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Abstract

In this paper, we study the dynamics of blow-up solutions for the nonlinear
Schroédinger-Choquard equation

e+ A =M PP+ Ao (o 1Y P2 1Y 1722

We first show existence of blow-up solutions and obtain a sharp threshold mass of
global existence and blow-up for this equation with A1 >0, A, <0,0< p; < % and
pr=1+ “T"‘ Then we obtain some dynamical properties of blow-up solutions by the

corresponding ground state of this equation with A; =0.
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1 Introduction
In this paper, we will investigate the blow-up solutions of the nonlinear Schrédinger—
Choquard equation

W+ AY = M [P+ ol 1Y )Y 1272,
1p(o’x) = 1po(x)r

(1.1)

where (¢, x) : [0, T*) x RN — C is a complex valued function and 0 < T* < oo, N > 3,
Yoe H, 0<p < ﬁ, 1+ <pr<l+ %, A2 € R, I, : RN — R is the Riesz potential
defined by

r(&e)

I, (x) = ,
«(¥) r(%)nN/22a|x|N—a

with max{0, N — 4} <« < N and I is the Gamma function.
Our main motivation for studying Eq. (1.1) is the loss of scaling invariance for this equa-
tion. When p; > 0, there exists a scaling transform for the nonlinear Choquard equation,

Ve + A = o (Lo * [y 1P2) 1 P22, (1.2)
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which keeps it invariant. More precisely, the map

Iﬂ(t,x)r—>)»_2g22w<)\—t2,;> (1.3)

maps a solution to (1.2) to another solution to (1.2). When p, = 1 + =% 2*“

, the scaling trans-
form (1.3) keeps the mass invariant. Thus, the nonlinearity (I, * |1//|1’2)|150|P2 24 is called
L%-critical.

When 1 =0 and p, =2, Eq. (1.1) simplifies to the Hartree equation. The Cauchy prob-
lem of (1.1) has been extensively investigated in [1-16]. The local well-posedness and
global existence of (1.1) have been studied in [1]. Chen and Guo [3] studied the instability
of standing waves. In the L2-critical case, Miao et al. [10] studied the dynamical properties
of the blow-up solutions. The soliton dynamics has been studied in [11].

Wheni; =0,0<a<Nand1l+ & N <P2< Ny N+°‘ , under the assumption that the local well-
posedness holds for (1.1), Chen and Guo [3] derlved the existence of blow up solutions and
the instability of standing waves. When 0 <o < Nand 1+ 5 <py <1 + 22 Squassina et al.
in [17] studied the soliton dynamics of (1.1) under the assumptlon that the solution v of
(1.1) is in C([0, 00), H%) N C*((0, 00), L2). In [18], Feng and Yuan systematically studied the
Cauchy problem (1.1) for general max{0,N -4} <a <N and 2 < p, < 3= N 5. More precisely,
they studied the local well-posedness, global existence, the existence of blow up solutions
and the dynamics of blow-up solutions. The sharp threshold of global existence and blow-
up, the instability of standing wave of (1.1) with A; = 0 and a harmonic potential have been
investigated in [19].

However, in the above papers, the scale invariance plays an important role in the study
of the dynamics of blow-up solutions to (1.2); see [7, 10, 12, 14, 18, 20, 21]. Because there
exists no scale invariance for (1.1), the study of blow-up solutions to (1.1) is a very inter-
esting problem. On the other hand, as far as we know, the existence of blow-up solutions
to (1.1) withA; >0,12,<0,0<p; < © andpg =1+ 2*"’ has not been obtained yet. Hence, in
this paper, we first show the existence of blow-up solutlons and obtain the sharp threshold
mass ||u||;2 of global existence and blow-up for (1.1), where u is a ground state solution of
the elliptic equation

—Au+u-— (Ia * |u|p)|u|p_2u:0. (1.4)

Then, for overcoming the difficulty of the loss of scale invariance, we apply the ground
state solution u of (1.4) to describe the dynamical properties of blow-up solutions to (1.1),
including L2-concentration, limiting profile and blow-up rates.

This paper is organized as follows: in Sect. 2, we recall some preliminaries. In Sect. 3,
we firstly show the existence of blow-up solutions to (1.1) with A1 =1, A, =-1,0< p; < i
and p; = 1 + 2%, and then obtain the sharp threshold mass [|u||;2 of global existence and
blow-up. In Sect 4, we will cons1der some dynamical properties of blow-up solutions to
(L) witha =1,2,=-1,0<p1 < 5 4 andp, =1+ &2 2*“ . Section 5 is a concluding section.

Notation In this paper, we use the following notations. We always denote u the ground
state solution of (1.4). X := {y € H',xyr € L2} is the energy space equipped with the norm

I lls = 1Yl + ey l2.
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2 Preliminaries
In order to study the blow-up solutions to (1.1), we firstly make the following assumption

about the local well-posedness of (1.1).

Assumption 1 Let o € H, N >3,0<p; < ﬁ and 1 + % <pa<l+ ]%;_O; Then there

exist T* > 0 and a unique maximal solution ¥ € C([0, T*), H'). In addition, if T* < oo,
then ||y (£)||gn — oo as t 1 T*. Moreover, the solution v (¢) satisfies

lv®|,2 = Ivollz2, (2.1)
E(¥(2)) = E(o), (2.2)

for all 0 < ¢ < T*, where E(v/(¢)) is defined by

E(¥(2) ::%/ |V1/f(t,x)|2dx+ Vel / Mt,x”pﬁzdx

RN p1t 2 RN
A
+ 22| (L 19 P) &) | x) [ da. (2.3)
2p2 RN
When 0 < p; < ﬁ and 2 <py, <1+ %, this assumption can easily be proved by the

Strichartz estimates and a fixed point argument; see [1, 18].
By the same argument as that in [1], one can easily derive the following lemma.

Lemma 2.1 ([1]) Let ¥ € T := {u € HY, xu € L*}. Assume that the solution Y (t) to
(1.1) exists on the interval [0, T*). Then ¥(t) € X for all t € [0, T*). Moreover, let J(t) =
Jon Y (8, %) |* dx, then

J(t) = —4Im/N Yt x)x - Vi (t,x) dx, (2.4)
R
and
/()-8 / V(60| dx + 2L / v (60| d
RN p1+ 2 RN
+ AZZ%N_‘D# /RN (I * |1p|1’2)(t,x)|w(t,x)‘p2 dx. (2.5)

As a direct result of this lemma, we have the following lemma.

Lemma 2.2 If the solution () to (1.1) with o € X blows up at the finite time T*, then
there exists C > 0 such that for all t € [0, T*)

/ x|y (6, %) dx < C.
RN

Next, we summarize some results about the ground state of (1.4), which is very impor-

tant in the study of blow-up solutions to (1.1).
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Lemma 2.3 ([17,22]) Leta € (O,N)and 1+ 3z <p<1+ % Then (1.4) admits a ground

state solution u in H'. Moreover, let u, and u, be two any ground state solutions of (1.4),

then ||luy |2 = llua | 2.

Finally, we recall a useful result which gives the best constant in a Gagliardo—Nirenberg
type inequality; see [18].

Lemma 2.4 The best constant in the Gagliardo—Nirenberg type inequality

Np-N-o N+a—Np+2p

(/ |w|2dx) i (2.6)
]RN

f (L % 1Y )W 1P dx < ca,p(/ |W|2dx>
RN RN

Np-N-a

2p 2p—Np+N +« 2 2-2p
Cop = ”u”Lz .
2p—Np+ N+« Np-N -«
In particular, in the L?-critical case, i.e,p=1+ 2%", Cap :p||u||i;2p

3 The sharp threshold mass of global existence and blow-up
From the local well-posedness of the nonlinear Schrodinger—Choquard equation, for
small initial data vy, the solution v(£) to (1.1) exists globally, and the solution v (¢) may
blow up for some large initial data. Therefore, whether there are some sharp thresholds
of global existence and blow-up for (1.1) is a very interesting problem. In particular, the
sharp thresholds of global existence and blow-up for nonlinear Schrédinger equations are
pursued strongly (see [1, 2, 19, 23-25] and the references therein).

In the following, applying the inequality (2.6) and a scaling argument, we derive the

existence of blow-up solutions to (1.1) and a sharp threshold of global existence and blow-
up.
Theorem 3.1 Let yo c H, A1 =1,A,=-1,0<p; < % andpy =1+ Z*T"‘ Then we have:

(D) If lollz2 < Null 2, then the solution Y (t) to (1.1) exists globally.

(ii) Let o = cp%u(px) and x|y € L2, where |c| > 1, and p > 0 and satisfies

p1+2
2clPHlull;p 5 < prim, (3.1)
(p1 +2)(|clP272 = 1) V)%,

Then the solution y(t) to (1.1) blows up in finite time.

Remark We see from Theorem 1.2 in [18] that the critical value about the initial data for
global existence of (1.1) with A; = 0 and (1.1) is the same.

Proof (i) Firstly, by (2.3) and (2.6), we have

E(yo) = E(¥ (1))
1 1 2
= E/RNth’x)‘de_ %A;N(I“ * |1/f|p2)(t,x)|1/f(t,x)|” dx
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P /|1//(t,x)|pl+2dx
p1+2 N

1 ol
= <§ - W) [ve @]

It follows from |||l ;2 < ||| ;2 and E(vo) = E(v(£)) that there exists a constant C such that
IV (2)|l2 < C for all £ > 0. Therefore, the solution v (¢) to (1.1) exists globally.

(ii) Since ||y € L2, J(¢t) = fRN |y (¢, %) |2 dx is well defined. We deduce from Lemma 2.1
that

70 =168 - 5P [ peap ds 62)
p1+2 JrN

Since Yolx) = cp%u(px) and the Pohozaev identity of (1.4), i.e, 1 [on [Vu(x)?dx =
2p2 Jan Uy * |ulP2)(x)|u(x) |72 dx (see [18]), it follows that

|c|? p 2 |c|?2p? . P2
E(Yo) = ANWu(x” dx — or /RN(Ia * |u| )(x)|u(x)| dx

N

clP1t2 p3P1 2

+H—pf ‘u(x)|pl+ dx
p1+2 RN

2 2 p1+2 , ¥ p1

= e v, o TR / () dix.
2 p1+2 RN

Thus, it follows from (3.1) that E(yg) < 0. We deduce from (3.2) that J”(£) < 16E(v) < O.

By a standard argument, the solution ¥/ (¢) to (1.1) with v = cp%u(px) blows up in finite

time. O

4 Dynamics of blow-up solutions in the L2-critical case

In this section, we study the dynamical properties of blow-up solutions for (1.1) with

M=1L2x=-10<p <5 Landpy =1+ 2*“ . For this purpose, we firstly recall a refined
compactness lemma whlch has been proved in [18] by the inequality (2.6) and the profile

decomposition theory.

Lemma4.1 Letp, =1+ =% 2*“ Af (Y}, is a bounded sequence in H' and satisfies

limsup [ V,[I7, < M, limSHP/ (Lo # 19 l?) | |P? dx > .
RN

n—0oQ n—00

Then there exists {x,)°°, C RN, such that, up to a subsequence,

Yl +2x,) = ¥

1
with W2 = (257) %27 lull 2.

oM

Theorem 4.2 (L?-concentration) Assume that o € H', A,y =1, Ay = -1, 0<p; < % and
p2=1+57 2“" . Let the solution v (t) to (1.1) blow up at the finite time T*. If a(t) : [0, T*) — R
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is a real-valued function and a(t)| Vi (t)||2 — oo as t — T*. Then there exists x(t) € RN
such that

liminf/ ‘I/I(t,x)|2dx > / |u(x)|2dx. (4.1)
lx—x(t)| <alt) RN

t—>T*

Proof Set

N
on =1Vl 2/ [V ()] 2 and  vu(x) = o ¥ (t, o),
where {¢,}52, € [0,T*) and t, — T* as n — oc. Then the sequence {v,} satisfies

vall2 = ¥ @] 12 = 1ol 2,

(4.2)
IVVallz2 = ou| VU (8] 12 = IVl 2.
It follows from (2.3) that
1 2 1 P2
H(v,) = - |Vvu()|" dx - — (L * |val?”*) (%) | va(%) | dx
2 RN 2p2 RN
1 1
(5 [P o [ s we)?) @l o ax)
RN 2]92 RN
1 +
= p; (E(’#o) - / |1ﬁ(t,,,x)|p1 2dx). (4.3)
p1+2 JgN
Hence, by the Gagliardo—Nirenberg inequality
o N1 Npy
f W@ dx < Clylty™ 2 vyl
RN
and 0 < p; < ]iv,it follows that
1
| <2180+ 2 [ ) ax)
p1+2 JrN
E(Yo)| | Vull? VY13 IV (6,) 7
u L,
EQIIValy: IV IVeEl,: wa

< +
IV (&)117, IV (&)117,
This yields [y (I * [V4lP2)|v,[P2 dx —>p2||Vu||i2.
Set m = ‘192||Vz4||i2 and M = ||Vu||i2. Then we deduce from Lemma 4.1 that there exist
V € H' and {x,,}°°, C RN such that, up to a subsequence,
V(- +%0) = po 2 Y (En pu(- + %)) = V' weakly in H' (4.5)

with

VIlir2 = lleellz2. (4.6)
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Therefore, we have

n—00 n— 00

liminf/ |v,,(t,,,x+x,,)|2dleiminf/ pﬂw(tn,pn(x+x,,))|2dx

Jx]<r Jxl<r

> / |V(x) |2 dx, foreveryr>0. (4.7)
x| <r

From the assumption on a(t), we have

a(t,) _ alt,) ||Vw(tn) ll2
Pn IVl 2

00, asmn— o0.
Then rp, < a(t,) for sufficiently large n. Therefore, it follows from (4.5) that

liminf sup/ |1//(tn,x)|2dx
lx—y|<a(ty)

n—00 yeRN

> liminf sup / |¢(tmx)|2dx
[x=y|<rpn

n—00 yeRN

n—00

> liminf / |9 (6, 0)|* dix
=% |<rpn

= liminf/ PN ¥ (6 0 + 2,)) | .
lx]<r

n—00

This and (4.7) imply that

liminf Sup/ |1ﬁ(tn,x)|2dx2/ |V(x)|2dxzf |u(x)‘2dx.
lx—yl<a(tn) RN RN

n—00 yeRN

Since the sequence {t,}3°, is arbitrary, it follows that

liminf sup / |1/f(t,x)|2dx > / |u(x)|2dx. (4.8)
lx—-yl<a(t) RN

t—T* yG]RN

Furthermore, for every ¢ € [0, T*), the function y — h(y) = f‘x_y‘sa( 9 | (¢,%)|? dx is contin-
uous and /(y) — 0 as |y| — oo. Hence, there is x(t) € RY such that

2 2
swp [yt an- [ (6|,
yeRN J|x—y|<a(t) [x—x(t)| <a(t)

which, together with (4.8), implies (4.1). O

In the following, we will study some properties of blow-up solutions to (1.1) with
l¥ollz2 = lullz2. When p = 2 or o = 2, the uniqueness of the ground state of (1.4) plays
an important role in the characterization of blow-up solutions to (1.2) in [7, 10]. However,

N+o

the uniqueness of ground states of (1.4) with 0 <& <N and 1 + 3y < p» < 3755 is not known,

we cannot apply the method in [7, 10] to study the dynamics of the blow-up solutions.

Theorem 4.3 Assume that Yo € X, .1 =1, 1 =-1,0<p; < % and p, =1+ 2%" Let the
solution ¥ (t) to (1.1) blow up at the finite time T* and || Vol|;2 = |ull;2. Then there exists
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x0 € RN such that
W) > ulfasey ast— T (4.9)
in the sense of a distribution.
Proof Firstly, it follows from Theorem 4.2 that for all » > 0
liminf/ [ (6,2 dx = ul)?,. (4.10)
=T Jas(o) <r

This and (2.1) yield for all ¥ > 0

2 .. 2
lull7> = 1¥oll72 = ¥ (®)] 2 = hmlgf/ [V (&,2)|" dx > [|ul2,.
=T |e—x(2)|<r
This implies
2 2 %
|V (6x+x0)|" = lul}2de0 ast— T (4.11)

On the other hand, it follows from the inequality (2.6) and (4.3) that for any ¢ > 0 and
any real-valued function 6

+ico _ i 2 2
H(e"y (1) = 5 | (tx)| | VOW)|” dx
RN

F eImf V(t,x)V(t,x) - VO(x)dx +H(w(t))
RN

1 e ) loll 527
> E RN|V(€ 1//(t,x))| dx[1- W =0.

]

This implies that

’:FIm /]1.@’ Y (t,x)V(t,x) - VO(x)dx

) ) 1/2
< <2H(1//(t)) /R N|w(t,x)| VO ()| dx) ) (4.12)

Therefore, this and H(y (¢)) < E(¥ (¢)) = E(yo) yield

d

2
E/}@W(t,xﬂ xjdx

< C‘/ v (&, )0 (¢, x) dx
RN

<C

[, ieavuienvs as
RN

1/2
< c(zH(w(t)) ANW(t,x)IZIW;Ide) <C,

for everyj=1,2,...,N. This implies

<Clty—ts]| > 0 asm,k— oo,

’/RNWf(tm,x)lzxjdx— /R{Nlt/r(tk,x)ijdx
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for every j =1,2,...,N, where {t,,}5_, {tx}72; € (0, T*) and lim,,,— o0 £y, = limy_, o0 £ = T
Thus, we have

. 2 .
lim | (t,%)| "% dx  exists,
t—>T* JpN

foreveryj=1,2,...,N. Set

xo= lim [ |w(t,0) | xdx/ul?, (4.13)
t—>T* JrN
it follows that
. 2
lim / |1/f(t,x)| xdx = ||u||i2x0. (4.14)
t—>T* JrN

In addition, we deduce from Lemma 2.2 and (4.11) that

/ |x|2|1ﬂ(t,x+x(t))|2dx
]RN
2 2 2 2
5(3/ |2 +x(8)| 7| (£, % + x(8)) | dax + Clx(t)| / [v (% +x(0)) | da
RN RN
< C+Clax@)* %ol

<C+ Climsup/ o+ (0)|*| ¥ (6, + 2(0) | e
|x|<1

t—T*

<C+ c/ lx|? |y (t,0)|" dx < C. (4.15)
RN

This implies

Ve

lim sup|x(t) < (4.16)
b T+ Vol
and
limsupf ERVAGE: +x(t))|2dx <C.
t—>T* JRN
Thus, for any ¢ > 0, there is Ry such that
C
lim sup / x|w(t,x+x(t))|2dx <~ < £
-7 |Jx12Ry Ro
We see from (4.11) that
lim sup / |1/f(t,x)|2xdx—x(t)||u||iz
t—>T* RN
= lim sup / |1/f(t,x)|2(x - x(t)) dx
t—T* RN
< limsup / [y (t,x +x(t))|2xdx + &< (4.17)
-1+ | Jjai<Ry 2
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This and (4.14) imply that lim,_, 7+ x(¢) = 9. Thus, it follows from (4.11) that
|1/f(t,x)|2 — ||u||i25x=x0 ast— T*
in the sense of distribution. O
Finally, we study the blow-up rate of blow-up solutions to (1.1) with [|v¥o|l;2 = [l#] ;2.

Theorem 4.4 Assume that Yo € X, 11 =1, 1 =-1,0<p; < % and p, =1+ 2%" Let the
solution v (t) to (1.1) blow up at the finite time T* and || Vo| ;2 = ||ul| ;2. Then there exists a
constant C > 0 such that for all t € [0, T*)

(4.18)

(o
NG =

Proof Let g € C5°(RYN) be a nonnegative radial function satisfying
gx) =g(lxl) = x>, iflx|<1 and |Vg(x)|2 < Cg(x).
For A > 0, we define g4 (x) = A%g(%) and hi4 () = [pn ga(x — x0)|9 (¢,%)|* dx with xo defined

by (4.13).
It follows from (4.12) and H(y(t)) < E(y(¢)) = E(y) that for every ¢ € [0, T™)

d _
’EhA(t)‘ < C’/RN Y (t, %)V (t,x)Vga(x — xo) dx

1/2
<2/H(¥®) (AN|¢(t,x)|2|VgA(x—xo)|2dx)

) 1/2
< 2VE( [ 060 a0 )
< CVha(®). (4.19)

This implies that there is a constant C such that | %«/hA(tH < C. Integrating on both sides
with respect to time ¢ on [#1, t], we have

|Vha(t) = Vha(ty)| < Cle—ta]. (4.20)

On the other hand, from (4.9), we have

ha(t)) = 1Qll;284(0) =0 ast; — T

Thus, let t; — T* in (4.20), we have /14 (t) < C(T* — t)>. Now fix t € [0, T*), it follows that
lim J14(2) :/ e — oY (8,2)|* dx < C(T* - 1),
A—o0 RN

Thus, we deduce from the uncertainty principle that

fxWEPds  C
(faor e =5aP1W )P )P = T# =1’

Vv @), = Ve e [0, T%).

This completes the proof. O
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5 Conclusions

In this paper, we study the dynamics of blow-up solutions for the nonlinear Schrédinger—
2

N
invariance played an important role in the study of the dynamics of blow-up solutions to

Choquard equation (1.1) with 0 < p; < % and p; = 1 + &2, In the previous papers, the scale

nonlinear Schrédinger equations. Because there exists no scale invariance for Eq. (1.1),
the study of blow-up solutions to (1.1) is an interesting problem. We must overcome the
difficulty brought about by the loss of scale invariance. For (1.1), we find that the ground
state solution u to (1.4) exactly describes the sharp threshold mass of global existence
and blow-up, the dynamical properties of blow-up solutions, including L2-concentration,

limiting profile and blow-up rates.
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