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Abstract
In this paper, we study the dynamics of blow-up solutions for the nonlinear
Schrödinger–Choquard equation

iψt +�ψ = λ1|ψ |p1ψ + λ2(Iα ∗ |ψ |p2)|ψ |p2–2ψ .

We first show existence of blow-up solutions and obtain a sharp threshold mass of
global existence and blow-up for this equation with λ1 > 0, λ2 < 0, 0 < p1 < 4

N and
p2 = 1 + 2+α

N . Then we obtain some dynamical properties of blow-up solutions by the
corresponding ground state of this equation with λ1 = 0.
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1 Introduction
In this paper, we will investigate the blow-up solutions of the nonlinear Schrödinger–
Choquard equation

⎧
⎨

⎩

iψt + �ψ = λ1|ψ |p1ψ + λ2(Iα ∗ |ψ |p2 )|ψ |p2–2ψ ,

ψ(0, x) = ψ0(x),
(1.1)

where ψ(t, x) : [0, T∗) × R
N → C is a complex valued function and 0 < T∗ ≤ ∞, N ≥ 3,

ψ0 ∈ H1, 0 < p1 < 4
N–2 , 1 + α

N < p2 < 1 + 2+α
N–2 , λ1,λ2 ∈ R, Iα : RN → R is the Riesz potential

defined by

Iα(x) =
�( N–α

2 )
�( α

2 )πN/22α|x|N–α
,

with max{0, N – 4} < α < N and � is the Gamma function.
Our main motivation for studying Eq. (1.1) is the loss of scaling invariance for this equa-

tion. When p2 > 0, there exists a scaling transform for the nonlinear Choquard equation,

iψt + �ψ = λ2
(
Iα ∗ |ψ |p2

)|ψ |p2–2ψ , (1.2)
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which keeps it invariant. More precisely, the map

ψ(t, x) �→ λ
– α+2

2p2–2 ψ

(
t
λ2 ,

x
λ

)

(1.3)

maps a solution to (1.2) to another solution to (1.2). When p2 = 1 + 2+α
N , the scaling trans-

form (1.3) keeps the mass invariant. Thus, the nonlinearity (Iα ∗ |ψ |p2 )|ψ |p2–2ψ is called
L2-critical.

When λ1 = 0 and p2 = 2, Eq. (1.1) simplifies to the Hartree equation. The Cauchy prob-
lem of (1.1) has been extensively investigated in [1–16]. The local well-posedness and
global existence of (1.1) have been studied in [1]. Chen and Guo [3] studied the instability
of standing waves. In the L2-critical case, Miao et al. [10] studied the dynamical properties
of the blow-up solutions. The soliton dynamics has been studied in [11].

When λ1 = 0, 0 < α < N and 1 + α
N < p2 < N+α

N–2 , under the assumption that the local well-
posedness holds for (1.1), Chen and Guo [3] derived the existence of blow-up solutions and
the instability of standing waves. When 0 < α < N and 1 + α

N < p2 < 1 + 2+α
N , Squassina et al.

in [17] studied the soliton dynamics of (1.1) under the assumption that the solution ψ of
(1.1) is in C([0,∞), H2) ∩ C1((0,∞), L2). In [18], Feng and Yuan systematically studied the
Cauchy problem (1.1) for general max{0, N – 4} < α < N and 2 ≤ p2 < N+α

N–2 . More precisely,
they studied the local well-posedness, global existence, the existence of blow-up solutions
and the dynamics of blow-up solutions. The sharp threshold of global existence and blow-
up, the instability of standing wave of (1.1) with λ1 = 0 and a harmonic potential have been
investigated in [19].

However, in the above papers, the scale invariance plays an important role in the study
of the dynamics of blow-up solutions to (1.2); see [7, 10, 12, 14, 18, 20, 21]. Because there
exists no scale invariance for (1.1), the study of blow-up solutions to (1.1) is a very inter-
esting problem. On the other hand, as far as we know, the existence of blow-up solutions
to (1.1) with λ1 > 0, λ2 < 0, 0 < p1 < 4

N and p2 = 1 + 2+α
N has not been obtained yet. Hence, in

this paper, we first show the existence of blow-up solutions and obtain the sharp threshold
mass ‖u‖L2 of global existence and blow-up for (1.1), where u is a ground state solution of
the elliptic equation

–�u + u –
(
Iα ∗ |u|p)|u|p–2u = 0. (1.4)

Then, for overcoming the difficulty of the loss of scale invariance, we apply the ground
state solution u of (1.4) to describe the dynamical properties of blow-up solutions to (1.1),
including L2-concentration, limiting profile and blow-up rates.

This paper is organized as follows: in Sect. 2, we recall some preliminaries. In Sect. 3,
we firstly show the existence of blow-up solutions to (1.1) with λ1 = 1, λ2 = –1, 0 < p1 < 4

N
and p2 = 1 + 2+α

N , and then obtain the sharp threshold mass ‖u‖L2 of global existence and
blow-up. In Sect. 4, we will consider some dynamical properties of blow-up solutions to
(1.1) with λ1 = 1, λ2 = –1, 0 < p1 < 4

N and p2 = 1 + 2+α
N . Section 5 is a concluding section.

Notation In this paper, we use the following notations. We always denote u the ground
state solution of (1.4). � := {ψ ∈ H1, xψ ∈ L2} is the energy space equipped with the norm
‖ψ‖� := ‖ψ‖H1 + ‖xψ‖L2 .
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2 Preliminaries
In order to study the blow-up solutions to (1.1), we firstly make the following assumption
about the local well-posedness of (1.1).

Assumption 1 Let ψ0 ∈ H1, N ≥ 3, 0 < p1 < 4
N–2 and 1 + α

N < p2 < 1 + 2+α
N–2 . Then there

exist T∗ > 0 and a unique maximal solution ψ ∈ C([0, T∗), H1). In addition, if T∗ < ∞,
then ‖ψ(t)‖H1 → ∞ as t ↑ T∗. Moreover, the solution ψ(t) satisfies

∥
∥ψ(t)

∥
∥

L2 = ‖ψ0‖L2 , (2.1)

E
(
ψ(t)

)
= E(ψ0), (2.2)

for all 0 ≤ t < T∗, where E(ψ(t)) is defined by

E
(
ψ(t)

)
:=

1
2

∫

RN

∣
∣∇ψ(t, x)

∣
∣2 dx +

λ1

p1 + 2

∫

RN

∣
∣ψ(t, x)

∣
∣p1+2 dx

+
λ2

2p2

∫

RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣
∣ψ(t, x)

∣
∣p2 dx. (2.3)

When 0 < p1 < 4
N–2 and 2 ≤ p2 < 1 + 2+α

N–2 , this assumption can easily be proved by the
Strichartz estimates and a fixed point argument; see [1, 18].

By the same argument as that in [1], one can easily derive the following lemma.

Lemma 2.1 ([1]) Let ψ0 ∈ � := {u ∈ H1, xu ∈ L2}. Assume that the solution ψ(t) to
(1.1) exists on the interval [0, T∗). Then ψ(t) ∈ � for all t ∈ [0, T∗). Moreover, let J(t) =
∫

RN |xψ(t, x)|2 dx, then

J ′(t) = –4 Im
∫

RN
ψ(t, x)x · ∇ψ̄(t, x) dx, (2.4)

and

J ′′(t) = 8
∫

RN

∣
∣∇ψ(t, x)

∣
∣2 dx +

4Nλ1p1

p1 + 2

∫

RN

∣
∣ψ(t, x)

∣
∣p1+2 dx

+ λ2
4p2N – 4N – 4α

p2

∫

RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣
∣ψ(t, x)

∣
∣p2 dx. (2.5)

As a direct result of this lemma, we have the following lemma.

Lemma 2.2 If the solution ψ(t) to (1.1) with ψ0 ∈ � blows up at the finite time T∗, then
there exists C > 0 such that for all t ∈ [0, T∗)

∫

RN
|x|2∣∣ψ(t, x)

∣
∣2 dx ≤ C.

Next, we summarize some results about the ground state of (1.4), which is very impor-
tant in the study of blow-up solutions to (1.1).
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Lemma 2.3 ([17, 22]) Let α ∈ (0, N) and 1 + α
N < p < 1 + 2+α

N–2 . Then (1.4) admits a ground
state solution u in H1. Moreover, let u1 and u2 be two any ground state solutions of (1.4),
then ‖u1‖L2 = ‖u2‖L2 .

Finally, we recall a useful result which gives the best constant in a Gagliardo–Nirenberg
type inequality; see [18].

Lemma 2.4 The best constant in the Gagliardo–Nirenberg type inequality

∫

RN

(
Iα ∗ |ψ |p)|ψ |p dx ≤ Cα,p

(∫

RN
|∇ψ |2 dx

) Np–N–α
2

(∫

RN
|ψ |2 dx

) N+α–Np+2p
2

(2.6)

is

Cα,p =
2p

2p – Np + N + α

(
2p – Np + N + α

Np – N – α

) Np–N–α
2 ‖u‖2–2p

L2 .

In particular, in the L2-critical case, i.e., p = 1 + 2+α
N , Cα,p = p‖u‖2–2p

L2 .

3 The sharp threshold mass of global existence and blow-up
From the local well-posedness of the nonlinear Schrödinger–Choquard equation, for
small initial data ψ0, the solution ψ(t) to (1.1) exists globally, and the solution ψ(t) may
blow up for some large initial data. Therefore, whether there are some sharp thresholds
of global existence and blow-up for (1.1) is a very interesting problem. In particular, the
sharp thresholds of global existence and blow-up for nonlinear Schrödinger equations are
pursued strongly (see [1, 2, 19, 23–25] and the references therein).

In the following, applying the inequality (2.6) and a scaling argument, we derive the
existence of blow-up solutions to (1.1) and a sharp threshold of global existence and blow-
up.

Theorem 3.1 Let ψ0 ∈ H1, λ1 = 1, λ2 = –1, 0 < p1 < 4
N and p2 = 1 + 2+α

N . Then we have:
(i) If ‖ψ0‖L2 < ‖u‖L2 , then the solution ψ(t) to (1.1) exists globally.

(ii) Let ψ0 = cρ N
2 u(ρx) and |x|ψ0 ∈ L2, where |c| ≥ 1, and ρ > 0 and satisfies

2|c|p1‖u‖p1+2
Lp1+2

(p1 + 2)(|c|2p2–2 – 1)‖∇u‖2
L2

< ρ2– N
2 p1 . (3.1)

Then the solution ψ(t) to (1.1) blows up in finite time.

Remark We see from Theorem 1.2 in [18] that the critical value about the initial data for
global existence of (1.1) with λ1 = 0 and (1.1) is the same.

Proof (i) Firstly, by (2.3) and (2.6), we have

E(ψ0) = E
(
ψ(t)

)

=
1
2

∫

RN

∣
∣∇ψ(t, x)

∣
∣2 dx –

1
2p2

∫

RN

(
Iα ∗ |ψ |p2

)
(t, x)

∣
∣ψ(t, x)

∣
∣p2 dx
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+
1

p1 + 2

∫

RN

∣
∣ψ(t, x)

∣
∣p1+2 dx

≥
(

1
2

–
‖ψ0‖2p2–2

L2

2‖u‖2p2–2
L2

)
∥
∥∇ψ(t)

∥
∥2

L2 .

It follows from ‖ψ0‖L2 < ‖u‖L2 and E(ψ0) = E(ψ(t)) that there exists a constant C such that
‖∇ψ(t)‖L2 ≤ C for all t > 0. Therefore, the solution ψ(t) to (1.1) exists globally.

(ii) Since |x|ψ0 ∈ L2, J(t) =
∫

RN |xψ(t, x)|2 dx is well defined. We deduce from Lemma 2.1
that

J ′′(t) = 16E(ψ0) –
16 – 4Np1

p1 + 2

∫

RN

∣
∣ψ(t, x)

∣
∣p1+2 dx. (3.2)

Since ψ0(x) = cρ N
2 u(ρx) and the Pohoz̆aev identity of (1.4), i.e., 1

2
∫

RN |∇u(x)|2 dx =
1

2p2

∫

RN (Iα ∗ |u|p2 )(x)|u(x)|p2 dx (see [18]), it follows that

E(ψ0) =
|c|2ρ2

2

∫

RN

∣
∣∇u(x)

∣
∣2 dx –

|c|2p2ρ2

2p2

∫

RN

(
Iα ∗ |u|p2

)
(x)

∣
∣u(x)

∣
∣p2 dx

+
|c|p1+2ρ

N
2 p1

p1 + 2

∫

RN

∣
∣u(x)

∣
∣p1+2 dx

= –
|c|2ρ2

2
(|c|2p2–2 – 1

)‖∇u‖2
L2 +

|c|p1+2ρ
N
2 p1

p1 + 2

∫

RN

∣
∣u(x)

∣
∣p1+2 dx.

Thus, it follows from (3.1) that E(ψ0) < 0. We deduce from (3.2) that J ′′(t) < 16E(ψ0) < 0.
By a standard argument, the solution ψ(t) to (1.1) with ψ0 = cρ N

2 u(ρx) blows up in finite
time. �

4 Dynamics of blow-up solutions in the L2-critical case
In this section, we study the dynamical properties of blow-up solutions for (1.1) with
λ1 = 1, λ2 = –1, 0 < p1 < 4

N and p2 = 1 + 2+α
N . For this purpose, we firstly recall a refined

compactness lemma which has been proved in [18] by the inequality (2.6) and the profile
decomposition theory.

Lemma 4.1 Let p2 = 1 + 2+α
N . If {ψn}∞n=1 is a bounded sequence in H1 and satisfies

lim sup
n→∞

‖∇ψn‖2
L2 ≤ M, lim sup

n→∞

∫

RN

(
Iα ∗ |ψn|p2

)|un|p2 dx ≥ m.

Then there exists {xn}∞n=1 ⊂R
N , such that, up to a subsequence,

ψn(· + xn) ⇀ �

with ‖�‖L2 ≥ ( m
p2M )

1
2p2–2 ‖u‖L2 .

Theorem 4.2 (L2-concentration) Assume that ψ0 ∈ H1, λ1 = 1, λ2 = –1, 0 < p1 < 4
N and

p2 = 1 + 2+α
N . Let the solution ψ(t) to (1.1) blow up at the finite time T∗. If a(t) : [0, T∗) �→R
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is a real-valued function and a(t)‖∇ψ(t)‖L2 → ∞ as t → T∗. Then there exists x(t) ∈ R
N

such that

lim inf
t→T∗

∫

|x–x(t)|≤a(t)

∣
∣ψ(t, x)

∣
∣2 dx ≥

∫

RN

∣
∣u(x)

∣
∣2 dx. (4.1)

Proof Set

ρn := ‖∇u‖L2 /
∥
∥∇ψ(tn)

∥
∥

L2 and vn(x) := ρ
N
2

n ψ(tn,ρnx),

where {tn}∞n=1 ⊆ [0, T∗) and tn → T∗ as n → ∞. Then the sequence {vn} satisfies

‖vn‖L2 =
∥
∥ψ(tn)

∥
∥

L2 = ‖ψ0‖L2 ,

‖∇vn‖L2 = ρn
∥
∥∇ψ(tn)

∥
∥

L2 = ‖∇u‖L2 .
(4.2)

It follows from (2.3) that

H(vn) :=
1
2

∫

RN

∣
∣∇vn(x)

∣
∣2 dx –

1
2p2

∫

RN

(
Iα ∗ |vn|p2

)
(x)

∣
∣vn(x)

∣
∣p2 dx

= ρ2
n

(
1
2

∫

RN

∣
∣∇ψ(tn, x)

∣
∣2 dx –

1
2p2

∫

RN

(
Iα ∗ ∣

∣ψ(tn)
∣
∣p2)(x)

∣
∣ψ(tn, x)

∣
∣p2 dx

)

= ρ2
n

(

E(ψ0) –
1

p1 + 2

∫

RN

∣
∣ψ(tn, x)

∣
∣p1+2 dx

)

. (4.3)

Hence, by the Gagliardo–Nirenberg inequality

∫

RN

∣
∣ψ(x)

∣
∣p1+2 dx ≤ C‖ψ‖p1+2– Np1

2
L2 ‖∇ψ‖

Np1
2

L2 ,

and 0 < p1 < 4
N , it follows that

∣
∣H(vn)

∣
∣ ≤ ρ2

n

(
∣
∣E(ψ0)

∣
∣ +

1
p1 + 2

∫

RN

∣
∣ψ(tn, x)

∣
∣p1+2 dx

)

≤ |E(ψ0)|‖∇u‖2
L2

‖∇ψ(tn)‖2
L2

+ C
‖∇ψ‖2

L2‖∇ψ(tn)‖
Np1

2
L2

‖∇ψ(tn)‖2
L2

→ 0 as n → ∞. (4.4)

This yields
∫

RN (Iα ∗ |vn|p2 )|vn|p2 dx → p2‖∇u‖2
L2 .

Set m = p2‖∇u‖2
L2 and M = ‖∇u‖2

L2 . Then we deduce from Lemma 4.1 that there exist
V ∈ H1 and {xn}∞n=1 ⊂R

N such that, up to a subsequence,

vn(· + xn) = ρN/2
n ψ

(
tn,ρn(· + xn)

)
⇀ V weakly in H1 (4.5)

with

‖V‖L2 ≥ ‖u‖L2 . (4.6)
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Therefore, we have

lim inf
n→∞

∫

|x|≤r

∣
∣vn(tn, x + xn)

∣
∣2 dx = lim inf

n→∞

∫

|x|≤r
ρN

n
∣
∣ψ

(
tn,ρn(x + xn)

)∣
∣2 dx

≥
∫

|x|≤r

∣
∣V (x)

∣
∣2 dx, for every r > 0. (4.7)

From the assumption on a(t), we have

a(tn)
ρn

=
a(tn)‖∇ψ(tn)‖L2

‖∇u‖L2
→ ∞, as n → ∞.

Then rρn < a(tn) for sufficiently large n. Therefore, it follows from (4.5) that

lim inf
n→∞ sup

y∈RN

∫

|x–y|≤a(tn)

∣
∣ψ(tn, x)

∣
∣2 dx

≥ lim inf
n→∞ sup

y∈RN

∫

|x–y|≤rρn

∣
∣ψ(tn, x)

∣
∣2 dx

≥ lim inf
n→∞

∫

|x–xn|≤rρn

∣
∣ψ(tn, x)

∣
∣2 dx

= lim inf
n→∞

∫

|x|≤r
ρN

n
∣
∣ψ

(
tn,ρn(x + xn)

)∣
∣2 dx.

This and (4.7) imply that

lim inf
n→∞ sup

y∈RN

∫

|x–y|≤a(tn)

∣
∣ψ(tn, x)

∣
∣2 dx ≥

∫

RN

∣
∣V (x)

∣
∣2 dx ≥

∫

RN

∣
∣u(x)

∣
∣2 dx.

Since the sequence {tn}∞n=1 is arbitrary, it follows that

lim inf
t→T∗ sup

y∈RN

∫

|x–y|≤a(t)

∣
∣ψ(t, x)

∣
∣2 dx ≥

∫

RN

∣
∣u(x)

∣
∣2 dx. (4.8)

Furthermore, for every t ∈ [0, T∗), the function y �→ h(y) =
∫

|x–y|≤a(t) |ψ(t, x)|2 dx is contin-
uous and h(y) → 0 as |y| → ∞. Hence, there is x(t) ∈R

N such that

sup
y∈RN

∫

|x–y|≤a(t)

∣
∣ψ(t, x)

∣
∣2 dx =

∫

|x–x(t)|≤a(t)

∣
∣ψ(t, x)

∣
∣2 dx,

which, together with (4.8), implies (4.1). �

In the following, we will study some properties of blow-up solutions to (1.1) with
‖ψ0‖L2 = ‖u‖L2 . When p = 2 or α = 2, the uniqueness of the ground state of (1.4) plays
an important role in the characterization of blow-up solutions to (1.2) in [7, 10]. However,
the uniqueness of ground states of (1.4) with 0 < α < N and 1 + α

N < p2 < N+α
N–2 is not known,

we cannot apply the method in [7, 10] to study the dynamics of the blow-up solutions.

Theorem 4.3 Assume that ψ0 ∈ �, λ1 = 1, λ2 = –1, 0 < p1 < 4
N and p2 = 1 + 2+α

N . Let the
solution ψ(t) to (1.1) blow up at the finite time T∗ and ‖ψ0‖L2 = ‖u‖L2 . Then there exists
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x0 ∈R
N such that

∣
∣ψ(t, x)

∣
∣2 → ‖u‖2

L2δx0 as t → T∗ (4.9)

in the sense of a distribution.

Proof Firstly, it follows from Theorem 4.2 that for all r > 0

lim inf
t→T∗

∫

|x–x(t)|<r

∣
∣ψ(t, x)

∣
∣2 dx ≥ ‖u‖2

L2 . (4.10)

This and (2.1) yield for all r > 0

‖u‖2
L2 = ‖ψ0‖2

L2 =
∥
∥ψ(t)

∥
∥2

L2 ≥ lim inf
t→T∗

∫

|x–x(t)|<r

∣
∣ψ(t, x)

∣
∣2 dx ≥ ‖u‖2

L2 .

This implies

∣
∣ψ

(
t, x + x(t)

)∣
∣2 → ‖u‖2

L2δx=0 as t → T∗. (4.11)

On the other hand, it follows from the inequality (2.6) and (4.3) that for any ε > 0 and
any real-valued function θ

H
(
e±iεθψ(t)

)
=

ε2

2

∫

RN

∣
∣ψ(t, x)

∣
∣2∣∣∇θ (x)

∣
∣2 dx

∓ ε Im
∫

RN
ψ̄(t, x)∇ψ(t, x) · ∇θ (x) dx + H

(
ψ(t)

)

≥ 1
2

∫

RN

∣
∣∇(

e±iεθψ(t, x)
)∣
∣2 dx

(

1 –
‖ψ0‖2p2–2

L2

‖u‖2p2–2
L2

)

= 0.

This implies that
∣
∣
∣
∣∓ Im

∫

RN
ψ̄(t, x)∇ψ(t, x) · ∇θ (x) dx

∣
∣
∣
∣

≤
(

2H
(
ψ(t)

)
∫

RN

∣
∣ψ(t, x)

∣
∣2∣∣∇θ (x)

∣
∣2 dx

)1/2

. (4.12)

Therefore, this and H(ψ(t)) ≤ E(ψ(t)) = E(ψ0) yield
∣
∣
∣
∣

d
dt

∫

RN

∣
∣ψ(t, x)

∣
∣2xj dx

∣
∣
∣
∣ ≤ C

∣
∣
∣
∣

∫

RN
ψ̄(t, x)∂jψ(t, x) dx

∣
∣
∣
∣

≤ C
∣
∣
∣
∣

∫

RN
ψ̄(t, x)∇ψ(t, x)∇xj dx

∣
∣
∣
∣

≤ C
(

2H
(
ψ(t)

)
∫

RN

∣
∣ψ(t, x)

∣
∣2|∇xj|2 dx

)1/2

≤ C,

for every j = 1, 2, . . . , N . This implies
∣
∣
∣
∣

∫

RN

∣
∣ψ(tm, x)

∣
∣2xj dx –

∫

RN

∣
∣ψ(tk , x)

∣
∣2xj dx

∣
∣
∣
∣ ≤ C|tm – tk| → 0 as m, k → ∞,
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for every j = 1, 2, . . . , N , where {tm}∞m=1, {tk}∞k=1 ⊆ (0, T∗) and limm→∞ tm = limk→∞ tk = T∗.
Thus, we have

lim
t→T∗

∫

RN

∣
∣ψ(t, x)

∣
∣2xj dx exists,

for every j = 1, 2, . . . , N . Set

x0 = lim
t→T∗

∫

RN

∣
∣ψ(t, x)

∣
∣2x dx/‖u‖2

L2 , (4.13)

it follows that

lim
t→T∗

∫

RN

∣
∣ψ(t, x)

∣
∣2x dx = ‖u‖2

L2 x0. (4.14)

In addition, we deduce from Lemma 2.2 and (4.11) that
∫

RN
|x|2∣∣ψ(

t, x + x(t)
)∣
∣2 dx

≤ C
∫

RN

∣
∣x + x(t)

∣
∣2∣∣ψ

(
t, x + x(t)

)∣
∣2 dx + C

∣
∣x(t)

∣
∣2

∫

RN

∣
∣ψ

(
t, x + x(t)

)∣
∣2 dx

≤ C + C
∣
∣x(t)

∣
∣2‖ψ0‖2

L2

≤ C + C lim sup
t→T∗

∫

|x|<1

∣
∣x + x(t)

∣
∣2∣∣ψ

(
t, x + x(t)

)∣
∣2 dx

≤ C + C
∫

RN
|x|2∣∣ψ(t, x)

∣
∣2 dx ≤ C. (4.15)

This implies

lim sup
t→T∗

∣
∣x(t)

∣
∣ ≤

√
C

‖ψ0‖L2
(4.16)

and

lim sup
t→T∗

∫

RN
|x|2∣∣ψ(

t, x + x(t)
)∣
∣2 dx ≤ C.

Thus, for any ε > 0, there is R0 such that

lim sup
t→T∗

∣
∣
∣
∣

∫

|x|≥R0

x
∣
∣ψ

(
t, x + x(t)

)∣
∣2 dx

∣
∣
∣
∣ ≤ C

R0
<

ε

2
.

We see from (4.11) that

lim sup
t→T∗

∣
∣
∣
∣

∫

RN

∣
∣ψ(t, x)

∣
∣2x dx – x(t)‖u‖2

L2

∣
∣
∣
∣

= lim sup
t→T∗

∣
∣
∣
∣

∫

RN

∣
∣ψ(t, x)

∣
∣2(x – x(t)

)
dx

∣
∣
∣
∣

≤ lim sup
t→T∗

∣
∣
∣
∣

∫

|x|≤R0

∣
∣ψ

(
t, x + x(t)

)∣
∣2x dx

∣
∣
∣
∣ +

ε

2
≤ ε. (4.17)
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This and (4.14) imply that limt→T∗ x(t) = x0. Thus, it follows from (4.11) that
∣
∣ψ(t, x)

∣
∣2 → ‖u‖2

L2δx=x0 as t → T∗

in the sense of distribution. �

Finally, we study the blow-up rate of blow-up solutions to (1.1) with ‖ψ0‖L2 = ‖u‖L2 .

Theorem 4.4 Assume that ψ0 ∈ �, λ1 = 1, λ2 = –1, 0 < p1 < 4
N and p2 = 1 + 2+α

N . Let the
solution ψ(t) to (1.1) blow up at the finite time T∗ and ‖ψ0‖L2 = ‖u‖L2 . Then there exists a
constant C > 0 such that for all t ∈ [0, T∗)

∥
∥∇ψ(t)

∥
∥

L2 ≥ C
T∗ – t

. (4.18)

Proof Let g ∈ C∞
0 (RN ) be a nonnegative radial function satisfying

g(x) = g
(|x|) = |x|2, if |x| < 1 and

∣
∣∇g(x)

∣
∣2 ≤ Cg(x).

For A > 0, we define gA(x) = A2g( x
A ) and hA(t) =

∫

RN gA(x – x0)|ψ(t, x)|2 dx with x0 defined
by (4.13).

It follows from (4.12) and H(ψ(t)) ≤ E(ψ(t)) = E(ψ0) that for every t ∈ [0, T∗)
∣
∣
∣
∣

d
dt

hA(t)
∣
∣
∣
∣ ≤ C

∣
∣
∣
∣

∫

RN
ψ̄(t, x)∇ψ(t, x)∇gA(x – x0) dx

∣
∣
∣
∣

≤ 2
√

H
(
ψ(t)

)
(∫

RN

∣
∣ψ(t, x)

∣
∣2∣∣∇gA(x – x0)

∣
∣2 dx

)1/2

≤ 2
√

E(ψ0)
(∫

RN

∣
∣ψ(t, x)

∣
∣2∣∣gA(x – x0)

∣
∣dx

)1/2

≤ C
√

hA(t). (4.19)

This implies that there is a constant C such that | d
dt

√
hA(t)| ≤ C. Integrating on both sides

with respect to time t on [t1, t], we have
∣
∣
√

hA(t) –
√

hA(t1)
∣
∣ ≤ C|t – t1|. (4.20)

On the other hand, from (4.9), we have

hA(t1) → ‖Q‖L2 gA(0) = 0 as t1 → T∗.

Thus, let t1 → T∗ in (4.20), we have hA(t) ≤ C(T∗ – t)2. Now fix t ∈ [0, T∗), it follows that

lim
A→∞

hA(t) =
∫

RN
|x – x0|2

∣
∣ψ(t, x)

∣
∣2 dx ≤ C

(
T∗ – t

)2.

Thus, we deduce from the uncertainty principle that

∥
∥∇ψ(t)

∥
∥

L2 ≥
∫

RN |ψ(x)|2 dx
(
∫

RN |x – x0|2|ψ(x)|2 dx)1/2 ≥ C
T∗ – t

, ∀t ∈ [0, T∗).

This completes the proof. �
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5 Conclusions
In this paper, we study the dynamics of blow-up solutions for the nonlinear Schrödinger–
Choquard equation (1.1) with 0 < p1 < 4

N and p2 = 1 + 2+α
N . In the previous papers, the scale

invariance played an important role in the study of the dynamics of blow-up solutions to
nonlinear Schrödinger equations. Because there exists no scale invariance for Eq. (1.1),
the study of blow-up solutions to (1.1) is an interesting problem. We must overcome the
difficulty brought about by the loss of scale invariance. For (1.1), we find that the ground
state solution u to (1.4) exactly describes the sharp threshold mass of global existence
and blow-up, the dynamical properties of blow-up solutions, including L2-concentration,
limiting profile and blow-up rates.
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