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Abstract
In this paper, we consider a nonlinear thermoelastic system of Timoshenko type with
delay. It is known that an arbitrarily small delay may be the source of instability. The
delay term works on the second equation which describes the motion of a rotation
angle. We establish the well-posedness and the stability of the system for the cases of
equal and nonequal speeds of wave propagation. Our results show that the damping
effect is strong enough to uniformly stabilize the system even in the presence of time
delay under suitable conditions by using perturbed energy functional technique and
improve the related results.
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1 Introduction
In this paper, we consider a nonlinear Timoshenko-type system of thermoelasticity of type
III with delay:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1φtt – K(φx + ψ)x = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ2ψtt – bψxx + K(φx + ψ) + βθtx

+ μ1ψt(x, t) + μ2ψt(x, t – τ ) + f (ψ) = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ3θtt – δθxx + γψtx – kθtxx = 0, (x, t) ∈ (0, 1) × (0,∞),

(1.1)

in which ρ1, ρ2, ρ3, K , b, k, β , γ , δ, μ1, μ2, τ are positive constants. In this system, μ1ψt

represents a frictional damping, μ2ψt(x, t –τ ) represents a delay term, and f (ψ) is a forcing
term. We impose the following initial and boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x), x ∈ (0, 1),
φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, 1),
θ (x, 0) = θ0(x), θt(x, 0) = θ1(x), x ∈ (0, 1),
φ(0, t) = φ(1, t) = ψ(0, t) = ψ(1, t)

= θx(0, t) = θx(1, t) = 0, t ∈ (0,∞),
ψt(x, t – τ ) = f0(x, t – τ ), (x, t) ∈ (0, 1) × (0, τ ).

(1.2)
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We start our literature review with the pioneer work of Messaoudi and Said-Houari [1].
The authors considered the system as follows:

⎧
⎪⎨

⎪⎩

ρ1φtt – K(φx + ψ)x = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ2ψtt – bψxx + K(φx + ψ) + βθtx = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ3θtt – δθxx + γψtx – kθtxx = 0, (x, t) ∈ (0, 1) × (0,∞).

(1.3)

They obtained an exponential decay result under equal wave speeds ( K
ρ1

= b
ρ2

). Later Mes-
saoudi and Fareh [2] studied the case of nonequal speeds ( K

ρ1
�= b

ρ2
) and established a poly-

nomial decay result. In [3], the author consider a vibrating nonlinear Timoshenko system
with thermoelasticity with second sound as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ1φtt – K(φx + ψ)x = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ2ψtt – bψxx + K(φx + ψ) + δθx + α(t)h(ψt) = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ3θt + qx + γψtx = 0, (x, t) ∈ (0, 1) × (0,∞),
τqt + βq + θx = 0, (x, t) ∈ (0, 1) × (0,∞).

They established general decay results for the cases of μ = 0 and μ �= 0 with the constant
μ = (τ – ρ1

Kρ3
)( ρ2

b – ρ1
K ) – τδ2ρ1

bKρ3
.

On the other hand, Timoshenko systems with delay term have attracted extensive at-
tention, and the increasing complexity of their types makes research more significant. An
arbitrarily small delay may be the source of instability, see [4, 5]. Racke [6] considered the
following coupled system of linear thermoelastic equations with constant delays τ1 and τ2:

⎧
⎪⎨

⎪⎩

avtt – dvxx(x, t – τ1) + βθx = 0, (x, t) ∈ (0, L) × (0,∞),
bθt – kθxx(x, t – τ2) + βvxt = 0, (x, t) ∈ (0, L) × (0,∞),
v(0, t) = v(L, t) = θx(0, t) = θx(L, t) = 0, t ∈ (0,∞).

(1.4)

He obtained that the solution of problem (1.4) is instable with any delay τ1 > 0 or τ2 > 0.
In recent years constant delay τ has been extended to the time-varying function τ (t) in
the thermoelastic equations, see [7]. Also, in [8] Nicaise and Pignotti studied the initial-
boundary value problem of wave equation with boundary distributed delay as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

utt – �u = 0, (x, t) ∈ � × (0,∞),
u = 0, (x, t) ∈ �0 × (0,∞),
∂u
∂ν

(t) +
∫ τ2
τ1

μ(s)ut(t – s) ds + μ0ut(t) = 0, (x, t) ∈ �1 × (0,∞),
u(x, 0) = u0(x), ut(x) = u1(x), x ∈ �,
ut(x, –t) = f0(x, –t), (x, t) ∈ �1 × (0, τ2).

(1.5)

They proved an exponential stability result for system (1.5) with the condition

∫ τ2

τ1

μ(s) ds < μ0,

and when the boundary distributed delay term in the above system is replaced by the in-
ternal feedback

∫ τ2
τ1

a(x)μ(s)ut(t – s) ds with a(x) satisfying some suitable conditions. They



Hao and Wei Boundary Value Problems  (2018) 2018:65 Page 3 of 17

also obtained that the energy of solution is exponentially decaying to zero under the con-
dition

‖a‖∞
∫ τ2

τ1

μ(s)ut(t – s) ds < μ0.

We refer the reader to [9–14] for more analogous results. Kafini et al. [15], considered a
one-dimensional Timoshenko-type system

⎧
⎪⎨

⎪⎩

ρ1φtt – K(φx + ψ)x + μ1ψt(x, t) + μ2ψt(x, t – τ ) = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ2ψtt – bψxx + K(φx + ψ) + βθtx = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ3θtt – δθxx + γψtx – kθtxx = 0, (x, t) ∈ (0, 1) × (0,∞).

(1.6)

They proved the well-posedness of system (1.6) and established an exponential decay
result under the condition K

ρ1
= b

ρ2
and a polynomial decay result under the condition

K
ρ1

�= b
ρ2

. For a Timoshenko system with time delay and forcing term at the same time

⎧
⎪⎨

⎪⎩

ρ1ϕtt – K(ϕx + ψ)x = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ2ψtt – bψxx + K(ϕx + ψ)

+ μ1ψt(x, t) + μ2ψt(x, t – τ ) + f (ψ) = 0, (x, t) ∈ (0, 1) × (0,∞),
(1.7)

Feng and Pelicer [16] obtained an exponential stability under equal wave speeds. In the
present paper, when K

ρ1
= b

ρ2
, we extend their result to nonlinear Timoshenko system of

thermoelasticity of type III by using the perturbed energy functional technique as well,
and when K

ρ1
�= b

ρ2
, we achieve a polynomial decay estimate.

This paper is organized as follows. In Sect. 2, we present some assumptions and pre-
liminary works. In Sect. 3, we establish the well-posedness of system (1.1)–(1.2) by using
semigroup theory in [15, 16]. In Sect. 4, we prove the decay results in two cases by using
energy methods.

2 Preliminaries
In this section, we present some materials needed for our main results. For simplicity of
notations, hereafter we denote by ‖ · ‖q the Lebesgue space Lq(�) norm, and by ‖ · ‖ the
Lebesgue space L2(�) norm.

Assumption 2.1 Assume that f : R→ R with f (0) = 0 satisfies

∣
∣f

(
ψ1) – f

(
ψ2)∣∣ ≤ k0

(∣
∣ψ1∣∣ς +

∣
∣ψ2∣∣ς

)∣
∣ψ1 – ψ2∣∣, ψ1,ψ2 ∈R, (2.1)

where k0 > 0, ς ≥ 1 are constants such that

∣
∣f (ψ)

∣
∣ ≤ k0|ψ |ς |ψ |, ψ ∈ R. (2.2)

In addition we assume that

0 ≤ f̂ (ψ) ≤ f (ψ)ψ , ψ ∈R, (2.3)

in which f̂ (ψ) :=
∫ ψ

0 f (s) ds.
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In order to deal with the delay term, we define the following new variable:

z(x,ρ, t) := ψt(x, t – τρ), x ∈ (0, 1),ρ ∈ (0, 1), t > 0.

Thus we have

τzt(x,ρ, t) + zρ(x,ρ, t) = 0, ρ ∈ (0, 1), t > 0.

Then system (1.1)–(1.2) is transformed to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ1φtt – K(φx + ψ)x = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ2ψtt – bψxx + K(φx + ψ) + βθtx

+ μ1ψt(x, t) + μ2z(x, 1, t) + f (ψ) = 0, (x, t) ∈ (0, 1) × (0,∞),
ρ3θtt – δθxx + γψtx – kθtxx = 0, (x, t) ∈ (0, 1) × (0,∞),
τzt(x,ρ, t) + zρ(x,ρ, t) = 0, (x,ρ, t) ∈ (0, 1) × (0, 1) × (0,∞),
ψ(x, 0) = ψ0(x), ψt(x, 0) = ψ1(x),

z(x, 0, t) = ψt(x, t), x ∈ (0, 1),
φ(x, 0) = φ0(x), φt(x, 0) = φ1(x), x ∈ (0, 1),
θ (x, 0) = θ0(x), θt(x, 0) = θ1(x), x ∈ (0, 1),
φ(0, t) = φ(1, t) = ψ(0, t) = ψ(1, t)

= θx(0, t) = θx(1, t) = 0, t ∈ (0,∞),
z(x,ρ, 0) = f0(x, –ρτ ), (x,ρ) ∈ (0, 1) × (0, 1).

(2.4)

In order to use the Poincaré inequality for θ , as in [15], we introduce

θ̄ (x, t) := θ (x, t) – t
∫ 1

0
θ1(x) dx –

∫ 1

0
θ0(x) dx.

Then by (2.4)3 we have

∫ 1

0
θ̄ (x, t) dx = 0, t ≥ 0.

After a simple substitution, we see that (φ,ψ , θ̄ , z) satisfies (2.4). From now on, we work
with θ̄ but write θ for convenience.

3 Well-posedness result
In this section, we shall investigate the well-posedness of problem (2.1) with semigroup
theory, we start with the vector function U (t) = (φ,ϕ,ψ , u, θ , v, z)T , where ϕ = φt , u = ψt ,
and v = θt . We introduce as in [15]

L2
�(0, 1) :=

{

ω ∈ L2(0, 1)
∣
∣
∣

∫ 1

0
ω(s) ds = 0

}

,

H1
� (0, 1) := H1(0, 1) ∩ L2

�(0, 1),

H2
� (0, 1) :=

{
ω ∈ H2(0, 1)|ωx(0) = ωx(1) = 0

}
.



Hao and Wei Boundary Value Problems  (2018) 2018:65 Page 5 of 17

Then we define the energy space by

H := H1
0 (0, 1) × L2(0, 1) × H1

0 (0, 1) × L2(0, 1) × H1
� (0, 1) × L2

�(0, 1) × L2((0, 1), L2(0, 1)
)
,

equipped with the following inner product:

〈U , Ũ〉H := γ

∫ 1

0

[
ρ1ϕϕ̃ + ρ2ũu + K(φx + ψ)(φ̃x + ψ̃) + bψxψ̃x

]
dx

+ β

∫ 1

0
(ρ3ṽv + δθxθ̃x) dx + ξ

∫ 1

0

∫ 1

0
z(x,ρ )̃z(x,ρ) dρ dx, (3.1)

in which ξ is a positive constant satisfying

γ τμ2 ≤ ξ ≤ γ τ (2μ1 – μ2). (3.2)

Thus system (2.4) can be re-written as

{
d
dtU (t) + AU (t) = F (U ),
U (0) = U0 = (φ0,φ1,ψ0,ψ1, θ0, θ1, f0(·, –τρ))T ,

(3.3)

where the operators A and F are defined by

AU :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

–ϕ

– K
ρ1

(φx + ψ)x

–u
– b

ρ2
ψxx + K

ρ2
(φx + ψ) + β

ρ2
vx + μ1

ρ2
u + μ2

ρ2
z(x, 1, t)

–v
– δ

ρ3
θxx + γ

ρ3
ux – k

ρ3
vxx

1
τ

zρ

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, F (U ) :=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0
0
0

– 1
ρ2

f (ψ)
0
0
0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

with

D(A) =
{U ∈H|φ,ψ ∈ H2(0, 1) ∩ H1

0 (0, 1), θ , v ∈ H1
� (0, 1),ϕ, u ∈ H1

0 (0, 1),
δθ + kv ∈ H2

� (0, 1), z, zρ ∈ L2((0, 1), L2(0, 1)), z(x, 0) = ψ(x)

}

(3.4)

and the initial value (θ0, θ1) satisfies

{
θ0 := θ0(x) –

∫ 1
0 θ0(x) dx,

θ1 := θ1(x) –
∫ 1

0 θ1(x) dx.
(3.5)

By using the same methods as those in [15] and in [16], we can obtain the following Lem-
mas 3.1 and 3.2, respectively. We omit the proof.

Lemma 3.1 The operator A defined in (3.3) is the infinitesimal generator of a C0-
semigroup in H.

Lemma 3.2 The operator F is locally Lipschitz in H.
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According to Pazy [17], Chap. 6, we can obtain the existing results as follows. We omit
the proof.

Theorem 3.3 Suppose that Assumption 2.1 holds and μ2 ≤ μ1. For any initial value U0 ∈
H, system (3.3) admits a unique solution U ∈ C(0,∞;H). Moreover, if U0 ∈ D(A), system
(3.3) admits a unique solution U ∈ C(0,∞;D(A)) ∩ C1(0,∞;H).

We introduce the first order energy of problem (2.4) as

E(t) :=
1
2

∫ 1

0

[
γ
(
ρ1φ

2
t + K(φx + ψ)2 + ρ2ψ

2
t + bψ2

x
)

+ β
(
ρ3θ

2
t + δθ2

x
)]

dx

+
ξ

2

∫ 1

0

∫ 1

0
z2(x,ρ, t) dρ dx + γ

∫ 1

0
f̂ (ψ) dx, (3.6)

and the second order energy of problem (2.4) as (if U0 ∈D(A))

E2(t) :=
1
2

∫ 1

0

[
γ
(
ρ1φ

2
tt + K(φtx + ψt)2 + ρ2ψ

2
tt + bψ2

tx
)

+ β
(
ρ3θ

2
tt + δθ2

tx
)]

dx

+
ξ

2

∫ 1

0

∫ 1

0
z2

t (x,ρ, t) dρ dx + γ

∫ 1

0
f̂ (ψt) dx. (3.7)

Lemma 3.4 Let (φ,ψ , θ , z) be the solution of problem (2.4). Then the energy functional
defined by (3.6) satisfies

E′(t) ≤ –C
∫ 1

0

(
θ2

tx + ψ2
t dx + z2(x, 1, t)

)
dx ≤ 0, (3.8)

with some constant C ≥ 0.

Proof Multiplying the first three equations in (2.4) by γφt , γψt , βθt , respectively, and in-
tegrating over (0, 1), and multiplying (2.4)4 by ξz

τ
and integrating over (0, 1) × (0, 1) with

respect to ρ and x, we get

1
2

d
dt

∫ 1

0

[
γ
(
ρ1φ

2
t + K(φx + ψ)2 + ρ2ψ

2
t + ψ2

x
)

+ β
(
ρ3θ

2
t + δθ2

x
)]

dx

+
ξ

2
d
dt

∫ 1

0

∫ 1

0
z2(x, 1, t) dρ dx + γ

d
dt

∫ 1

0
f̂
(
ψ(t)

)
dx

= –βκ

∫ 1

0
θ2

tx dx – γμ1

∫ 1

0
ψ2

t dx –
ξ

τ

∫ 1

0

∫ 1

0
zzρ(x,ρ, t) dρ dx

– γμ2

∫ 1

0
ψtz(x, 1, t) dx. (3.9)

For the last two terms on the right-hand side, by using Hölder’s inequality and Young’s
inequality, we have

–
ξ

τ

∫ 1

0

∫ 1

0
zzρ(x,ρ, t) dρ dx = –

ξ

2τ

∫ 1

0

∫ 1

0

∂

∂ρ
z2(x,ρ, t) dρ dx

=
ξ

2τ

(∫ 1

0
ψ2

t dx –
∫ 1

0
z2(x, 1, t) dx

)

(3.10)
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and

–γμ2

∫ 1

0
ψtz(x, 1, t) dx ≤ γμ2

2

(∫ 1

0
ψ2

t dx +
∫ 1

0
z2(x, 1, t) dx

)

. (3.11)

Combining (3.9)–(3.11), we obtain

E′(t) ≤ –βκ

∫ 1

0
θ2

tx dx – γ

(

μ1 –
ξ

2τγ
–

μ2

2

)∫ 1

0
ψ2

t dx

– γ

(
ξ

2τγ
–

μ2

2

)∫ 1

0
z2(x, 1, t) dx.

The above assumption (3.2) implies that there exists a constant C ≥ 0 such that

E′(t) ≤ –C
{∫ 1

0
θ2

tx dx +
∫ 1

0
ψ2

t dx +
∫ 1

0
z2(x, 1, t) dx

}

≤ 0.

This gives (3.8). �

4 Energy decay result
In this section, we shall state and prove our decay result.

Theorem 4.1 Suppose that Assumption 2.1 holds and μ1 > μ2. For any initial value U0 ∈
H, there exist positive constants C and α such that the energy of problem (2.4) satisfies

E(t) ≤ CE(0)e–αt if
ρ1

K
=

ρ2

b
.

Moreover, if the initial value U0 ∈ D(A), we have that, for some constants C > 0 and M1 > 0,
the energy of problem (2.4) satisfies

E(t) ≤ C
(
E(0) + E2(0)

)
t–1 if 0 <

∣
∣
∣
∣
ρ1

K
–

ρ2

b

∣
∣
∣
∣ <

M1γ K
4(K + b)

.

In order to prove this result, we introduce various functionals and establish several lem-
mas. The construction of the auxiliary function I1(t) – I3(t), I5(t) comes from [16].

Lemma 4.2 Let (φ,ψ , θ , z) be the solution of (2.4). The functional I1 defined by

I1(t) := –
∫ 1

0
(ρ1φtφ + ρ2ψtψ) dx –

μ1

2

∫ 1

0
ψ2 dx (4.1)

satisfies

I ′
1(t) ≤ –

∫ 1

0

(
ρ1φ

2
t + ρ2ψ

2
t
)

dx +
∫ 1

0
K(φx + ψ)2 dx + (b + C1 + 2)

∫ 1

0
ψ2

x dx

+
β2

4

∫ 1

0
θ2

tx dx +
μ2

2
4

∫ 1

0
z2(x, 1, t) dx.
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Proof By differentiating I1 and using (2.4), we conclude that

I ′
1(t) = –

∫ 1

0

(
ρ1φ

2
t + ρ2ψ

2
t
)

dx +
∫ 1

0
K(φx + ψ)2 dx + b

∫ 1

0
ψ2

x dx +
∫ 1

0
f (ψ)ψ dx

+ β

∫ 1

0
θtxψ dx + μ2

∫ 1

0
z(x, 1, t)ψ dx. (4.2)

By using Young’s inequality and the fact
∫ 1

0 ψ2 dx ≤ ∫ 1
0 ψ2

x dx, we have

β

∫ 1

0
θtxψ dx ≤ β2

4

∫ 1

0
θ2

tx dx +
∫ 1

0
ψ2

x dx, (4.3)

μ2

∫ 1

0
z(x, 1, t)ψ dx ≤ μ2

2
4

∫ 1

0
z2(x, 1, t) dx +

∫ 1

0
ψ2

x dx. (4.4)

For the fourth term in (4.2), using (2.2) and the generalized Hölder inequality, we obtain

∫ 1

0

∣
∣f (ψ)ψ

∣
∣dx ≤ k0

∫ 1

0
|ψ |ς |ψ ||ψ |dx ≤ k0‖ψ‖ς

2(ς+1)‖ψ‖2(ς+1)‖ψ‖.

By Sobolev–Poincaré inequality and Ė(t) ≤ 0, we get

‖ψ‖2(ς+1) ≤ C‖ψx‖ ≤ C
(

2
bγ

E(t)
) 1

2 ≤ C
(

2
bγ

) 1
2

E(0)
1
2 , (4.5)

in which C > 0 is a constant. Thus, together with the above two inequalities, Young’s in-
equality and the Sobolev embedding theorem for ψ , we obtain

∫ 1

0

∣
∣f (ψ)ψ

∣
∣dx ≤ C1

∫ 1

0
ψ2

x dx. (4.6)

Insert (4.3), (4.4), and (4.6) into (4.3), then Lemma 4.2 follows. �

Lemma 4.3 Let (φ,ψ , θ , z) be the solution of (2.4). The functional I2 defined by

I2(t) :=
∫ 1

0
(ρ2ψtψ + ρ1φtg) dx +

μ1

2

∫ 1

0
ψ2 dx, (4.7)

where g is the solution of

{
–gxx = ψx, 0 < x < 1,
g(0) = g(1) = 0,

(4.8)

satisfies that, for any ε2 > 0,

I ′
2(t) ≤ (–b + 2ε2)

∫ 1

0
ψ2

x dx + ρ1ε2

∫ 1

0
φ2

t dx +
(

ρ2 +
ρ1

4ε2

)∫ 1

0
ψ2

t dx

+
β2

4ε2

∫ 1

0
θ2

tx dx +
μ2

2
4ε2

∫ 1

0
z2(x, 1, t) dx –

∫ 1

0
f̂
(
ψ(t)

)
dx. (4.9)
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Proof Using (2.4) and integration by parts, we conclude that

I ′
2(t) = –b

∫ 1

0
ψ2

x dx + ρ2

∫ 1

0
ψ2

t dx – β

∫ 1

0
θtxψ dx – μ2

∫ 1

0
z(x, 1, t)ψ dx

–
∫ 1

0
f (ψ)ψ dx + ρ1

∫ 1

0
ϕtgt dx – K

∫ 1

0
ψ2 dx + K

∫ 1

0
g2

x dx. (4.10)

By the fact following from (4.8) that

∫ 1

0
g2

x dx ≤
∫ 1

0
ψ2 dx ≤

∫ 1

0
ψ2

x dx, (4.11)

∫ 1

0
g2

t dx ≤
∫ 1

0
g2

xt dx ≤
∫ 1

0
ψ2

t dx, (4.12)

we obtain that

I ′
2(t) ≤ –b

∫ 1

0
ψ2

x dx + ρ2

∫ 1

0
ψ2

t dx – β

∫ 1

0
θtxψ dx – μ2

∫ 1

0
z(x, 1, t)ψ dx

–
∫ 1

0
f̂
(
ψ(t)

)
dx + ρ1

∫ 1

0
ϕtgt dx. (4.13)

By using Young’s inequality and (4.11)–(4.12), for any ε2 > 0, we have

β

∫ 1

0
θtxψ dx ≤ β2

4ε2

∫ 1

0
θ2

tx dx + ε2

∫ 1

0
ψ2

x dx, (4.14)

μ2

∫ 1

0
z(x, 1, t)ψ dx ≤ μ2

2
4ε2

∫ 1

0
z2(x, 1, t) dx + ε2

∫ 1

0
ψ2

x dx, (4.15)

ρ1

∫ 1

0
ϕtgt dx ≤ ρ1ε2

∫ 1

0
φ2

t dx +
ρ1

4ε2

∫ 1

0
g2

t dx

≤ ρ1ε2

∫ 1

0
φ2

t dx +
ρ1

4ε2

∫ 1

0
ψ2

t dx. (4.16)

Combining (4.13)–(4.16), we have (4.9). �

Lemma 4.4 Let (φ,ψ , θ , z) be the solution of (2.4). The functional I3 defined by

I3(t) := ρ2

∫ 1

0
ψt(φx + ψ) dx + ρ2

∫ 1

0
ψxφt dx (4.17)

satisfies for any ε3 > 0 that

I ′
3(t) ≤ bφxψx|x=1

x=0 +
(

ρ2K
ρ1

– b
)∫ 1

0
(φx + ψ)xψx dx –

(
K
4

–
ε3C2

b2

)∫ 1

0
(φx + ψ)2 dx

+
(

ρ2 +
μ2

1
K

)∫ 1

0
ψ2

t dx +
β2

K

∫ 1

0
θ2

tx dx +
μ2

2
K

∫ 1

0
z2(x, 1, t) dx

–
∫ 1

0
f̂ (ψ) dx +

(
ε3C2

b2 +
b2

2ε3

)∫ 1

0
ψ2

x dx. (4.18)
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Proof By differentiating I3 and using (2.4), we conclude that

I ′
3(t) = bφxψx|x=1

x=0 +
(

ρ2K
ρ1

– b
)∫ 1

0
(φx + ψ)xψx dx

– K
∫ 1

0
(φx + ψ)2 dx + ρ2

∫ 1

0
ψ2

t dx

– β

∫ 1

0
θtx(φx + ψ) dx – μ1

∫ 1

0
ψt(φx + ψ) dx – μ2

∫ 1

0
z(x, 1, t)(φx + ψ) dx

–
∫ 1

0
f (ψ)ψ dx –

∫ 1

0
f (ψ)φx dx. (4.19)

By using Young’s inequality and Poincaré’s inequality, we have

–β

∫ 1

0
θtx(φx + ψ) dx ≤ K

4

∫ 1

0
(φx + ψ)2 dx +

β2

K

∫ 1

0
θ2

tx dx, (4.20)

–μ1

∫ 1

0
ψt(φx + ψ) dx ≤ K

4

∫ 1

0
(φx + ψ)2 dx +

μ2
1

K

∫ 1

0
ψ2

t dx, (4.21)

–μ2

∫ 1

0
z(x, 1, t)(φx + ψ) dx ≤ K

4

∫ 1

0
(φx + ψ)2 dx +

μ2
2

K

∫ 1

0
z2(x, 1, t) dx. (4.22)

By using the fact that

∫ 1

0
φ2

x dx ≤ 2
∫ 1

0
(φx + ψ)2 dx + 2

∫ 1

0
ψ2

x dx, (4.23)

we arrive at, for any ε3 > 0,

∫ 1

0

∣
∣f (ψ)φx

∣
∣dx ≤ k0‖ψ‖ς

2(ς+1)‖ψ‖2(ς+1)‖φx‖

≤ ε3C2

2b2

∫ 1

0
φ2

x dx +
b2

2ε3

∫ 1

0
ψ2

x dx

≤ ε3C2

b2

∫ 1

0
(φx + ψ)2 dx +

ε3C2

b2

∫ 1

0
ψ2 dx +

b2

2ε3

∫ 1

0
ψ2

x dx

≤ ε3C2

b2

∫ 1

0
(φx + ψ)2 dx +

(
ε3C2

b2 +
b2

2ε3

)∫ 1

0
ψ2

x dx, (4.24)

in which C2 is a positive constant. Combining (4.20)–(4.24) yields the conclusion. �

Next we deal with the boundary term in (4.18). We introduce the function

q(x) = –4x + 2, x ∈ (0, 1). (4.25)
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Lemma 4.5 Let (φ,ψ , θ , z) be the solution of (2.4), then for ε3 > 0 the following estimate
holds:

bφxψx|x=1
x=0 ≤ –

bρ2

4ε3

d
dt

∫ 1

0
qψtψx dx –

ε3ρ1

K
d
dt

∫ 1

0
qφtφx dx

+
(

7ε3 +
b2

2ε3
+

b2

4ε3
3

+
3b2

4
+

C3

4ε3
+

b
4ε2

3

)∫ 1

0
ψ2

x dx

+
(

μ2
1

4ε2
3

+
ρ2b
2ε3

)∫ 1

0
ψ2

t dx +
(

1
4

K2ε3 + 6ε3

)∫ 1

0
(φx + ψ)2 dx

+
2ρ1ε3

K

∫ 1

0
φ2

t dx +
β2

4ε2
3

∫ 1

0
θ2

tx dx +
μ2

2
4ε2

3

∫ 1

0
z2(x, 1, t) dx. (4.26)

Proof By using Young’s inequality, for ε3 > 0, we have

bφxψx|x=1
x=0 ≤ b2

4ε3

[
ψ2

x (1) + ψ2
x (0)

]
+ ε3

[
φ2

x (1) + φ2
x (0)

]
. (4.27)

Also, we have

d
dt

∫ 1

0
bρ2qψtψx dx =

1
2

b2qψ2
x |x=1

x=0 –
1
2

∫ 1

0
b2qxψ

2
x dx –

1
2

bρ2

∫ 1

0
qxψ

2
t dx

– bK
∫ 1

0
q(φx + ψ)ψx dx – bβ

∫ 1

0
qθtxψx dx

– μ1b
∫ 1

0
qψtψx dx – μ2b

∫ 1

0
qz(x, 1, t)ψx dx

– b
∫ 1

0
qf (ψ)ψx dx.

By using Young’s inequality and Poincaré’s inequality, for ε3 > 0, we have

d
dt

∫ 1

0
bρ2qψtψx dx ≤ –b2[ψ2

x (1) + ψ2
x (0)

]

+
(

2b2 +
b2

ε2
3

+ 3ε3b2 +
b
ε3

+ C3

)∫ 1

0
ψ2

x dx

+
(

2ρ2b +
μ2

1
ε3

)∫ 1

0
ψ2

t dx + K2ε2
3

∫ 1

0
(φx + ψ)2 dx

+
β2

ε3

∫ 1

0
θ2

tx dx +
μ2

2
ε3

∫ 1

0
z2(x, 1, t) dx. (4.28)

Similarly,

d
dt

∫ 1

0
ρ1qφtφx dx ≤ –K

[
φ2

x (1) + φ2
x (0)

]

+ 3K
∫ 1

0
φ2

x dx + K
∫ 1

0
ψ2

x dx + 2ρ1

∫ 1

0
φ2

t dx. (4.29)

Together with (4.27)–(4.29), using (4.23) gives us (4.26). �
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Lemma 4.6 Let (φ,ψ , θ , z) be the solution of (2.4). The functional I4 defined by

I4(t) :=
∫ 1

0

(

ρ3θtθ +
k
2
θ2

x + γψxθ

)

dx, (4.30)

and its time derivative I ′
4(t) satisfies

I ′
4(t) ≤ –δ

∫ 1

0
θ2

x dx +
∫ 1

0
ψ2

x dx + C4

(
γ 2

4
+ ρ3

)∫ 1

0
θ2

tx dx,

where C4 > 0 is the Sobolev embedding constant.

Proof By differentiating I4 and using (2.4), we conclude that

I ′
4(t) = –δ

∫ 1

0
θ2

x dx + ρ3

∫ 1

0
θ2

t dx + γ

∫ 1

0
ψxθt dx.

Using Young’s inequality and Poincaré’s inequality clearly implies the conclusion (4.30). �

Lemma 4.7 Let (φ,ψ , θ , z) be the solution of (2.4). The functional I5 defined by

I5(t) :=
∫ 1

0

∫ 1

0
e–2τρz2(x,ρ, t) dρ dx

for some constant m > 0 satisfies

I ′
5(t) ≤ –m

∫ 1

0
z2(x, 1, t) dx – m

∫ 1

0

∫ 1

0
z2(x,ρ, t) dρ dx +

1
τ

∫ 1

0
ψ2

t dx. (4.31)

Proof By differentiating I5 and using (2.4), we conclude that

I ′
5(t) = –

2
τ

∫ 1

0

∫ 1

0
e–2τρzzρ(x,ρ, t) dρ dx = –

1
τ

∫ 1

0

∫ 1

0
e–2τρ ∂

∂ρ
z2(x,ρ, t) dρ dx

= –2
∫ 1

0

∫ 1

0
e–2τρz2(x,ρ, t) dρ dx –

1
τ

∫ 1

0

∫ 1

0

∂

∂ρ

(
e–2τρz2(x,ρ, t)

)
dρ dx

≤ –m
∫ 1

0
z2(x, 1, t) dx – m

∫ 1

0

∫ 1

0
z2(x,ρ, t) dρ dx +

1
τ

∫ 1

0
ψ2

t dx.

This gives (4.31). �

Now we define the Lyapunov functional L(t) as follows:

L(t) := NE(t) +
1
8

I1(t) + N2I2(t) + I3(t) + I4(t) + I5(t)

+
bρ2

4ε3

∫ 1

0
qψtψx dx +

ε3ρ1

K

∫ 1

0
qφtφx dx, (4.32)

where N , N2 are positive constants to be chosen properly later. For N large enough, it is not
difficult to prove that there exist two positive constants γ1 and γ2 such that, for any t > 0,

γ1E(t) ≤ L(t) ≤ γ2E(t). (4.33)
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Proof of Theorem 4.1 Combining Lemmas 4.2–4.7, we have

L′(t) ≤
(

–CN +
β2

32
+ N2

β2

4ε2
+

β2

K
+

β2

4ε2
3

+ C4

(
γ 2

4
+ ρ3

))∫ 1

0
θ2

tx dx

+
(

–CN –
1
8
ρ2 + N2

(
ρ1

4ε2
+ ρ2

)

+ ρ2 +
μ2

1
K

+
μ2

1
4ε2

3
+

ρ2b
2ε3

+
1
τ

)∫ 1

0
ψ2

t dx

+
(

–CN – m +
μ2

2
32

+ N2
μ2

2
4ε2

+
μ2

2
K

+
μ2

2
4ε2

3

)∫ 1

0
z2(x, 1, t) dx

+
(

–
1
8
ρ1 + N2ρ1ε2 +

2ρ1ε3

K

)∫ 1

0
φ2

t dx +
[

N2(–b + 2ε2) +
1
8

(b + C1 + 2)

+ 7ε3 +
b2

2ε3
+

b2

4ε3
3

+
3b2

4
+

C3

4ε3
+

b
4ε2

3
+

ε3C2

b2 +
b2

2ε3
+ 1

]∫ 1

0
ψ2

x dx

+
(

–
1
8

K +
1
4

K2ε3 + 6ε3 +
ε3C2

b2

)∫ 1

0
(φx + ψ)2 dx

+ (–δ)
∫ 1

0
θ2

x dx + (–m)
∫ 1

0

∫ 1

0
z2(x,ρ, t) dρ dx + (–N2 – 1)

∫ 1

0
f̂ (ψ) dx

+
(

ρ2K
ρ1

– b
)∫ 1

0
(φx + ψ)xψx dx. (4.34)

Firstly, we take ε3 small enough such that

{
– 1

8 K + 1
4 K2ε3 + 6ε3 + ε3C2

b2 < 0,
– 1

8 + 2ε3
K < 0.

Then we choose N2 so large that

N2b > 2
[

1
8

(b + C1 + 2) + 7ε3 +
b2

2ε3
+

b2

4ε3
3

+
3b2

4
+

C3

4ε3
+

b
4ε2

3
+

ε3C2

b2 +
b2

2ε3
+ 1

]

=: �,

thus we have

–N2b +
1
2
� < –

1
2
�.

After that, we select ε2 small enough such that

–
1
2
� + N2ε2 < 0

and

–
1
8

+
2ε3

K
+ N2ε2 < 0.

Finally, we choose N so large that

–CN +
β2

32
+ N2

β2

4ε2
+

β2

K
+

β2

4ε2
3

+ C4

(
γ 2

4
+ ρ3

)

< 0,
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–CN –
1
8
ρ2 + N2

(
ρ1

4ε2
+ ρ2

)

+ ρ2 +
μ2

1
K

+
μ2

1
4ε2

3
+

ρ2b
2ε3

+
1
τ

< 0,

–CN – m +
μ2

2
32

+ N2
μ2

2
4ε2

+
μ2

2
K

+
μ2

2
4ε2

3
< 0.

Therefore (4.34) changes to

L′(t) ≤ –M
∫ 1

0

(
θ2

tx + ψ2
t + z2(x, 1, t) + φ2

t + ψ2
x + (φx + ψ)2 + θ2

x
)

dx

– M
∫ 1

0

∫ 1

0
z2(x,ρ, t) dρ dx +

(
ρ2K
ρ1

– b
)∫ 1

0
(φx + ψ)xψx dx

≤ –M1E(t) +
(

ρ2K
ρ1

– b
)∫ 1

0
(φx + ψ)xψx dx, (4.35)

where M, M1 are positive constants.
Case 1: ρ1

K = ρ2
b .

In this case, (4.35) takes the form

L′(t) ≤ –M1E(t).

Using (4.33), we get, for α = M1
γ2

,

L′(t) ≤ –αL(t). (4.36)

A simple integration of (4.36) over (0, t) leads to

L(t) ≤ L(0)e–αt .

Recalling (4.33), we obtain

E(t) ≤ CE(0)e–αt .

Case 2: 0 < | ρ1
K – ρ2

b | < M1γ K
4(K+b) .

Let

E1(t) := E(t)

represent the first order energy defined in (3.6). By computation we have the estimate of
the derivative of the second order energy (3.7) as

E′
2(t) ≤ –C

∫ 1

0

(
θ2

ttx + ψ2
tt + z2

t (x, 1, t)
)

dx. (4.37)
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Let us estimate the last term in (4.35). By setting � = 1
K ( ρ2K

ρ1
– b)ρ1 �= 0 and using (2.4),

(4.23), we have

(
ρ2K
ρ1

– b
)∫ 1

0
(φx + ψ)xψx dx =

1
K

(
ρ2K
ρ1

– b
)∫ 1

0
ρ1φttψx dx

= �

∫ 1

0
φttψx dx

= –�

(
d
dt

∫ 1

0
φxtψ dx –

d
dt

∫ 1

0
φxψt dx

)

– �

∫ 1

0
φxψtt dx

≤ –�

(
d
dt

∫ 1

0
φxtψ dx –

d
dt

∫ 1

0
φxψt dx

)

+
|�|
4

∫ 1

0
ψ2

tt dx

+ 2|�|
∫ 1

0
(φx + ψ)2 dx + 2|�|

∫ 1

0
ψ2

x dx. (4.38)

Let

N (t) :=
∫ 1

0
φxtψ dx –

∫ 1

0
φxψt dx.

Then (4.35) becomes

L′(t) + �N ′(t) ≤ –M2E1(t) +
|�|
4

∫ 1

0
ψ2

tt dx (4.39)

for M2 = M1 – 4|�|
γ

( 1
K + 1

b ) > 0. Let

F(t) = L(t) + �N (t) + N3
(
E1(t) + E2(t)

) ≥ 0 (4.40)

if N3 > max{C0|�| – γ1, |�|, |�|
4C }. Indeed, by using (4.11), (4.23), and ab ≤ 1

2 a2 + 1
2 b2, we

obtain

∣
∣N (t)

∣
∣ ≤

∣
∣
∣
∣

∫ 1

0
φxtψ dx

∣
∣
∣
∣ +

∣
∣
∣
∣

∫ 1

0
φxψt dx

∣
∣
∣
∣

≤ 1
2

∫ 1

0
φ2

xt dx +
1
2

∫ 1

0
ψ2 dx +

1
2

∫ 1

0
φ2

x dx +
1
2

∫ 1

0
ψ2

t dx

≤ 1
2

∫ 1

0
φ2

xt dx +
1
2

∫ 1

0
ψ2

x dx +
∫ 1

0
(φx + ψ)2 dx +

∫ 1

0
ψ2

x dx +
1
2

∫ 1

0
ψ2

t dx

≤ E2(t) + max

{
3

bγ
,

2
Kγ

,
1

ρ2γ

}

E1(t) := E2(t) + C0E1(t),
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where C0 = max{ 3
bγ

, 2
Kγ

, 1
ρ2γ

}. With the help of (4.33), we obtain

F(t) ≥ γ1E1(t) – |�|(E2(t) + C0E1(t)
)

+ N3
(
E1(t) + E2(t)

)

≥ (
N3 + γ1 – C0|�|)E1(t) +

(
N3 – |�|)E2(t) ≥ 0.

It is easy to prove that

c1
(
E1(t) + E2(t)

) ≤ F(t) ≤ c2
(
E1(t) + E2(t)

)
(4.41)

for some positive constants c1 and c2. By using (4.39) and (4.40), we obtain

F ′(t) = L′(t) + �N ′(t) + N3
(
E′

1(t) + E′
2(t)

)

≤ –M2E1(t) +
(

–CN3 +
|�|
4

)∫ 1

0
ψ2

tt dx.
(4.42)

Thanks to the choice of N3, we have

F ′(t) ≤ –M2E1(t). (4.43)

Integrating (4.43) over (0, t) yields

∫ t

0
E1(r) dr ≤ 1

M2

(
F(0) – F(t)

) ≤ 1
M2

F(0) ≤ c2

M2

(
E1(0) + E2(0)

)
.

Using the fact that

(
tE1(t)

)′ = tE′
1(t) + E1(t) ≤ E1(t),

we get that

tE1(t) ≤ c2

M2

(
E1(0) + E2(0)

)
.

This completes the proof of Theorem 4.1. �
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