ e–(t–t1)H(t1)J
4

1–p (t),

where

J(t) = 1 –
M1(p – 1)

4
H

p–1
4 (t1)

∫ t

t1

τ
1–p

2 e– p–1
4 (τ–t1) dτ .

It is obvious that J(t1) = 1 > 0, and

J(t) ≤ 1 –
M1(p – 1)

4
H

p–1
4 (t1)(t1 + 1)

1–p
2

∫ t1+1

t1

e– p–1
4 (τ–t1) dτ

= 1 – M1H
p–1

4 (t1)(t1 + 1)
1–p

2
(
1 – e– p–1

4
)
.

By (3.7), we can take t1 sufficiently large such that

H
p–1

4 (t1)(t1 + 1)
1–p

2 ≥ 1
2
(
–E(0)

) p–1
4 .

Condition (2) of Theorem 3.1 implies

J(t) ≤ 0, t ≥ t1 + 1.

Noticing the continuity of J(t), we know that there is a constant T∗ (t1 < T∗ < t1 + 1) such
that J(T∗) = 0. Hence S(t) → ∞, as t → T∗. It follows from Lemma 3.1 that when t ≥ t1,
H(t) ≥ S(t). Thus, H(t) → ∞ as t → T∗. Theorem 3.1 is proved. �

4 Decay rate of energy
In this section, we are going to discuss the decay rate of energy for problem (1.1)–(1.3).
We need the following lemma.

Lemma 4.1 ([11]) Suppose that J : [0,∞) → [0,∞) is a non-increasing function and as-
sume that there is a constant L > 0 such that

∫ ∞

t
J(s) ds ≤ LJ(t), ∀t ≥ 0.

Then

J(t) ≤ J(0)e1– t
L , ∀t ≥ 0.

Theorem 4.1 Suppose that the assumptions of Theorem 2.1 hold and 2F(s) ≤ f (s)s. Let
u(x, t) be a global generalized solution for problem (1.1)–(1.3). Then we have

G(t) ≤ G(0)e1–Mt ,

where G(t) =
∫

�
|∇wt|2 dx +

∫

�
|∇u|2 dx + 2

∫

�
F(u) dx.
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Proof Recalling (3.1), we derive

G(t) =
∫

�

|∇wt|2 dx +
∫

�

|∇u|2 dx + 2
∫

�

F(u) dx

=
∥
∥∇wt(0)

∥
∥2 + ‖∇ϕ‖2 + 2

∫

�

F
(
ϕ(x)

)
dx – 2k

∫ t

0

∫

�

∣
∣uτ (x, τ )

∣
∣2 dx dτ

– 2
∫ t

0

∫

�

∣
∣∇wτ (x, τ )

∣
∣2 dx dτ .

A simple computation gives, for any 0 ≤ t1 ≤ t2 < ∞,

G(t1) – G(t2) = 2k
∫ t2

0

∫

�

∣
∣ut(x, t)

∣
∣2 dx dt + 2

∫ t2

0

∫

�

∣
∣∇wt(x, t)

∣
∣2 dx dt

–
(

2k
∫ t1

0

∫

�

∣
∣ut(x, t)

∣
∣2 dx dt + 2

∫ t1

0

∫

�

∣
∣∇wt(x, t)

∣
∣2 dx dt

)

= 2k
∫ t2

t1

∫

�

∣
∣ut(x, t)

∣
∣2 dx dt + 2

∫ t2

t1

∫

�

∣
∣∇wt(x, t)

∣
∣2 dx dt, (4.1)

which shows that G(t) is non-increasing.
Multiplying (1.1) by w(x, t), integrating over (t1, t2) × �, and integrating by parts, we

have

–
∫ t2

t1

∫

�

(|∇wt|2 + |∇u|2 + 2F(u)
)

dx dt

= –
(∫

�

∇w∇wt dx
)∣

∣
∣
∣

t2

t1

–
(∫

�

u2 dx
)∣

∣
∣
∣

t2

t1

–
(∫

�

|∇w|2 dx
)∣

∣
∣
∣

t2

t1

+
∫ t2

t1

∫

�

(
2F(u) – f (u)u

)
dx dt,

which implies

∫ t2

t1

G(t) dt = 2
∫ t2

t1

∫

�

|∇wt|2 dx dt

–
(∫

�

∇w∇wt dx
)∣

∣
∣
∣

t2

t1

–
(∫

�

u2 dx
)∣

∣
∣
∣

t2

t1

–
(∫

�

|∇w|2 dx
)∣

∣
∣
∣

t2

t1

+
∫ t2

t1

∫

�

(
2F(u) – f (u)u

)
dx. (4.2)

Recalling the assumption f (s)s ≤ 2F(s), we know

∫ t2

t1

G(t) dt ≤ 2
∫ t2

t1

∫

�

|∇wt|2 dx dt

–
(∫

�

∇w∇wt dx
)∣

∣
∣
∣

t2

t1

–
(∫

�

u2 dx
)∣

∣
∣
∣

t2

t1

–
(∫

�

|∇w|2 dx
)∣

∣
∣
∣

t2

t1

. (4.3)
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Using the Poincaré inequality, we obtain

∫

�

u2 ≤ C∗
∫

�

|∇u|2 dx ≤ C∗G(t), (4.4)
∫

�

|∇w|2 ≤ C∗
∫

�

|u|2 dx ≤ C2
∗

∫

�

|∇u|2 dx ≤ C2
∗G(t). (4.5)

The Cauchy inequality yields

∣
∣
∣
∣

∫

�

∇w∇wt dx
∣
∣
∣
∣ ≤ 1

2

∫

�

|∇w|2 dx +
1
2

∫

�

|∇wt|dx ≤ 1
2
(
C2

∗ + 1
)
G(t). (4.6)

On the other hand, by the non-increasing property of G(t), we get

2
∫ t2

t1

∫

�

|∇wt|2 dx dt ≤ G(t1) – G(t2) ≤ G(t1). (4.7)

Using (4.4)–(4.7), we deduce

∫ t2

t1

G(t) dt ≤ 2
(
C∗ + 3C2

∗ + 2
)
G(t1) ≡ 1

M
G(t1). (4.8)

By Lemma 4.1, we conclude that

G(t) ≤ G(0)e1–Mt , ∀t ≥ 0.

This completes the proof. �
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