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1 Introduction
In this paper, we consider the following quasilinear elliptic problem with critical Sobolev
exponent:

⎧
⎨

⎩

–εp�pu + V (x)|u|p–2u = Q(x)|u|p∗–2u + P(x)|u|q–2u, x ∈ �,

|∇u|p–2 ∂u
∂ν

= 0, x ∈ ∂�,
(1.1)

where � ⊂ RN is a bounded domain with smooth boundary, �pu = div(|∇u|p–2∇u), ε > 0,
1 < p < N , p < q < p∗ = Np

N–p , ν denotes the unit outward normal vector with respect to ∂�.
The weight functions V (x), Q(x) and P(x) are continuous on �. Such problems arise in
the theory of quasiregular and quasiconformal mapping or in the study of non-Newtonian
fluids. In the latter case, the p is a characteristic of the medium. Media with p > 2 are called
dilatant fluids and those with p < 2 are called pseudoplastics. If p = 2, they are Newtonian
fluids.

The early study of Laplacian elliptic equation with critical Sobolev exponent was Po-
hozaev [1], the author established the nonexistence of nontrivial solution to the Dirichlet
problems when � is a star-shaped domain with respect to the origin. Later, Brézis and
Nirenberg [2] showed the existence of positive solutions by introducing the low-order per-
turbation terms, and Struwe [3] also obtained the global compactness result. Since then,
the study of these elliptic problems with critical growth terms have been paid wide atten-
tions in recent years (see [4–7]). Set p = 2, ε = 1, P(x) = 0, V (x) = λ, then Problem (1.1)
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reduces to the following semilinear elliptic problem:

⎧
⎨

⎩

–�u + λu = Q(x)|u|2∗–2u, x ∈ �,
∂u
∂v = 0, x ∈ �.

(1.2)

Comte and Knaap [8] proved that there exists a nontrivial solution of problem (1.2) by
variational method if Q(x) = 1 and λ = –μ. Chabrowski and Willem [9] studied this prob-
lem with the assumption that the function Q(x) is nonnegative and Hölder continuous,
they obtained the existence of least energy solutions by solving minimization problem
corresponding to

Sλ = inf
u∈H1(�),

∫

� Q(x)|u|2∗ dx �=0

∫

�
(|∇u|2 + λu2) dx

(
∫

�
Q(x)|u|2∗ dx)

2
2∗

.

Subsequently, Chabrowski and Girão [10] investigated the existence and nonexistence of
least energy solutions when the function Q(x) has some symmetry properties. For more
relevant information as regards the corresponding problems, the interested reader may
refer to [11–21] and the references therein.

As for quasilinear elliptic problems with critical Sobolev exponent, the existence and
multiplicity of solutions have also been studied extensively. Abreu et al. [22] studied the
following nonhomogeneous Neumann boundary problems:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu + λup–1 = uq, x ∈ �,

u > 0, x ∈ �,

|∇u|p–2 ∂u
∂v = ϕ, x ∈ ∂�,

(1.3)

where p – 1 < q ≤ p∗ – 1, ϕ ∈ Cα(�), 0 < α < 1, ϕ �≡ 0. They proved that there exists a λ∗ > 0
such that problem (1.3) has at least two positive solutions if λ > λ∗, has at least one positive
solution if λ = λ∗ and has no positive solution if λ < λ∗ relying on the lower and upper so-
lutions method and variational approach. Zhao et al. [23] discussed the quasilinear elliptic
problem of the form

⎧
⎨

⎩

–�pu + λ(x)|u|p–2u = |u|p∗–2u + |u|r–2u, x ∈ �,

|∇u|p–2 ∂u
∂v = η|u|p–2u, x ∈ ∂�,

(1.4)

they showed that there exists at least a nontrivial solution when p < r < p∗ and there ex-
ist infinitely many solutions when 1 < r < p by using the Mountain pass theorem and the
concentration-compactness principle. Some authors also studied the critical Sobolev ex-
ponent for quasilinear equations and the corresponding evolution problems with Neu-
mann boundary conditions, the reader may also refer to [24–37].

Motivated by the results of the above papers, we discuss the existence of nontrivial non-
negative solutions to Problem (1.1) by a variational method. The special features of this
problem are the following. Firstly, due to the lack of compactness of the embedding of
W 1,p(�) ↪→ Lp∗ (�), we cannot use the standard variational argument directly. In order to
overcome this difficulty and obtain the existence of solutions, we have to add restrictions
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on the weight functions Q(x) and P(x) to prove the corresponding functional of Problem
(1.1) satisfies (PS)c-condition in a suitable range by the Lions concentration-compactness
principle. Secondly, the weight function V (x) may be unbounded near the boundary ∂�,
which leads to the space W 1,p(�) is not suitable for our problem. To solve such problem,
we have to introduce a suitable weighted Sobolev space.

For the sake of convenience, we introducing a new parameter λ = ε–p, then Problem (1.1)
may be rewritten as the following problem:

⎧
⎨

⎩

–�pu + λV (x)|u|p–2u = λQ(x)|u|p∗–2u + λP(x)|u|q–2u, x ∈ �,

|∇u|p–2 ∂u
∂ν

= 0, x ∈ ∂�.
(1.5)

Throughout this paper, we make some assumptions on the weight functions Q(x), P(x),
V (x) as the following:

(A1) Q(x), P(x) are continuous on �, and Q(x) > 0, P(x) ≥ 0 for x ∈ �;
(A2) V (x) is continuous in �, and V (x) ≥ 0, V (x) �≡ 0 for x ∈ �.
Set Qm = maxx∈∂� Q(x), QM = maxx∈� Q(x), PM = maxx∈� P(x). The main results of this

paper are the following.

Theorem 1.1 Suppose that (A1), (A2) hold, H(0) > 0 and Qm = Q(0). If functions Q(x),
V (x) satisfy

(A3) QM ≤ 2
p

N–p Qm, and |Q(x) – Q(0)| = o(|x|α) as x → 0, where 1 < α < N
p–1 ;

(A4)
∫

�∩B(0,δ) V r′ dx < ∞, where 1
r + 1

r′ = 1, 1 < r < N(p–1)
Np+2p–N–p2–1 , δ > 0.

Then Problem (1.5) has at least one nontrivial solution for every λ > 0 and N ≥ 2p, where
H(0) will be later determined.

Theorem 1.2 Suppose that (A1), (A2) hold. If QM > 2
p

N–p Qm and functions P(x), V (x) sat-
isfy

(A5) P(x) �≡ 0 for x ∈ �, and V ∈ L1(�).
Then there exists a λ∗ > 0 such that Problem (1.5) has at least one nontrivial solution for

0 < λ < λ∗.

Theorem 1.3 Suppose that (A1), (A2) hold. If QM > 2
p

N–p Qm and functions P(x), V (x) sat-
isfy

(A6) P(x) > 0 for x ∈ �;
(A7) there exist x0 ∈ � and constant δ > 0 such that V (x) = 0 for x ∈ B(x0, δ) ⊂ �.
Then there exists a λ∗ > 0 such that Problem (1.5) has at least one nontrivial solution for

λ > λ∗.

Theorem 1.4 Suppose that (A1), (A2) hold. If QM > 2
p

N–p Qm and functions P(x), V (x) sat-
isfy the conditions (A6) and (A7). Then, for every integer n, there exists a constant n > 0
such that Problem (1.5) has at least n pairs of nontrivial solutions for λ > n.

2 Preliminaries
Firstly, we define the weighted Sobolev space

W 1,p
λ,V (�) =

{

u; Diu ∈ Lp(�), i = 1, 2, . . . , N ,
∫

�

V (x)|u|p dx < +∞
}
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with norm ‖u‖λ,V = (
∫

�
(|∇u|p + λV (x)|u|p) dx)

1
p . Obviously, norms ‖u‖λ,V and ‖u‖V are

equivalent, W 1,p
λ,V (�) ↪→ W 1,p(�), where ‖u‖V = (

∫

�
(|∇u|p + V (x)|u|p) dx)

1
p .

By using the Sobolev embedding theorem, we know that there exists a constant Cq > 0
such that

|u|q ≤ Cq‖u‖V ≤ Cq‖u‖λV , for λ ≥ 1, u ∈ W 1,p
λ,V (�), (2.1)

and

|u|q ≤ Cq‖u‖V ≤ λ
– 1

p Cq‖u‖λV , for 0 < λ < 1, u ∈ W 1,p
λ,V (�), (2.2)

where |u|q = (
∫

�
|u|q dx)

1
q , q ∈ (p, p∗).

Next, we give the definition of weak solution to Problem (1.5).

Definition 2.1 A function u ∈ W 1,p
λ,V (�) is said to be a weak solution of Problem (1.5) if it

satisfies

∫

�

|∇u|p–2∇u∇ψ dx + λ

∫

�

V (x)|u|p–2uψ dx

= λ

∫

�

Q(x)|u|p∗–2uψ dx + λ

∫

�

P(x)|u|q–2uψ dx, ∀ψ ∈ W 1,p
λ,V (�).

Thus, the corresponding energy functional of Problem (1.5) is defined in W 1,p
λ,V (�) by

Jλ(u) =
1
p

∫

�

(|∇u|p + λV (x)|u|p)dx –
λ

p∗

∫

�

Q(x)|u|p∗
dx –

λ

q

∫

�

P(x)|u|q dx.

Let S be the best Sobolev constants, namely

S = inf
D1,p(RN )\{0}

∫

�
|∇u|p dx

(
∫

�
|u|p∗ dx)

p
p∗

, (2.3)

where D1,p(RN ) = {u ∈ Lp∗ (RN ) : |∇u| ∈ Lp(RN )}. This constant S is achieved by the func-
tional uε given by

uε(x) = CNpε
N–p
p2 (

ε + |x| p
p–1

) p–N
p ,

where the constant CNp is chosen such that –�puε = |uε|p∗–1 in RN (see [22] for details).
In order to obtain the existence of solutions to Problem (1.5), we need the following

lemma.

Lemma 2.1 For each λ > 0,
(i) there exist constants βλ,ρλ > 0 such that Jλ(u) ≥ βλ for ‖u‖λV = ρλ;

(ii) there exists an u0 ∈ W 1,p
λ,V (�) with u0 �≡ 0 such that Jλ(u0) < 0 for ‖u0‖λV > ρλ.
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Proof (i) Firstly, we consider the case λ ≥ 1. let ‖u‖p
V = ρp, then ρ

p
λ = ‖u‖p

λV ≤ λρp. Using
(2.1) and (2.3), we have

Jλ(u) ≥ 1
p
‖u‖p

λV –
λ

p∗ QMS– p∗
p

(∫

�

|∇u|p dx
) p∗

p
–

λ

q
PMCq

q‖u‖q
λV

≥ 1
p
‖u‖p

λV –
λ

p∗ QMS– p∗
p ‖u‖p∗

λV –
λ

q
PMCq

q‖u‖q
λV

≥ ρ
p
λ

(
1
p

–
λ

p∗
p

p∗ QMS– p∗
p ρp∗–p –

λ
q
p

q
PMCq

qρ
q–p

)

.

Since p < q < p∗, taking ρ > 0 small enough, there exists a βλ > 0 such that Jλ(u) ≥ βλ for
‖u‖λV = ρλ.

If 0 < λ < 1, let ‖u‖p
V = ρp, then ρ > ρλ > λ

1
p ρ . Combining (2.2) with (2.3), we see that

Jλ(u) ≥ 1
p
‖u‖p

λV –
λ

p∗ QMS– p∗
p ‖u‖p∗

V –
λ

q
PMCq

q‖u‖q
V

> λρp
(

1
p

–
1
p∗ QMS– p∗

p ρp∗–p –
1
q

PMCq
qρ

q–p
)

.

Since p < q < p∗, taking ρ > 0 small enough, there exists a βλ > 0 such that Jλ(u) ≥ βλ for
‖u‖λV = ρλ.

(ii) For u ∈ W 1,p
λ,V (�) and u �≡ 0, we define

Jλ(tu) =
tp

p
‖u‖p

λV –
tp∗

p∗ λ

∫

�

Q(x)|u|p∗
dx –

tq

q
λ

∫

�

P(x)|u|q dx, t > 0,

it follows from limt→+∞ Jλ(tu) = –∞ that there exists a t0 > 0 such that ‖t0u‖λV > ρλ and
Jλ(t0u) < 0. Letting u0 = t0u, then condition (ii) holds. The proof of Lemma 2.1 is com-
pleted. �

Define

c = inf
h∈�

sup
t∈[0,1]

Jλ
(
h(t)

)
,

where � = {h ∈ C([0, 1], W 1,p
λ,V (�)) | h(0) = 0, h(1) = t0u = u0}. Using Lemma 2.1, we know

that the energy functional Jλ(u) satisfies the geometry of the mountain pass lemma, then
there exists a (PS)c-sequence {un} ⊂ W 1,p

λ,V (�) such that Jλ(un) → c, J ′
λ(un) → 0 as n → ∞.

Lemma 2.2 Assume (A1), (A2) hold, and {un} be a (PS)c-sequence at the level of c for Jλ
with c < c∗ = min{ S

N
p

Nλ
N–p

p Q
N–p

p
M

, S
N
p

2Nλ
N–p

p Q
N–p

p
m

}, then {un} is relatively compact in W 1,p
λ,V (�).

Proof Firstly, we prove that {un} is bounded. Since Jλ(un) → c, J ′
λ(un) → 0 as n → ∞, we

have

Jλ(un) =
1
p

∫

�

(|∇un|p + λV (x)|un|p
)

dx –
λ

p∗

∫

�

Q(x)|un|p∗
dx –

λ

q

∫

�

P(x)|un|q dx

= c + o(1)‖un‖,
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∫

�

(|∇un|p + λV (x)|un|p
)

dx – λ

∫

�

Q(x)|un|p∗
dx – λ

∫

�

P(x)|un|q dx

= o(1)‖un‖.

Combining (A1) and (A2), one has

c + o(1)‖un‖ =
(

1
p

–
1
q

)∫

�

(|∇un|p + λV (x)|un|p
)

dx + λ

(
1
q

–
1
p∗

)∫

�

Q(x)|un|p∗
dx

≥
(

1
p

–
1
q

)

‖un‖p
λV .

Thus, we can find that {un} is bounded in W 1,p
λ,V (�).

Next, we prove that {un} is relatively compact in W 1,p
λ,V (�). Since {un} is bounded in

W 1,p
λ,V (�), there exists a subsequence, still denoted by {un} and u ∈ W 1,p

λ,V (�) such that

un ⇀ u weakly in W 1,p
λ,V (�),

un ⇀ u weakly in Lp∗
(�),

un → u strongly in Lq(�), p ≤ q < p∗,

un → u a.e. in �.

By the Lions concentration-compactness principle [38], there exists at most set J , a set of
different points {xj}j∈J ⊂ �, sets of nonnegative real numbers {μj}j∈J , {νj}j∈J such that

|∇un|p ⇀ dμ ≥ |∇u|p +
∑

j∈J

μjδxj ,

|un|p∗
⇀ dν = |u|p∗

+
∑

j∈J

νjδxj ,
(2.4)

where δx is the Dirac mass at x, and the constants μj, νj satisfying

Sν

p
p∗

j ≤ μj, where xj ∈ �, (2.5)

S
2

p
N

ν

p
p∗

j ≤ μj, where xj ∈ ∂�. (2.6)

Next, we prove μj = 0 and νj = 0, where j ∈ J . In fact, choosing ε > 0 sufficiently small
such that Bε(xi)∩Bε(xj) = ∅ for i �= j, i, j ∈ J . Let φ

j
ε(x) be a smooth cut off function centered

at xj such that

0 ≤ φj
ε(x) ≤ 1 for |x – xj| < ε, φj

ε(x) =

⎧
⎨

⎩

1, |x – xj| ≤ ε
2 ,

0, |x – xj| ≥ ε,
and

∣
∣∇φj

ε

∣
∣ ≤ 4

ε
.

Noting that

〈
J ′
λ(un), unφ

j
ε(x)

〉

=
∫

�

|∇un|pφj
ε(x) dx +

∫

�

|∇un|p–2∇un∇φj
ε(x)un dx



Li and Xia Boundary Value Problems  (2018) 2018:66 Page 7 of 17

+ λ

∫

�

V (x)|un|pφj
ε(x) dx – λ

∫

�

Q(x)|un|p∗
φj

ε(x) dx

– λ

∫

�

P(x)|un|qφj
ε(x) dx,

and by (2.4), we have

lim
ε→0

lim
n→∞

∫

�

|∇un|pφj
ε(x) dx ≥ lim

ε→0

[∫

�

|∇u|pφj
ε(x) dx +

∫

�

∑

j∈J

μjδxjφ
j
ε(x) dx

]

≥ μj,

lim
ε→0

lim
n→∞

∫

�

|∇un|p–2∇un∇φj
ε(x)un dx = 0,

lim
ε→0

lim
n→∞

∫

�

V (x)|un|pφj
ε(x) dx = 0,

lim
ε→0

lim
n→∞

∫

�

Q(x)|un|p∗
φj

ε(x) dx = Q(xj)νj,

lim
ε→0

lim
n→∞

∫

�

P(x)|un|qφj
ε(x) dx = 0.

Thus,

0 = lim
ε→0

lim
n→∞

〈
J ′
λ(un), unφ

j
ε(x)

〉 ≥ μj – λQ(xj)νj.

If νj �= 0, by (2.5) and (2.6), we find that

νj ≥ S
N
p

λ
N
p Q

N
p (xj)

, xj ∈ �,

νj ≥ S
N
p

2λ
N
p Q

N
p (xj)

, xj ∈ ∂�.

On the other hand,

c = lim
n→∞

(

Jλ(un) –
1
p
〈
J ′
λ(un), un

〉
)

=
(

1
p

–
1
p∗

)

λ

∫

�

Q(x)|u|p∗ dx +
(

1
p

–
1
q

)

λ

∫

�

P(x)|u|q dx +
(

1
p

–
1
p∗

)

λ
∑

j∈J

Q(xj)νj

≥ 1
N

λ
∑

j∈J

Q(xj)νj,

consequently,

c ≥ 1
N

λQ(xj)νj ≥ S
N
p

Nλ
N–p

p Q
N–p

p
M

, xj ∈ �,

c ≥ 1
N

λQ(xj)νj ≥ S
N
p

2Nλ
N–p

p Q
N–p

p
m

, xj ∈ ∂�,

which is a contradiction. Hence, μj = 0, νj = 0 and we find that un → u strongly in Lp∗ (�).
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Now, we prove that un → u strongly in W 1,p
λ,V (�). We have

〈
J ′
λ(un) – J ′

λ(u), un – u
〉

= ‖un‖p
λ,V + ‖u‖p

λ,V –
∫

�

(|∇un|p–2∇un∇u + λV (x)|un|p–2unu
)

dx

–
∫

�

(|∇u|p–2∇u∇un + λV (x)|u|p–2uun
)

dx – I – II,

where

I = λ

∫

�

Q(x)
(|un|p∗–2un – |u|p∗–2u

)
(un – u) dx,

II = λ

∫

�

P(x)
(|un|q–2un – |u|q–2u

)
(un – u) dx.

By the Hölder inequality and Jensen’s inequality

(a + b)α(c + d)1–α ≥ aαc1–α + bαd1–α ,

where α ∈ (0, 1), a > 0, b > 0, c > 0, d > 0, we have
∫

�

(|∇un|p–2∇un∇u + λV (x)|un|p–2unu
)

dx

≤
(∫

�

|∇un|p dx
) p–1

p
(∫

�

|∇u|p dx
) 1

p

+
(

λ

∫

�

V (x)|un|p dx
) p–1

p
(

λ

∫

�

V (x)|u|p dx
) 1

p

≤
(∫

�

|∇un|p + λV (x)|un|p dx
) p–1

p
(∫

�

|∇u|p + λV (x)|u|p dx
) 1

p
= ‖un‖p–1

λV ‖u‖λV .

Similarly, we get
∫

�

(|∇u|p–2∇u∇un + λV (x)|u|p–2uun
)

dx ≤ ‖u‖p–1
λV ‖un‖λV ,

|I| ≤ λQM

[∫

�

|un|p∗–1|un – u|dx +
∫

�

|u|p∗–1|un – u|dx
]

≤ λQM

(∫

�

|un|p∗ dx
) p∗–1

p∗ (∫

�

|un – u|p∗ dx
) 1

p∗

+ λQM

(∫

�

|u|p∗ dx
) p∗–1

p∗ (∫

�

|un – u|p∗ dx
) 1

p∗
,

|II| ≤ λPM

[∫

�

|un|q–1|un – u|dx +
∫

�

|u|q–1|un – u|dx
]

≤ λPM

(∫

�

|un|q dx
) q–1

q
(∫

�

|un – u|q dx
) 1

q

+ λPM

(∫

�

|u|q dx
) q–1

q
(∫

�

|un – u|q dx
) 1

q
.
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We have

0 = lim
n→∞

〈
J ′
λ(un) – J ′

λ(u), un – u
〉 ≥ lim

n→∞
(‖un‖p–1

λV – ‖u‖p–1
λV

)(‖un‖λV – ‖u‖λV
) ≥ 0.

Hence, un → u strongly in W 1,p
λ,V (�). �

Since 0 ∈ ∂� and ∂� ∈ C2, the boundary ∂� near the origin can be represented xN =
h(x′) = 1

2
∑N–1

i=1 λix2
i + o(|x′|2), where x′ = (x1, x2, . . . , xN–1) ∈ D(0, δ) = B(0, δ) ∩ {xN = 0},λi

(i = 1, 2, . . . , N – 1) are the principal curvatures of ∂� at 0 and the mean curvatures H(0) =
1

N–1
∑N–1

i=1 λi > 0. Then the following lemma holds.

Lemma 2.3 ([22])
(1) For N > 2p – 1 and ε > 0 small enough,

∫

�

|∇uε|p dx =
∫

RN
+

|∇uε|p dx – K1(ε) + o
(
ε

p–1
p

)
,

∫

�

|uε|p∗
dx =

∫

RN
+

|uε|p∗
dx – K2(ε) + o

(
ε

p–1
p

)
,

where K1(ε), K2(ε) satisfy

lim
ε→0

ε
– p–1

p K1(ε) =
1
2

H(0)Cp
Np

(
N – p
p – 1

)p ∫

RN–1

(
1 +

∣
∣x′∣∣

p
p–1

)–N ∣
∣x′∣∣

3p–2
p–1 dx′ = K1,

lim
ε→0

ε
– p–1

p K2(ε) =
1
2

H(0)Cp∗
Np

∫

RN–1

(
1 +

∣
∣x′∣∣

p
p–1

)–N ∣
∣x′∣∣2 dx′ = K2.

(2)

∫

�

|uε|p dx =

⎧
⎪⎪⎨

⎪⎪⎩

O(ε
N–p

p ), N < p2,

O(ε
N–p

p | ln ε|), N = p2,

O(εp–1), N > p2.

(3)

∫

�

|uε|q dx =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

O(ε
q(N–p)

p2 ), q < N(p–1)
N–p ,

O(ε
q(N–p)

p2 | ln ε|), q = N(p–1)
N–p ,

O(ε
(p–1)(Np–q(N–p))

p2 ), q > N(p–1)
N–p .

3 Proof of main results
Let ϕ(x) ∈ C∞

0 (RN ) be a smooth cut off function such that

0 ≤ ϕ(x) ≤ 1,
δ

2
≤ |x| ≤ δ;

ϕ(x) = 1, |x| <
δ

2
;

ϕ(x) = 0, |x| > δ.

Define ωε = ϕuε , then we have the following lemma about ωε .
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Lemma 3.1 Suppose N ≥ 2p, 0 ∈ ∂�. If the function V (x) satisfies
∫

�∩B(0,δ) V r′ dx < ∞,
then

∫

�∩B(0,δ)
Vωp

ε dx = O
(
ε

N–p
p +p–N+ N(p–1)

pr
)
,

where 1
r + 1

r′ = 1, 1 < r < N(p–1)
Np+2p–N–p2–1 .

Proof According to the Hölder inequality and the definition of ωε , we have

∫

�∩B(0,δ)
Vωp

ε dx ≤
(∫

�∩B(0,δ)
V r′ dx

) 1
r′
(∫

�∩B(0,δ)
ωpr

ε dx
) 1

r

≤ ε
(N–p)

p Cp
Np

(∫

�∩B(0,δ)
V r′ dx

) 1
r′
(∫

B(0,δ)

(
ε + |x| p

p–1
)r(p–N) dx

) 1
r

= ε
N–p

p +p–N+ N(p–1)
pr Cp

Np

(∫

�∩B(0,δ)
V r′ dx

) 1
r′

×
(∫

B(0,δε– p–1
p )

(
1 + |x| p

p–1
)r(p–N) dx

) 1
r
.

Noting that N(p–1)
(N–p)p ≤ 1 < r, a series of computations yield

∫

�∩B(0,δ)
Vωp

ε dx = O
(
ε

N–p
p +p–N+ N(p–1)

pr
)
. �

Lemma 3.2 Suppose that (A1), (A2) hold and 0 ∈ ∂�, H(0) > 0, Qm = Q(0). If the functions
Q(x), V (x) satisfy the conditions (A3), (A4), then there exists a nonnegative function v ∈
W 1,p

λ,V (�), v �≡ 0, such that

sup
t≥0

Jλ(tv) < c∗ (3.1)

for each λ > 0, N ≥ 2p.

Proof We divide the proof into three steps.
(i) We consider the functional

g(t) = Jλ(tωε)

=
tp

p

∫

�

(|∇ωε|p + λV (x)|ωε|p
)

dx –
tp∗

p∗ λ

∫

�

Q(x)|ωε|p∗ dx

–
tq

q
λ

∫

�

P(x)|ωε|q dx, t > 0.

Noting that limt→∞ g(t) = –∞, g(0) = 0, g(t) > 0 for t → 0+, we know that there exists a
tε > 0 such that supt>0 g(t) is attained for tε and tε is uniformly bounded for ε > 0 sufficiently
small. Thus,

g(tε) = sup
t≥0

Jλ(tωε)
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≤ sup
t≥0

[
tp

p

∫

�

|∇ωε|p dx –
tp∗

p∗ λ

∫

�

Q(x)|ωε|p∗
dx

]

+
tp
ε

p

∫

�

λV (x)|ωε|p dx –
tq
ε

q
λ

∫

�

P(x)|ωε|q dx

=
1
N

[ ∫

�
|∇ωε|p dx

(λ
∫

�
Q(x)|ωε|p∗ dx)

N–p
N

] N
p

+
tp
ε

p

∫

�

λV (x)|ωε|p dx

–
tq
ε

q
λ

∫

�

P(x)|ωε|q dx. (3.2)

(ii) When ε > 0 is sufficiently small, we have

∫

�

Q(x)|ωε|p∗
dx = Qm

∫

�

|uε|p∗
dx + o

(
ε

p–1
p

)
,

∫

�

|∇ωε|p dx ≤
∫

�

|∇uε|p dx + o
(
ε

p–1
p

)
,

∫

�

|ωε|q dx =
∫

�

|uε|q dx + o
(
ε

p–1
p

)
,

∫

�

|ωε|p∗
dx =

∫

�

|uε|p∗
dx + o

(
ε

p–1
p

)
.

(3.3)

We firstly prove the first formula. Since |Q(x) – Q(0)| = o(|x|α) for x → 0, there exists a
0 < δ0 ≤ δ such that |Q(x) – Q(0)| ≤ C|x|α for |x| < δ0, where C > 0 is constant. Moreover

∫

�

∣
∣Q(x) – Q(0)

∣
∣|ωε|p∗

dx

≤
∫

�∩|x|≤δ0

∣
∣Q(x) – Q(0)

∣
∣|ωε|p∗ dx +

∫

�∩|x|≥δ0

∣
∣Q(x) – Q(0)

∣
∣|ωε|p∗ dx

≤ C
∫

|x|≤δ0

|x|α|ωε|p∗
dx + 2QM

∫

�∩|x|≥δ0

|ωε|p∗
dx

≤ CCp∗
Npε

(p–1)α
p

∫

|x|≤ δ0

ε

p–1
p

|x|α(
1 + |x| p

p–1
)–N dx

+ 2QMCp∗
Npε

N
p

∫

�∩|x|≥δ0

(
ε + |x| p

p–1
)–N dx

= O
(
ε

(p–1)α
p

)
+ O

(
ε

N
p
)
.

Since N ≥ 2p, 1 < α < N
p–1 ,

∫

�
|Q(x) – Q(0)||ωε|p∗ dx = o(ε

p–1
p ), which implies

∫

�

Q(x)|ωε|p∗ dx

= Qm

∫

�

|ωε|p∗
dx +

∫

�

(
Q(x) – Q(0)

)|ωε|p∗
dx

= Qm

∫

�

|ωε|p∗
dx + o

(
ε

p–1
p

)
.

Similarly, we can evaluate the rest of formulas and omit the details here.
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(iii) supt≥0 Jλ(tωε) < c∗.
Combining (3.3) with Lemma 2.3, one has

∫

�

|∇ωε|p dx ≤ M1
(
1 – M–1

1 K1
(
ε) + o

(
ε

p–1
p

))
,

∫

�

|ωε|p∗
dx = M2

(
1 – M–1

2 K2
(
ε) + o

(
ε

p–1
p

))
,

where M1 = 1
2
∫

RN |∇uε|p dx, M2 = 1
2
∫

RN |uε|p∗ dx. Then, using (3.2), (3.3), Lemma 2.3 and
Lemma 3.1, we see that

sup
t≥0

Jλ(tωε) ≤ S
N
p

2N(λQm)
N–p

p

[

1 +
N – p

p
M–1

2 K2(ε) –
N
p

M–1
1 K1(ε) + o

(
ε

p–1
p

)
]

+ O
(
ε

N–p
p +p–N+ (p–1)N

pr
)
.

Next, we claim that

lim
ε→0

ε
p–1

p

[
N – p

p
M–1

2 K2(ε) –
N
p

M–1
1 K1(ε)

]

< 0 (3.4)

for ε > 0 small enough, which implies (3.1) holds. According to limε→0 ε
p–1

p K1(ε) = K1,
limε→0 ε

p–1
p K2(ε) = K2, we know that (3.4) is equivalent to K1

K2
> N–p

N
M1
M2

.
From the expressions of K1, K2, M1, M2 and uε , a series of computations yield

K1

K2
=

1
2 H(0)Cp

Np( N–p
p–1 )p ∫

RN–1 (1 + |x′| p
p–1 )–N |x′| 3p–2

p–1 dx′

1
2 H(0)Cp∗

Np
∫

RN–1 (1 + |x′| p
p–1 )–N |x′|2 dx′

= Cp–p∗
Np

(
N – p
p – 1

)p ∫ ∞
0 (1 + r2)–N r

2Np+3p–2N–2
p dr

∫ ∞
0 (1 + r2)–N r

2Np+p–2N–2
p dr

,

N – p
N

M1

M2
=

N – p
N

∫

RN |∇uε|p dx
∫

RN |uε|p∗ dx

=
N – p

N
Cp–p∗

Np

(
N – p
p – 1

)p ∫ ∞
0 (1 + r2)–N r

2Np+p–2N
p dr

∫ ∞
0 (1 + r2)–N r

2Np–p–2N
p dr

.

Integrating by parts, we have

∫ ∞

0

rβ

(1 + r2)n dr =
β – 1

2n – β – 1

∫ ∞

0

rβ–2

(1 + r2)n dr for 2 ≤ β < 2n – 1.

Then

K1

K2
= Cp–p∗

Np

(
N – p
p – 1

)p (p – 1)(N + 1)
N – 2p + 1

,

N – p
N

M1

M2
= Cp–p∗

Np

(
N – p
p – 1

)p

(p – 1).
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This implies K1
K2

> N–p
N

M1
M2

. Thus

sup
t≥0

Jλ(tωε) <
S

N
p

2N(λQm)
N–p

p
= c∗.

The proof of Lemma 3.2 is complete. �

Proof of Theorem 1.1 Applying Lemma 2.1 and Lemma 3.2, we obtain

c = inf
h∈�

max
t∈[0,1]

Jλ
(
h(t)

) ≤ sup
t≥0

Jλ(tωε) < c∗.

From Lemma 2.2 and the mountain pass theorem, we know that there exists at least one
nontrivial solution to Problem (1.5). Since Jλ(u) ≥ Jλ(|u|), Problem (1.5) has at least one
nonnegative nontrivial solution. The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2 Consider the following function:

h(t) = Jλ(tu)

=
tp

p

∫

�

(|∇u|p + λV (x)|u|p)dx –
tp∗

p∗ λ

∫

�

Q(x)|u|p∗ dx

–
tq

q
λ

∫

�

P(x)|u|q dx, t > 0.

Since V ∈ L1(�), we find that

sup
t≥0

h(t) = sup
t≥0

[
tp

p

∫

�

λV (x)|A|p dx –
tp∗

p∗ λ

∫

�

Q(x)|A|p∗
dx –

tq

q
λ

∫

�

P(x)|A|q dx
]

≤ λ

N

[ ∫

�
V (x) dx

(
∫

�
Q(x) dx)

N–p
N

] N
p

for u = A.

Then supt≥0 Jλ(tA) < c∗ for λ < S(
∫

� Q(x) dx)
N–p

N

Q
N–p

N
M

∫

� V (x) dx
.

Similarly,

Jλ(tA) = sup
t≥0

h(t)

= sup
t≥0

[
tp

p

∫

�

λV (x)|A|p dx –
tp∗

p∗ λ

∫

�

Q(x)|A|p∗
dx –

tq

q
λ

∫

�

P(x)|A|q dx
]

≤ λ

(
q – p

pq

) (
∫

�
V (x) dx)

q
q–p

(
∫

�
P(x) dx)

p
q–p

< c∗

for λ < ( pq
q–p )

p
N S

N
p
N Q

N–p
N

M

(
∫

� P(x) dx)
p2

N(q–p)

(
∫

� V (x) dx)
pq

N(q–p)
.
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Set

λ∗ = max

{S(
∫

�
Q(x) dx)

N–p
N

Q
N–p

N
M

∫

�
V (x) dx

,
(

pq
q – p

) p
N S

N
p
N Q

N–p
N

M

(
∫

�
P(x) dx)

p2
N(q–p)

(
∫

�
V (x) dx)

pq
N(q–p)

}

,

then we have supt≥0 Jλ(tA) < c∗ for 0 < λ < λ∗. Similar to the proof of Theorem 1.1, Prob-
lem (1.5) has at least one nonnegative nontrivial solution. The proof of Theorem 1.2 is
complete. �

Proof of Theorem 1.3 Define

K = inf
u∈W 1,p

0 (B(x0,δ))\{0}

∫

B(x0,δ) |∇u|p dx

(
∫

B(x0,δ) |u|q dx)
p
q

.

Since p < q < p∗, as is well known, there exists a function w ∈ W 1,p
0 (B(x0, δ)) such that

K =

∫

B(x0,δ) |∇w|p dx

(
∫

B(x0,δ) |w|q dx)
p
q

.

Thus,

sup
t≥0

Jλ(tw) ≤ sup
t≥0

[
tp

p

∫

B(x0,δ)

(|∇w|p + λV (x)|w|p)dx –
tq

q
λ

∫

B(x0,δ)
P(x)|w|q dx

]

≤ q – p
pq

(
∫

B(x0,δ) |∇w|p dx)
q

q–p

P
p

q–p
m (

∫

B(x0,δ) λ|w|q dx)
p

q–p

=
q – p

pq
K

q
q–p

λ
p

q–p P
p

q–p
m

.

Let λ∗ = ( N(q–p)K
q

q–p Q
N–p

p
M

pqS
N
p P

p
q–p
m

)
p(q–p)

Np+pq–Nq , where Pm = minx∈B(x0,δ) P(x), then supt≥0 Jλ(tw) < c∗ for

λ > λ∗. Similar to the proof of Theorem 1.1, Problem (1.5) has at least one nonnegative
nontrivial solution for λ > λ∗. The proof of Theorem 1.3 is complete. �

Proof of Theorem 1.4 Fix n ∈ N , let ϕ1, ϕ2, . . . ,ϕn ∈ C∞
0 (RN ) be smooth functions such that

suppϕj ⊂ B(x0, δ), j = 1, 2, . . . , n, suppϕi ∩ suppϕj = ∅, i �= j.
We define En = Span{ϕ1,ϕ2, . . . ,ϕn}, � is the set of all symmetric and closed subsets of

W 1,p
V (�), γ (A) is the Krasnoselski genus,

i(A) = min
h∈�

γ
(
h(A)

) ∩ ∂Bβλ
), A ∈ �,

where � is the set of all odd homomorphisms C1(W 1,p
V (�), W 1,p

V (�)).
Set

cj = inf
i(A)≥j

sup
u∈A

Jλ(u), j = 1, 2, . . . , n.
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Since i(En) = dim En = n and Jλ(u) ≥ βλ for ‖u‖λV = ρλ in Lemma 2.1, we find that

βλ ≤ c1 ≤ c2 ≤ · · · ≤ cn ≤ sup
u∈En

Jλ(u).

We now estimate supu∈En Jλ(u). If u ∈ En, one has u =
∑n

j=1 τjϕj for τj ∈ R. From the prop-
erties of ϕj, we obtain

sup
u∈En

Jλ(u) = sup
u∈En

( n∑

j=1

Jλ(τjϕj)

)

≤ sup
u∈En

n∑

j=1

[
τ

p
j

p

∫

B(x0,δ)

(|∇ϕj|p + λV (x)|ϕj|p
)

dx –
τ

q
j

q
λ

∫

B(x0,δ)
P(x)|ϕj|q dx

]

≤ q – p
pq

n∑

j=1

(
∫

B(x0,δ) |∇ϕj|p dx)
q

q–p

λ
p

q–p P
p

q–p
m (

∫

B(x0,δ) |ϕj|q dx)
p

q–p

.

Consequently, there exists a n > 0 such that supu∈En Jλ(u) < c∗ for λ > n. Similar to the
proof of Theorem 1.1, Problem (1.5) has at least n pairs of nonnegative nontrivial solutions.
The proof of Theorem 1.4 is complete. �

4 Conclusion
In this paper, we study the following quasilinear Neumann problem with critical Sobolev
exponent:

⎧
⎨

⎩

–εp�pu + V (x)|u|p–2u = Q(x)|u|p∗–2u + P(x)|u|q–2u, x ∈ �,

|∇u|p–2 ∂u
∂ν

= 0, x ∈ ∂�,

where the weight functions V (x) is continuous in � and Q(x), P(x) are continuous on �.
Due to the lack of compactness of the embedding of W 1,p(�) ↪→ Lp∗ (�) and the fact that
the weight function V (x) may be unbounded close to the boundary ∂�, some classical
methods may not directly be applied to our problem. We introduce a suitable weighted
Sobolev space and add restrictions on the weight functions Q(x) and P(x) to prove the cor-
responding functional of problem satisfies (PS)c-condition in a suitable range by the Lions
concentration-compactness principle, then apply the mountain pass lemma, the existence
and multiplicity of nontrivial solutions are obtained.
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