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1 Introduction

The Bénard system described the Rayleigh—Bénard convective motion in a heated 2D in-
viscid incompressible fluid under thermal effects (see e.g. [2—7]). One of the most funda-
mental problems in fluid dynamics concerning the Bénard system is whether their clas-
sical solutions are global regularity for all time or they develop singularities. The Bénard
system has been a center of attention to numerous analytical, experimental, and number

investigations. The motion of the incompressible Bénard system in R? is governed by

osu+ (- V)u+Vm = uAu + ey,
00 +(u-V)0 =kAO +u-ey, (1.1)
V-u=0,

where the unknown functions u, 6 and 7 denote the 2D velocity field, temperature and
pressure, respectively. The constants  and « are the coefficients of dissipation and ther-
mal diffusivity. The forcing term e, in the momentum equation describes the acting of
the buoyancy force on fluid motion and u - e; models the Rayleigh—Bénard convection
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in a heated inviscid fluid, and e, = (0,1)7. Physically, (1.1); reflects the conservation of
momentum, (1.1), describes the thermal convection, and in (1.1)3, V - u = 0 shows the
conservation of mass.

In the fluid dynamics area, the Bénard fluid problem is a very classical problem, which
has an important significance in convective motion in a heated fluid, such as the case of
planar stationary flows. The incompressible Bénard system have attracted the attention of
many physicists and mathematicians due to its important physical background, rich phe-
nomena, mathematical complexity and challenges. Neustupa and Siginer [8] proved the
existence of a strong-weak solution (u, 7,0) of the steady Bénard problem in a 2D quad-
rangular cavity, heated/cooled on two opposite sides and thermally insulated on the other
sides. The nonlinear Lyapunov stability of the conduction-diffusion solution of the rotat-
ing Bénard problem was studied in [9]. Anh and Son [10] studied the 2D Bénard problem
in an arbitrary domain (bounded or unbounded) which satisfying the Poincaré inequal-
ity with nonhomogeneous boundary conditions and nonautonomous external force and
heat source, and the existence of a weak solution to the problem was proved by using the
Galerkin method, and showed that the existence of a unique minimal finite-dimensional
pullback D, -attractor for the process associated to the problem. Wu and Xue [11] consid-
ered the Cauchy problem of the 2D inviscid Bénard system with fractional diffusivity, and
showed that the system had a unique global solution (1, 8) such that u € C*!(R,, L2(R?)),
0 € C(R,,L* N B;ﬁ) N LIZOC(RHH g). 2D incompressible Bénard system with critical and
supercritical dissipation (0 < a < 1) in the velocity was studied in [12]. Cheng and Du
[13] considered the Cauchy problem of the 2D magnetic Bénard problem with mixed par-
tial viscosity. More precisely, the global well-posedness of the 2D magnetic Bénard prob-
lem without thermal diffusivity and with vertical or horizontal magnetic diffusion was
obtained. Moreover, the global regularity and some conditional regularity of strong so-
lutions were obtained for the 2D magnetic Bénard problem with mixed partial viscosity.
Zhou—Nakamura [14] studied a 2D magnetic Bénard problem with zero thermal conduc-
tivity, and showed a global well-posedness result by a well-known property of Hardy space
and BMO. As it is demonstrated in reference [15, 16], we showed the global regularity for
the two-and-half-dimensional magnetic Bénard system with zero thermal diffusivity by
a well-known property of Hardy space and BMO; resorting to the method of the local-
in-time analysis, the global regularity for the two-and-half-dimensional magnetic Bénard
system with zero thermal diffusivity and horizontal magnetic diffusion as well as vertical
magnetic diffusion are also obtained. Moreover, we proved that, as the initial data satisfy
|20 ||12_[r1k23 + ||bo ”%&3 + 160 ||i,%<3 < g, where ¢ is a suitably small positive number, then the 3D

magnetic Bénard system with mixed partial dissipation, magnetic diffusion and thermal
diffusivity admits global smooth solutions. Zhang and Tang [17] studied the global regu-
larity for a special family of axisymmetric solutions to the 3D magnetic Bénard problem.

In particular, if 6 = Const., then system (1.1) reduces to the classical Navier—Stokes sys-
tem which describes the motion of incompressible viscous fluid flows and has been exten-
sively studied by many authors; see [18—24] and the references therein. In addition to this,
the reader is referred to [25-29] to find more results about the related fluid flow equations.

Recently, Regmi [30] established global weak solution for the 2D MHD system with
partial dissipation and vertical diffusion. Cheng and Li [31] established the global weak
solutions for the 2D Boussinesq system with mixed partial dissipation and thermal diffu-
sivity. Chen concerned with the 2D system of the incompressible micropolar fluid flows
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with mixed partial viscosity and angular viscosity, and the global existence and unique-
ness of smooth solution was showed in [32]. Yu considered the global regularity to the
initial-boundary value problem of the 2D incompressible MHD system with mixed par-
tial dissipation and magnetic diffusion in [33]. Fan et al. considered the global regularity
for the 2D liquid crystal model with mixed partial viscosity and global Cauchy problem of
2D generalized MHD equations, respectively, in [34, 35].

Inspired by this work, we consider the following Bénard system in this paper:

ety + (10 - Vuy + 0,77 = (1 Ouxlhy + [0y,
Qe + (14 - Vg + 0yTr = (U30xxlhs + W4 Oyylhs + 6,
00 + (10 - V)8 = k1040 + k20,00 + 13,

O Uy + Oty =0,

(1.2)

where u = (11, u5). System (1.2) is capable of modeling the motion of anisotropic fluids
for which the diffusion properties in different directions are different. Additionally, (1.2)
allows us to explore the smooth effects of various partial dissipations. Furthermore, we
consider the 2D Bénard system (1.2) with partial dissipation in the following eight cases:
() w1=0,42>0, u3=0, s =0,k1 >0, k2 =0;
(i) p1=0, 2 =0, 3 >0, pa = 0, k1 = 0, k2 > 0;
(iii) w1 >0, w2 =0, u3=0, g =0, k1 >0, k3 =0;
(iv) 1>0, 42 =0, u3=0, g =0,k1 =0, k3 > 0;
V) #1=0, >0, u3 =0, g =0,k1 =0, k3 > 0;
(vi) p1=0, u2=0, 3 >0, e =0, %, >0, k3 = 0;
(vil) 1 =0, 2 =0, u3 =0, 14 >0, k1 >0, k3 = 0;
(viii) 1 =0, 2 =0, u3 =0, g >0, k1 =0, k2 > 0.
In this paper, we equip system (1.2) with the following initial data:

31 (x;y; 0) = I’l(l)(xry)r MZ(x;y; 0) = ug(%)’); (1 3)
0(x,7,0) = 90(x,y), (x,y) € R2. '

The plan of this paper is as follows. Firstly, we give two very useful lemmas and estab-
lish the global weak solution for the 2D Bénard system with vertical dissipation in the first
component of velocity field and horizontal thermal diffusivity in Sect. 2. We shall give the
global regularity criteria for weak solution of the 2D Bénard system with vertical dissipa-
tion in the first component of velocity field and horizontal thermal diffusivity in Sect. 3. In
Sect. 4, we will give the global existence and regularity criteria of weak solution to Bénard
system with other cases for partial viscosity and thermal diffusivity.

Notations. We introduce some notations which are used in this paper. For 1 < p < oo,

I? = I7(R?) denotes the usual Lebesgue space with the norm | - ||;». The usual Sobolev

space of order # is defined by H" = {f € L*(R?)|V"f € L*} with the norm |||z = ([f[|, +
1

IV7f13,)2.

2 Global weak solution for the Bénard system with vertical dissipation and
horizontal thermal diffusivity

In this section, we will establish the global weak solution for the 2D Bénard system with

vertical dissipation in the first component of velocity field and horizontal thermal diffu-

sivity.
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2.1 Preliminaries

In this subsection, we first provide the lemma that bounds a triple-product in terms of the
Lebesgue norms of the functions and their directional derivatives; see for example [1, 36,
37]. The following anisotropic Sobolev inequality will play very important roles in proving

our main results.

Lemma 2.1 Assume that f,g, h, 0,g,0,h € L*(R?). Then there exists an absolute constant
C such that

1 1 1 1
[ v dxdyz < Ciftiatgi o s i 1o (21)
R

The following simple fact on the boundedness of Riesz transforms will also be used.

Lemma 2.2 (see [1]) Letf be a divergence-free vector field such that Vf € L” fory € (1,00).
Then there exists a pure constant C > 0 (independent of y) such that

Cy?
y—-1

IVl < IV xflier. (22)

For simplicity, throughout this paper, we use the same letter C to denote various generic
positive constants whose exact values are unimportant and may vary from line to line.

2.2 Global weak solution

Theorem 2.3 Let ;1 =0, iy >0, uz =0, g = 0, k1 > 0, ki = 0. Suppose that u,u,0° €
HY(R?) and d,u? + d,u3 = 0. Then the problem (1.2)—(1.3) admits a global weak solution
(41, Uo,6), which obeys

ui, 0 € L°([0, T; H' (R?)),  0yu1, 9,0 € L*([0, T); H' (R?))
forany T > 0.
Theorem 2.3 follows from the following two lemmas immediately.

Lemma 2.4 Consider (1.2) with ;11 =0, i3 >0, 43 = 0, ug = 0, k1 > 0,k = 0. Let 2, u3,0° €
L*(R?), then, forany T >0 and 0 < t < T, we have

t t
Huﬂ@2+Huﬂﬁz+Hm@z+M2/1H%uﬂﬂH;dT+K1/‘H%9h)ﬁzdf§(l (2.3)
0 0

Proof Taking the L%-inner product of the first three equations in (1.2) with u;, u5 and 6, re-
spectively, integrating the resulting equations by parts over R?, and using the divergence-
free condition d,u; + d,uy = 0, we find after adding them together that

| &

1
5 7 (@[ + [w@ 2 + [0 1) + ol 172 + 118,013

Q

t

:2// us0 dxdy
]RZ

< C(lluali}> + 1617>). (2.4)
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This, together with the Gronwall’s inequality, gives the desired estimates of (2.3), which

implies
ll2e1, 142, 0|l oo (o, )2 (m2)) + M2l Byttrll 120, ryr2(r2y) + K1 110x0 1l 120, 22 R2)) < C- (2.5)
We thus complete the proof of Lemma 2.4. d

To obtain the H!-estimates for u;, u, and 6, we consider the following equations:
0w + (- V)w = (adyyytt1 + 0,0,
0;050 + 0 [(14 - V)O] = k100 + 0y h, (2.6)
0;0y0 + 0y[ (11 - V)O] = k1 05y 0 + 010,

where the vorticity is @ = 0,15 — 9, u;.

Lemma 2.5 Consider (1.2) with 11 =0, 1o >0, u3 =0, e =0,x1 >0,k = 0. Let u(l), ug,eo €
HY(R?), then, for any T >0 and 0 < t < T, we have

t t
lol2 + 18:811% + 13,6112 + o / 02 () |2 A + 12 f |0, @)} de
0 0
t 2 t 2
o / |96 d1 + x4 / |,6(0)| % dr < C. 2.7)
0 0

Proof Multiplying the first equation of (2.6) by @ and integrating it over R2, we deduce

1d
2 dt

:// 00wdxdy
R2

< C(I13:0117> + l@ll72), (2.8)

2
”w(t) ”Lz + o || Oy ||iz + 2 |9yy111 ||%2

and hence, using (2.3), (2.5) and Gronwall’s inequality, we know that

t t
2 2
lol?, + Mz/ |0wyur (2)]| > d + Mz/ |0yyu1 ()| 2 dr < C, (2.9)
0 0
which gives
lwll oo (o, 122y + K2/l VOyuall 210, 12 m2y) < C. (2.10)

On the other hand, multiplying (2.6), and (2.6)3, respectively, by 9,6 and 9,6, and inte-
grating by parts, yields

4

1d
57 10 1752+ 13,00 12) + k11186112 + k111850122 = 1= > I (2.11)
I=1
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where
L= —// ax[(u . V)e]axe dx dy, I = // 0y U2 0,0 dx dy,
R2 R2

13:—// O [(u- V)09, dx dy, 14:// dy120,0 dx dy.
R2 R2

We now estimate the right-hand side of (2.11) term by term. We first write [; as
L= —// 8x[(u . V)Q]&xG dx dy
R2

= —// Oxtt1 0,0 0,0 dx dy — // 0x1420,0 0,0 dx dy
R2 R2

=111 +112. (2.12)
Here, we have used the fact [ 410:x00:0 dxdy + [[52 1420,,00,0 dx dy = 0, which can
easily be obtained by integration by parts and the incompressible condition.

With the help of Lemma 2.1, the Cauchy—Schwarz inequality and Young'’s inequality, we
infer that

I = —// 011 0,0 0,0 dx dy
RrR2

1 1 1 1
< Cllowu 2106112 195281 2 10,611 2 10,6112

K K
< Elllaxxelliz + glllaxﬁlliz + Cllol72119:0117». (2.13)
Similarly, we obtain

Ly = —// 01t 0y0 0,0 dx dy
R2

1 1 1 1
< Clldsuall 2 1,012 130112 18:611 4 105,011,

K
< ElllaxyOH%Z + Cloll7 (1801172 + 119,61172)- (2.14)
I3 can be bounded by
Iy = —// O [(u-V)0]0,0 dxdy
R2

= —//Rz 0y (11050 + 120,0)0,0 dx dy

= —// 0y110,00,0 dx dy — // 1105,00,0 dx dy
R2 R2
- f/ 0y120,60,0 dx dy — // 120,,60,0 dx dy
R2 R2
= —f/ 0y110,00,0 dx dy — // 0y120,00,0 dx dy
R2 R2

:—// 8yu18x98y9dxdy—2// 110,06 0x,0 dx dy
RrR2 R2
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1 1

1 1 1

< Cl1ayuu1 2 13:01 2 13,01 18,611 10,01
} . }
+ CllawBll2 18,0112 18,611 10,611 %

K1
< Znaxyeniz + C(10yur 1175 + Nl 1122 119y21 1122 ) (11001172 + 113,01122). (2.15)

In what follows, we estimate I, and I,. Using the Cauchy inequality, we have
L= / /R i drdy < C(lol + 1301%), (2.16)
and
L= ffRz dyurdyf dxdy < C(llwlj> + 18,0172). (2.17)
Combining the above estimates, we conclude that
d 2 2 2 2
a(Haﬁ(t)HLz +[8,68)]2) + 1130172 + 111901172
< C(I8yurli7> + llollZs + NearlI72 18,1172 + 1) (18:01172 + 13,01172) + Cllwll7,. (2.18)
Then (2.18), together with Gronwall’s inequality, immediately yields
IVO Lo o, 7222y + K111V 30 [l 1200, 1,022)) < C. (2.19)
Hence, we finish the proof of Lemma 2.5. d

We next prove Theorem 2.3 by using the method of vanishing viscosity. To this end, we

consider the following regularized problem:

O + (U - V)ul + 0,m° = €0yuts] + U20yyul,
Qeuts + (U - V)usy + 0,° = 80,15 + £0yyu5 + 07,

(2.20)
0,0° + (u® - V)0° = k10,0° + £0,,0° + u3,
V.u® =0,
with the smooth initial data
ui(x,7,0) = @ * u(l), u5(x,9,0) = @ * ug, 6% (x,7,0) = @, % 6°, (2.21)

“w,n

where u® = (uf,u5), “x” is the usual convolution operator, and ¢, (x,y) = e 2¢(x/¢,y/¢) is
the standard mollifier with width ¢, which satisfying

¢ >0, wngo(Rz), // pdxdy=1.
R2

Now, an application of the result of Sect. 3 in [32] in p. 934 shows that, for any 7' > 0,
there exists a unique global smooth solution (£, u5, 6%) of (2.20), (2.21) on R? x (0, T)) sat-
isfying the global bounds stated in Lemmas 2.4—2.5 which are uniform in €. So, by standard
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compactness arguments, we can extract a subsequence (u? , u;j ,0%) and pass to the limit
as j — oo to find that the limit function (u, u5,0) is indeed a global weak solution of the
problem (1.2)—(1.3) with @1 =0, p >0, u3 =0, g = 0, k1 > 0, ko = 0. The uniqueness of
the solution (u;, uy,0) satisfying the condition stated in Theorem 2.3 can be proved in a
very standard way, and for simplicity we omit the details here. The proof of Theorem 2.3

is therefore completed.

3 Global regularity criteria for weak solution of the Bénard system with
vertical dissipation and horizontal thermal diffusivity

The issue of whether the 2D Bénard system always possesses global (in time) classical

solutions can be difficult when there is only partial dissipation. Therefore, the goal of this

section is to establish two global regularity criteria for the weak solution of the 2D Bénard

system with vertical dissipation in the first component of velocity field and horizontal

thermal diffusivity.

Theorem 3.1 Let 1 =0, 1y >0, u3 =0, tg = 0, k1 > 0, k2 = 0. Suppose that ul,u,0° €
H?*(R?) and d.u? + d,u3 = 0. If the condition holds that

T
| 0xxsa(T) | 2 g2, AT < 00, (3.1)
(®2)
0

forany fixed T > 0, then the problem (1.2)—(1.3) admits a global classical solution (uy, uy,6),
which obeys
U, U, 9 € LOO([O, T)7H2 (Rz))y
dupytir € L*([0, T); L*(R?)),  0yuy, 9,0 € L*([0, T); H*(R?)).

Proof Applying V to Eq. (2.6); and taking the L2-inner product with Vo, and integrating

by parts, we obtain

1d

2 dt

= —// V[(u . V)w] -Vowdxdy + // Va,0Vwdxdy. (3.2)
R? R2

2 2 2 2
”Va)(t)”Lz + 2 || Oxaytta ”LZ + 2o || Oxyytta ||L2 + 2 |9yyy201 ”Lz

By the divergence-free condition, we further split the first term of (3.2) into four terms;
- // V|- Vo] Vodxdy
R2

= _// dettr (dy)? dx dy — // 0xtho 05Oy dx dy
R2 R2
_// ayulaxwaywdxdy—// ayuz(ayw)zdxdy. (3.3)
R2 R2

Differentiating Egs. (2.6), and (2.6); with respect to x and y and multiplying the result-

ing equations by 0,,0 and 9,0, respectively, we deduce after integrating by parts over R?
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that

1d
5 7719015 + [3500)] 12) + 21800 132 + 11805,

= —f/ 8xx[(u . V)@]axxé? dxdy + // Oyl 0xx0 dx dy
R2 R2
- // Byy[(u . V)G]E)WG dxdy + // 0yy120y,0 dx dy. (3.4)
R2 R2

We now turn to the first and third terms of (3.4). Again we write them out explicitly as

- // Bxx[(u . V)G]Bxxé dxdy
R2
= // 8x[(u . V)e]axxxe dx dy
R2
= —// 0xth1 040 05xx0 dx dy + // U1 00 00 dx dy
R2 R2
+ / f 048,60 D, dx dy + / / Uy D, dx by, (35)
R2 R2
- / / dyy[ (- V)0]0,,0 dx dy
R2
= /f By[(u . V)e]ame dxdy
R2

= /f 0y110,00,,,0 dx dy + // 11 0,y0 0y, 0 dx dy
R2 R2

+ // 0y 120,60 y,,0 dx dy + // 120y,00,,,0 dx dy. (3.6)
R2 R2

Combining with (3.2)—(3.6) leads to

1d
5 7 ([Ve® 17+ | 90) |22 + [3,0(8) | 22) + 12l Benyaa 12 + 200 1Byt %2

2 2 2
+ MZ”a;vyyul ”LZ + K1 ||8xxx9||L2 + K1 ”axyye ||L2

= _f/ detty (dyw)? dx dy — /f Oyt 05Oy dx dy — // 0y 11 0y wdyw dx dy

R2 R2 R2

— // 8yz42(8ya))2 dxdy + // Va0V dxdy + // 0xtt1 0,0 05,0 dox dy
R2 R2 R2

+ // 01t 0y0 06 dx dy + // 14205y 0 08 dix dy + // 0y1410500,y,0 dx dy
R? R2 R2

+ // 110y 0 0yy,0 dx dy + // 0y 120,60 dy,,0 dx dy + // Oyl 050 dx dy
R2 R2 R2

+ // 0yy120y,0 dx dy + // U1 050 0xx0 dx dy + // 130y,00,,,0 dx dy
R2 R2 R2

15
=7=> (3.7)
=1
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We now estimate /; through J;. Applying Lemma 2.1, the Cauchy-Schwarz inequality
and Young’s inequality, we have

i = —// 141 (3,)* dx dy
]R2

= _// Bty (Dxth)? dxdy — // 8xu1(8xyu1)2 dx dy
R2 R2
+ 2// Oxlh1 Oyl Oy th1 dix dy
RZ

< Cll0xur [l 2 1| Oxxtaz [l 2 | O tha |l 14

1 1 1 1
+ Cll0xus || 2] 8xyul ||L22 ”8xxyu1 "L22 ||8xyu1 ||L22 ||8xyyu1 ||L22

+ C| 011 || 4 || Oxxi || 14 ”axyul ll22
7 3
< Cllogurll 5 IV Oxu ll 5 Nl Oxxthz ll 12 || Oxxth || 14
Lo ottt i
+ Clloll2 1yt |2 13ssytts I 18yt | 1 gy
1 1
+ Clldxuur || 5 Vx| 5 Nl duxtia [l 4 | Bytan || 12
biour? Lot
< Clloll Vol 5 10xallza + Clloll 2 IVoll 2 | 0xy b1 |5 | 0xyytia |l 1

1 3
+ Cloll 1 Vol 75 10kt [ 4

a3
16

+ Clldsstiz |l 2 lloll7, (3.8)

2, M2 2 2 2
= ”8xxyu1 ”LZ + 7 ||8xyyul ||L2 + C(||8xxu2”L4 + ”w”LZ) ”va)”LZ

where we have utilized the inequality

Wl < 1L IVF 1 (3.9)

Similarly, invoking Lemma 2.1 and (3.9), the Cauchy—Schwarz inequality and Young’s
inequality, the remainder terms can be estimated as follows:

J2 = —// Dy D50y dx dy
R2

= —// O lho Oy Oyl A dy + // O lh Oy U1 Oy Uy dX dy
R2 R2

+[/ Ox U Ot Oyt dxdy—// Ol Oxytt1 Oyyty dx dy
R2 R2

< Cll0xuen || 41| Oxxter || 14 1| Oxyta2 || 2

1 1 1 1
+ Clatt2 2 19y 01 11 2 19y ) 2 1y 2 gy
+ Cllstta a1 eatta 2 13y y001 1 2

} } } }
+ Cl0utt2 2 119y 41 11 2 1By ) 2 183001 11 2 1Byt 11 2

1 1
< Clidstaa|l 5 1V 12 [ /5 [ 0xataa || o Vol 2
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1 1 1 1
+ Clol 2l VOl 2 eyt | 1Vl 2 Byt I
2 3
+ Clloxtaa || 5 IV Oxtia |l 5 Nl Oxxtaz [l 4[| Vel 12
3 5 5 3
+ Clol2 VOl 2 eyt | 51Vl 2 [18,yy101 112
5 5
= Cloll IVl 10wtz llzs + Clloll 2| Vol g2 || 0xxy 1 1] 2
3 5 3 >
+ Cloll 2 IVl 5 18xuzll s + Clloll 2 [IVell 2| 9kt 2 10yyy a1l 1
H2 2 M2 2 2 2
=3 | Bxxyran ll 7> + E”ayyyulan + C(l18exmall 2 + lwll72) Vol 7

+ Clldxctiz|| 4|02 (3.10)

J3 = —// 0y 11 0,3y dx dy
R2

= _/./]RZ 0y 11 Oyl Oy Uhn dx dy + //RZ 0y U1 Oy U2 Oyy ) dx dy
+ //RZ 0y 11 Oyt Oy dx dy — ffﬂ@z 0y 11 Oxyth Oyythy dx dy
< Cl9yu [l za | Oxxth2 || 14 | Oxythall 2 + CllByuin || o | O]l 2 | Byytia |l 12
1 1 1 1
+ ClUBy 2 19y | 2 10y 1 12 By 42 ) 2 1Byt 1
1 1 1 1
+ ClAy 112 1By 12, 1Dy 11 2 1By 2112, 1y 12,
1 1
< Clldyur [ 5 1V 3y 11 || 5 | st || 4 | Vol 2
1 1
+ Clloyur || 11V dyur || /| 0xxtia |l 2 Vol 2
1 1 1 1
+ Cly [l 2 1 V0 L 19y 2|2 | VO 2 1Byt 112
1 1 1 1
+ Cllyun | 2 1 Vol 2 sy | 5 1V 001 2 18y 11
1 3 1 3
< Cldymll L IVoll | 8xxtaall o + Clldyu | 5 IVl /5 [l 9xatia [l 14

1 1
+ Clldyurll 2 I Vol 2 aaytar |2 + Cll Oy | 2 I Voll 2 10y ar 1 5 | 9yyyria I >

K2
- 8
+ C”axxMZHL‘L”ayul”iZ’ (3.11)
Ju = —// Byuz(aya))2 dxdy
]RZ

= 2// U2 sy U Oyt AX dy + 2// U 0y 1ty Oyyythy dx dy
R2 R2

2 M2 2 2 2
| Oxxytia ll}2 + E”ayyyulan + C(||axxu2”L4 + ||3yM1||L2)||Vw||L2

+ 2// U Oyyln Oyythy dx dy + 2// U Oy Uy Oyyythy dx dy
R2 R2
3 3 3 3
=< C||8xyyu2”L2 ”uZ“Lz ”aqu ”L2 ||8xyu2 ”L2 ”axyyMZ ||L2

1 1 1 1
+ Clldyyinll 2 12 % 1etaz 1 2 13y 12 1y 12,
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1 1 1 1

+ Cllaapyuall 2 ) o 110211 25 13yy1e1 1 1y

} ! } :

+ Cllayyinll 2 ) 2 1etaz 1 2 9yt 2 gy taz 12
boobo }
< Clluytea 2 Ntz L Nll 211V [ Bsyinr 125

1 1 1 1
+ Clldyyyter 2 a2 25 ] 2 IV eoll 2 18ypy201 112
boobo }
+ Clldaytnr 2 1421 5 ol 5 1 Vol 2 13yy001 1

1 1

1 1
+ Clayyunll 2 2 10l 5 I Vool 1y I,

IA

W2 3o
L i s + 22 a2 + Cllalallo ) Ve, (3.12)
Js = / / VaOVodrdy < C(Iu01s + 1017 + IVol), (3.13)
R

Jo = // 011 050 00 dx dy
]RZ
) SPPILETNPIL
< Cll s | 210201 | 5 | 9ay21 | 51105011 % 1050 [ 25
K1
=% 85501125 + Cllwll2 | VallZ5 + ClI0x0117 10xx0 1122, (3.14)
J7 = /:/ Ox 10,0 056 dx dy
RZ
1 1 1 1
< Cll9nn |2 19x2a2 || 2 | stz || 2 10,011 % 110,011 2
K1
=< [05ex0 1122 + Cllwl22 [ Vool 2 + Cl13,01172 110y,0 12, (3.15)
Js = //2 U9 0,y0 00 dx dy
R
1 1 1 1
< Cll9ann |2 11211 5 19520211 25 192y 0 1| 25 19y 011 2

K1 K1
=< gllamé’lliz + ﬁllaxyﬁlliz + Clual ol (19::01172 + 18,,01172), (3.16)

where we have used the fact [|0,,01|2, < C([|8:0117; + [18,,0[12,);

Jo= f/ 0y 110,00y, 0 dx dy
RrR2

= —// 0y 141 0x00,,0 dxdy—// 0y 141 0xy0 0,0 dix dy
R? R?
1 1 1 1
< ClOON 21141 12, 135001112, 103,011 25 823y 011
1 1 1 1
+ Cll8y11 112192y 11 25 1By 011 25 135y O 1 75 118y O
1 1 1 1
< C|19:0| 2 ||V60||L22 ||3yyyM1||L22 ||3yy9||L22 ||3xyy9||L22

1 1
+ Clldyull 2 192011 /2 101y O 211y, 0

<K
T 12

+ C(10:0112 + 1yu1122) (V@2 + 10220175 + 18,,01122), (3.17)

18ypyt1 1125 + = [y 12
yyyUillpa + 7 1012
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]10 = //2 Mlaxyeayyye dxdy
R

= —// 0y110xy0 0,0 dx dy — // 11 0yy 00y, 0 dx dy
R? R2

1 1 1 1

< ClIBya1 12135501 2 13535011 5 18,5011 2 153y 611
} } } )
+ CllaayBll2 a1 5 11,0011 219,012 191,611 25

K1
< 7||axyye||§2 + C(10yu 15 + N 172 118y21 1122 ) (110201172 + 113y0117), (3.18)
]11 = //2 8yu23y08yyy9 dxdy
R

= —/f 0yytt0,60,,0 dx dy — // 0y120,,00,,6 dx dy
R2 R2

1 1 1 1
< ClI3,011 2 13yytta 25 13ypy10211 2 183,011 11323y 011 2

1 1 1 1
+ ClI10yy 0 .2 119y242 1| 2 10y a2 11 /> 1930 1 12 110syy O 1l >
2 2 2 2
= Clloy0l 2 IVell 5 Nl dxyyrer | 5 1850l 12 1| 0y 1l 2
3 > > 3
+ Cll9y0 |2 lloll 2 1Bxyzar [l 5 135y 0 1| 5 11029y Ol

“2 2 K1 2
< Byl + 2 1300172

2 2
+C(10,017: + lloll )5 19111 55) (IV@llZ2 + 110,,601172), (3.19)
Ji2 = / / | ducttr B dcdly < C(IVol2; + 19:013), (3:20)
R
Ji3 = //2 Byt 0 dxdy < C([ Vol +110,,017,), (3.21)
R

and

Jia+ )15 = // U1 030 050 dx dy + ff 120,,6 3,0 dx dy
R2 R2

= // U1 030 00 dx dy — /f 110,00y 0 dx dy
R2 R2

1 1 1 1
= C”axxxe ”L2 ||M1 ||L22 ”ayul ||L22 || axxg ||L22 ”8xxx9 ||L22
5 3 3 3
+ Cll Oy Ol 2 llan |l 2 10521 [l 51185y 0 11 5 M| By Ol 12
K1 2 K1 2
= E”axxeHLz + R”axyyean

+ CllenlI72 13,2111 (18201172 + 119y,01172)- (322)

Hence, inserting the estimates J;—/;5 into (3.7), we finally obtain

1d
5 77 1V + 18002 + [8,0@) [ 2) + all By 132 + pall gy 172

2 2 2
+ MZ”ayyyul ||L2 + K1 | Oxxx0 ”LZ + K1 ||3xyy9||L2
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2 2
2 2 2 2 2 2 3 3
< C(I1Bymmllz2 + llollZ2 + 10:01172 + 18,0172 + lua I > 18yua s + Nl 1wyt l
2 2 2 2 2
+llualplolfs + I8xuall e + 1) (IVolZ2 + 1981172 + 13,,6117)

+ Clldaatia |l g2 (1,11 172 + llol|72).- (3.23)

It thus follows from Gronwall’s inequality that

t t
IVl + 13012 + 13,012 + iz / | Byten(2)| %2 d + iz f Buyyi01 ()| e
0 0

t t t
‘i / 18,y (D)% dr + 11 / | (O d + 11 / [84yy0(0)| % dz
0 0 0

<C, (3.24)

which yields

IVl oo, ryr2m@2y + 1401 oo (o, ryr2@2y) + tall Adyza |l 2o, myr2 m2)

+ tallOxyytin || 20, T2 m2)) + K11120x0 [l 120, 122y < C. (3.25)
Therefore, we have completed the proof of Theorem 3.1. g

Furthermore, we establish another regularity criterion to the 2D Bénard system with
vertical dissipation and horizontal thermal diffusivity.

Theorem 3.2 Let 11 =0, p >0, u3 =0, g =0, k1 >0, k3 = 0. Given a positive time T €

(0,00). Assume that u,u3,0° € H*(R%) and V - u® = 0. Let (uy,u,,0) be the solution of

(1.2)-(1.3). If

T
f ol 2o dlt < 00 (3.26)
0

forsome T >0, then ||(u1, uz,0)|| 2 is finite on [0, T].
We now give the proof of Theorem 3.2, we first prove the global H! bound for (u1, 43,8),
we present the proof of the main theorem secondly.

e Global H'-bound for (i1, u3,0)

Proposition 3.3 Let (u?,u,0°) € H*(R?) and let (u1,u,,0) be the corresponding solution
of (1.2)—(1.3). Then (uy,u,0) obeys the following global L>-bound:

t t
o125 + lluall22 + 101122 + 122 / |8yu1(2) |2 dT + 11 / |8:6(0)}2 dr
0 0

< C|| (b u3,6°) [ 2 (3.27)

forany t > 0. Here C is a constant depending only on 15, k1, and T.
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Proposition 3.4 Assume that (u?,u3,0°) € H*(R?), V - u® = 0. Let (u1, u3,0) be the corre-
sponding solution of (1.2)—(1.3). Then, forany T >0andt < T,

| (110, 2(6), 6 ®) || 11 2y < Cr6™ o Woasloe d (3.28)
where C; is a constant depending on T and initial data, and C, is a pure constant.

Proof Taking the inner product of the first three equations in (1.2) with —Au;, —Au, and

—A#, respectively, integrating with respect to space

d
(Vi @] + [ Vi@ + [VOO2) + w2 Vol + 2 V30113,

—/f 9~Au2dxdy+/f [(u-V)9]~A9dxdy—]/ Uy - A6 dx dy; (3.29)
RZ ]RZ ]R2

K Ky K3

N =

then, for notational convenience, we set

A@) = [Vua (07 + | Vua 0| + | VOG0 o (3.30)
For K; and K3, integrating by parts and applying the Holder inequality gives

Ky + Kz < [[Vull2, + |VO2. (3.31)

To estimate K, we write component-wise
KZ:—// VO -Vu-V0dxdy
]RZ

= —/f Bxeaxulaxedxdy—// 8x98xu28y9dxdy—f/ 0,00y11 0,0 dx dy
R2 RrR2 RrR2

Ko K2 K3
—/f 0,00,120,0 dx dy,
R2
Koy
(3.32)
1(21 = fo U 8x63xx9 dxdy
R2
1 1 1 1
< CllawO 12 12 18,01 1 2 10,011 % 10,0112
K1
< vaaxe”iz + Cllua |72 10yu1 17,1 V6172, (3.33)
Kyy < Cl|0,taz [0 [ VO 72, (3.34)

1 1 1 1
Ko < Cllayurll 218,011 5118011 5 118,01 5 10,01

K1
< gllvaﬁlliz + Clloyu |17, 11V0112,, (3.35)
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1(24, =-2 // u18y98xy9 dxdy
RrR2
1 1 1 1
< Cllan 0l 2 et 12 118,011 % 113,011 4 105,011 %
K
< glnvax(g”iz + ClnlI72 18,1117 VO 7. (3.36)

After combining inequalities,

1d 7 K
5 A0+ 1l Va7 + Va6, < fuvayulniz + Elnvaxeniz

+ Clldsuall7A(2), (3.37)

after applying Gronwall’s lemma, we get the H I_norm for uy, uy, and 6. This completes
the proof of Proposition 3.4. d

e H? bound
To estimate the H?-norm of (uy, u,,6), we consider the equation of w = V x u, V8

{ 3tw + (M . V)w = —/,Lzayyyul + 8x97 (3.38)

9:VO + V[(u - V)0] = k1 V0 + Vuy.

Proposition 3.5 Assume that (u®,u3,0°) € H*(R?), V - u® = 0 and let (u1,u,,0) be the
solution of (1.2)—(1.3). Then (w, VO) satisfy

T T
lools + 14012, + 2 / A8 |2 dt + i) / | A80]1% dt < C (3.39)
0 0

if xu € L*([0, TT; L*(R?)).

Proof Taking the inner product of (3.38); with —Aw and (3.38), with ~AV#@ in L2(R?),
respectively, we find

1d
Eﬁ(HVwH%z + 1 AO112,) + pall Adyur 12 + k1 || ABL0112,

:// (ro)w~Awdxdy+// Vo0 - Vodxdy
R2 R2

Ly

L
- Al(u- V)0 |AOdxdy + Auy - Abdxdy. (3.40)
LAt mpsoasi ]

L3 Ly

We now estimate L; through L,. We firstly write the four terms in L; explicitly,

le—f/ V- -Vu-Vodxdy
R2

= —// Bxu18xw8xwdxdy—// Oyt 0,0y dx dy
R2 R2

Ly Lia

_/[1;{2 Byulaxa)aya)dxdy—/[;gz 0y ur0ywdywdxdy. (3.41)

L3 Lig
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These terms can be bounded as follows:
2 2
Ly < |0yt oo 10zl ;2 < [|0xtt1 [z [Vl 2
2
Lz < ||9xtiz [|zo || 0x [l 2 |0yl 2 < [ 8xti2 || o0 [ V|72,
AR S B
Lz < Clloxoll 2 [19yus |l 5 | 0xymia || 5 119yl 5 [19yy0ll 1

H“2 2 2 2 2
s ?”Aayulan + Cllayu [l 5 IVayur [l L I Voll s

Lis = 2// U0y wdyyw dx dy
RrR2

1 1 1 1
< Cllay ol luz 1 5 13x21 13,000 5 18,0011 2

U2
< ?IIAayullliz + Cllua |2 | Vul 2, Vo 3,
The terms L, and L4 can easily be bounded,

2 2
Ly < || Vol + 120172,
[ —

IVa.61l,2 <1 A0 2
Ly < Vol 7, + |A6]]7, .
—,_J

(1 Azl 2 <[Vl )

Finally, we deal with Ls.

Ly = —// A(u10:0 + u20,0) A0 dxdy = L3y + L.
R2

We first split L3; and L3, each into two terms,

Ly = — f f O (1050 + 120,0) AO dx dy = L1y + Lo,
R2

L3 =- // 0yy (401050 + 120,0) 0,0 dx dy — // 0y (441050 + 120,0)0,,0 dx dy
R2 R2

£ L3y + Lany.
These terms are bounded as follows:

Lz = —// 0xx (1410,0) AO dx dy
R2

= // 8xu18x9A8x9dxdy+// U1 05,0 A0,O dx dy
R2 R2

1 1 1 1
< CllAB11 2 13ste1 I 1 185y 1 4 118:011 2 10,4611

1 1 1 1
+ CllAKB 2 | 5 1,001 1 5 1050012 185s8 1

K1
< EIIA&C@IIEZ + C|Vull2 |Voll?,

+ C(IVOIZ, + Nl 172 119y21 1122 ) | AOI2,

Page 17 of 23

(3.42)

(3.43)

(3.44)

(3.45)

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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L3z = —// 0ux (1420,0) AO dx dy
R2

= // 010,60 ADLO dx dy + // U20,y0 AO,O dx dy
R2 R2

< 118,021 2011,0 1211 A, 2
+ CIABL 2 | L 1105212 1910112 191y B11 2

K1
< E||Aax@||§2 + Cllasuall7o IVON2, + Cllaall 25 | Vit 25 1V 3,0 (12, (3.52)

L321 = —/f Byy(ulaxe + Mzaye)axxe dxdy
R2

= //H‘QZ Ox 14100 0y dx dy + //RZ 141 05x0 Oy 0 dix dy

+ // 01t 0y0 0y dx dy + // 14205y 0 Oxy 0 dx dy
RrR2 RrR2

K1
< EnAaxeniz + Cllo,ull 7 VO, + Cllua 22 [ Vull2, | A6,
+ Clluz || 2 I Vul 2 | V3,012, (3.53)

L3y =— //Rz Oyy (141050 + 120,0)0,,0 dx dy
__ / /R (810 + 1013,0)y 0 ddy
- //RZ 0y (0y 20,0 + 120,,0)0,,0 dx dy
=— //Rz(awulaxe + 2011 0xy0 + U105y, 0) 0,0 dx dy
- / /R Oy 120, + 20,4201, + 120y 0) 00 dx (3.54)

‘—//Rz 0yy 141050 0,0 dxdy‘

1 1 1 1
< C113:011 2 110111 5 13ypy001 11 25 13,012 1823, 011 25

125 K1
< ZnAayuln; + ﬁnAaxeniz +Cla,012 (IVll? + 1A60]12,), (3.55)

‘ - 2// 011 0xy0 0,0 dxdy‘
]RZ

1 1 1 1
< Cllay Ol 2 13yt1 112 19y ta1 11 2 19y B11 2 11023y 0112

K
< 15180615 + ClaulZ I Vol + CIVaLlL I ABIE, (3.56)

‘ — // 11 Oy, 0 0y 0 dxdy’
R2

1 1 1 1
< Cllayy Ol 2 et 1 5 118,001 11 25 119,012 1929, 11 25

K1
< ﬁ”AaxG”iz + Clluy 172 11y21 122 | AO 12, (3.57)
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‘_//]RZ 0yy1420,00,,0 dxdy’

1 1 1 1
< Clioyyuall 210,011 /2 19350 11 /5 19301l 72 110130 1 7>

K
< ﬁnAaxeniz +ClVOI2, + CIIVayuy 172 AO12,, (3.58)

‘—2 // 0y 1420y,0 0,0 dxdy‘
RZ

= ‘ —4// 141 0yy0) Oy dxdy‘
R2

1 1 1 1
< Cl1ayy Ol 2 a1 2 118,001 11 25 113,012 1919, 25

K

< ﬁllAaﬁllfz + Cllea |72 118,117, 1 A6 17, (3.59)
‘—// 130y,,0 9,0 dxdy‘

R2

- ‘ f / 14100 D1y dxdy'
R2

K

=< é”AaxGHEZ + Cllea |32 11,1117 1 A6 17, (3.60)

After combining all inequalities, together with Gronwall’s inequality, we obtain the H'-
bound for w, V6. Therefore, we obtain the global H? bound for (u, §) for the 2D Bénard sys-
tem (1.2)—(1.3) with vertical dissipation in the horizontal velocity equation and horizontal

dissipation in the temperature equation. We thus complete the proof of Theorem 3.2. [

4 Global existence and regularity criteria of weak solution for Bénard system
with other partial dissipation

We devote this section to showing the global weak solution and regularity criteria for the

2D Bénard system with other cases for partial viscosity and thermal diffusivity. More pre-

cisely, we shall show the following cases and theorems.
Theorem 4.1 Let (i) 1 =0, iy =0, u3 >0, g =0, k1 =0,k > 0; (ii) 1 = 0, ;g = 0, 3 >0,
wa =0, k1 >0, k3 = 0. Suppose that u®,u3,0° € HY(R?) and V - u® = 0. Then the problem

(1.2)—(1.3) with (i) and (ii) admits a global weak solution (u1, u,,0), which obeys

i, uz,0 € L2([0, T; H'(R?)),  duup,0,0 € L*([0, T); H' (R?));

i, 0 € L°([0, T, H'(R?)), 812, 3,0 € L*([0, T); H' (R?))

forany T > 0, respectively. Moreover, suppose that u®,u3,0° € H*(R?) and V - u® = 0. If one
of the following two conditions holds:

T
|| 3yyu1(f)||L4 r2) 4T < 00; (4.1)
(R*)
0

T
|| dyu1(7) ||L°O g2)dT <00 (4.2)
(R%)
0

Page 19 of 23
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for any fixed T > 0, then the problem (1.2)—(1.3) with (i) and (ii) admits a global classical
solution (u1,us,0), which, respectively, obeys

u1, 2,0 € L([0, T); H*(R?)),

denyttz € L*([0, T, L*(R?)),  dyup, 0,0 € L*([0, T); H*(R?));

u1, 12,60 € L°([0, T); H*(R?)),

denyttr € L*([0, T);L*(R?)),  Qutan, 040 € L2([0, T); H*(R?)).
Theorem 4.2 Let (iii) ;1 >0, o =0, u3 =0, g =0, k1 >0, ko = 0; (iv) p; >0, uy =0,
U3 =0, g =0, ky = 0, ky > 0. Suppose that u?,u3,0° € HY(R?) and V - u® = 0. Then the
problem (1.2)—(1.3) with (iii) and (iv) admits a global weak solution (11, u,,6), which obeys

ui,uz,0 € L([0, T); H'(R?)), 8.1, 0:0 € L*([0, T); H'(R?));

i, uz,0 € L2([0, T; H' (R?)),  8,u1,0,0 € L*([0, T); H' (R?))

or an > 0, respectively. Furtnermore, suppose tnat u;, u,,0"- € an cu =0.
y T > 0, respectively. Furth ppose that u?, u,0° € H*(R?) and V - u® = 0.
one of the following three conditions holds:

T
‘An%m&mm%ﬁ<m; (4.3)
T
| 0xy11.(2) | 14 g2, AT < 003 (4.4)
(R?)
0
T
|| Oyt (1) ||LoO g2)dT <00 (4.5)
(R#)
0

forany fixed T > 0, then the problem (1.2)—(1.3) with (iii) and (iv) admits a global classical
solution (uy,us,0), which, respectively, obeys

u1, 12,60 € L ([0, T); H*(R?)),
Ayt € L*([0, T);L*(R?)),  duu1, 040 € L*([0, T); H*(R?));
w1, a0 € L([0, T); H*(R?)),
dumytty € L*([0, T);L*(R?)),  d,u1,0,0 € L*([0, T); H*(R?)).
Theorem 4.3 Let (v) 1 =0, i3 >0, u3 =0, g = 0, k1 = 0, i > 0. Suppose that ul,u3, 6° €

HYR?) and V - u® = 0. Then the problem (1.2)—(1.3) with (v) admits a global weak solution
(u1,u3,0), which obeys

ui,t,0 € L°([0, T; H' (R?)), 0y, 9,0 € L*([0, T); H' (R?))

or any T > 0. Moreover, suppose that u?,u,6° € H*(R?) and V - u® = 0. If one of the fol-
'y pp 10Uy
lowing two conditions holds:

T
| 0xxaa (T) | ;2 g2y AT < 005 (4.6)
(R?)
0

T
/|memwwﬁ<m (4.7)
0
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for any fixed T > 0, then the problem (1.2)—(1.3) with (v) admits a global classical solution
(¢41, un,6), which obeys

ui, MZ;Q € Loo([o’ T);H2(R2));

duyur € L7([0, T); L*(R?)),  yu1, 0,0 € L*([0, T); H*(R?)).
Theorem 4.4 Let (vi) 1 =0, i =0, 3 =0, g >0, k1 > 0, k2 = 0 and (vii) p1 =0, uy =0,
w3 =0, g >0, k1 =0, kg > 0. Suppose that u®,u3,0° € H'(R?) and V - u° = 0. Then the
problem (1.2)—(1.3) with (vi) and (vii) admits a global weak solution (uy, uy,0), which obeys

ui,t, 0 € L°([0, T; H' (R?)),  dyup, 9,0 € L*([0, T); H' (R?));

ui, 2,0 € L°([0, T, H' (R?)),  dyup, 0,0 € L*([0, T); H' (R?))

for any T > 0, respectively. Furthermore, suppose that u?,u3,0° € H*(R?) and V - u° = 0. If
one of the following three conditions holds:

T
H Oxxtt1 (T) HL4 g2 AT < 00 (4.8)
(R*)
0
T
[y 24 ()| 2y AT < 005 (4.9)
A ®2)
T
/0 |9:201.(2) | 0 2y AT < 20 (4.10)

forany fixed T > 0, then the problem (1.2)—(1.3) admits a global classical solution (uy, uy,6),
which, respectively, obeys

Ml,uz,9 eL™® ( 0 T) HZ(RZ))
dupyttz € L*([0, T); L*(R?)),  0yup, 9,0 € L*([0, T); H*(R?));
u1, 12,60 € L ([0, T); H*(R?)),

duyyttz € L*([0, T); L*(R?)),  0yuz, 0,0 € L*([0, T); H*(R?)).

Due to those theorems’ proofs being similar to the results of Sect. 3, we can leave the

proofs of those theorems to the interested readers.

5 Conclusion

The Bénard fluid problem is a very classical problem in the fluid dynamics area. The global
existence or non-existence of the classical solution to an inviscid Bénard system is an open
and challenging problem, even in the two-dimensional case. Therefore, it is of interest to
consider the Bénard system with partial viscosity. Inspired by recent work [13, 31, 32], we
first consider the global weak solution for the 2D Bénard system with partial dissipation.

Secondly, we establish some regularity criteria for the corresponding system.
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