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Abstract
We consider the solvable intervals of two positive parameters λ and μ in which the
second-order nonlocal differential system

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–u′′ = a(t)ϕu + λω(t)f (u), 0 < t < 1,

–ϕ′′ =μb(t)u, 0 < t < 1,

u(0) =
∫ 1
0 g(s)u(s)ds, u′(1) = 0,

ϕ(0) = ϕ(1) =
∫ 1
0 h(s)ϕ(s)ds,

admits multiple positive solutions. The main interest is that the weight functions a(t),
ω(t) and b(t) change sign on [0, 1], λ �≡ 1, μ �≡ 1, g �≡ 0 and h �≡ 0. Our analysis mainly
relies on the fixed point technology in cones.

Keywords: Positive solutions; Nonlocal indefinite differential systems;
Multi-parameter; Fixed point technology

1 Introduction
Boundary value problem with integral boundary conditions is a typical nonlocal prob-
lem, which arises naturally in hydrodynamic problems [1], semiconductor problems [2],
thermal conduction problems [3]. Such problems have been considered by many authors
[4–18]. Specifically, Boucherif [19] exploited the fixed point theorem in cones to study the
following problem:

⎧
⎪⎪⎨

⎪⎪⎩

u′′(t) = f (t, u(t)), 0 < t < 1,

u(0) – cu′(0) =
∫ 1

0 g0(t)u(t) dt,

u(1) – du′(1) =
∫ 1

0 g1(t)u(t) dt.

(1.1)

The author got several excellent results on the existence of positive solutions to problem
(1.1).

In [20], Feng, Ji and Ge began to study the boundary value problem with integral bound-
ary conditions in abstract spaces

⎧
⎨

⎩

u′′(t) + f (t, u(t)) = θ , 0 < t < 1,

u(0) =
∫ 1

0 g(t)u(t) dt, u(1) = θ .
(1.2)
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Applying the fixed point theory in a cone for strict set contraction operators, the authors
investigated the existence, nonexistence and multiplicity of positive solutions for problem
(1.2).

At the same time, we see that increasing attention has been paid to the study of nonlo-
cal boundary value problems with parameters (see [21–30]). Especially, let us review sev-
eral excellent results related to boundary value problems with parameters. In [31], Kong
considered the existence and uniqueness of positive solutions for second-order singular
boundary value problem

⎧
⎨

⎩

u′′(t) + λf (u(t)) = 0, t ∈ (0, 1),

u(0) =
∫ 1

0 u(s) dA(s), u(1) =
∫ 1

0 u(s) dB(s).
(1.3)

The author examined the uniqueness of the solution and its dependence on the parameter
λ for problem (1.3) by using the mixed monotone operator theory.

Very recently, Zhang and Feng [32] considered the following second-order differential
equations with one-dimensional p-Laplacian:

⎧
⎨

⎩

λ(ϕp(u′))′ + ω(t)f (t, u) = 0, t ∈ (0, 1),

au(0) – bu′(0) =
∫ 1

0 g(t)u(t) dt, u′(1) = 0,
(1.4)

where λ > 0 is a parameter, ϕp(s) = |s|p–2s, p > 1, (ϕp)–1 = ϕq, 1
p + 1

q = 1, a, b > 0, ω is a
nonnegative measurable function on (0, 1), ω �≡ 0 on any open subinterval in (0, 1) which
may be singular at t = 0 and/or t = 1. Using fixed point techniques, the authors obtain
some new and more general existence, nonexistence and multiplicity results. In addition,
they also studied the dependence of positive solution uλ on the parameter λ.

For the latest development direction of the nonlocal problems, see Refs. [33–37]. How-
ever, to the best of our knowledge, the corresponding results for second-order differential
system with integral boundary conditions and multiple parameters are not investigated
until now.

Moreover, a class of indefinite problems have attracted the attention of Ma and Han [38],
López-Gómez and Tellini [39], Boscaggin and Zanolin [40, 41], Sovrano and Zanolin [42],
Bravo and Torres [43], Wang and An [44], and Yao [45]. In [38], Ma and Han considered
the following boundary value problem:

⎧
⎨

⎩

u′′ + λa(t)f (u) = 0, 0 < t < 1,

u(0) = u(1) = 0,
(1.5)

where a ∈ C[0, 1] may change sign, λ is a parameter. They proved the existence, multiplic-
ity and stability of positive solutions for problem (1.5) by applying bifurcation techniques.

In [42], applying the shooting method, Sovrano and Zanolin presented a multiplicity
result of positive solutions for the Neumann problem

⎧
⎪⎪⎨

⎪⎪⎩

u′′ + a(t)f (u) = 0, 0 < t < 1,

u(t) > 0, t ∈ [0, T],

u′(0) = u′(T) = 0,

(1.6)

where the weight function a ∈ C[0, 1] has indefinite sign.
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Recently, Wang and An in [44] dealt with the existence and multiplicity of positive so-
lutions for the second-order differential system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = a(t)ϕu + h(t)f (u), 0 < t < 1,

–ϕ′′ = b(t)u, 0 < t < 1,

u(0) = u(1) = 0,

ϕ(0) = ϕ(1) = 0,

(1.7)

where a(t), b(t), g(t) are allowed to change sign on [0, 1].
Very recently, López-Gómez, Omari, Rivetti [46, 47] studied a class of quasilinear indef-

inite problem

⎧
⎨

⎩

–( u′√
1+u′2 )′ = λa(t)f (u), 0 < t < 1,

u′(0) = u′(1) = 0,
(1.8)

where λ ∈ R is a parameter, a ∈ L1[0, 1] changes sign. They derived many results on the
existence and the multiplicity of positive (regular) solutions by applying topological degree
and variational approach, respectively. For other results on indefinite problems, we refer
the reader to Refs. [48–51] and the references cited therein.

To the best of our knowledge, in the literature there are no articles on multiple positive
solutions for the analogous of second-order nonlocal differential system with indefinite
weights and multiple parameters. More precisely, the study of λ �≡ 1, μ �≡ 1, and a(t), b(t)
and ω(t) changing sign on [0, 1] is still open for the second-order nonlocal differential
system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = a(t)ϕu + λω(t)f (u), 0 < t < 1,

–ϕ′′ = μb(t)u, 0 < t < 1,

u(0) =
∫ 1

0 g(s)u(s) ds, u′(1) = 0,

ϕ(0) = ϕ(1) =
∫ 1

0 h(s)ϕ(s) ds,

(1.9)

where λ > 0 and μ > 0 are two parameters, a(t), b(t), ω(t) may change sign on J = [0, 1].
We assume that a, ω, b, f , g and h satisfy

(H1) a,ω, b : [0, 1] → (–∞, +∞) are continuous, and there exists a constant ξ ∈ (0, 1)
such that

⎧
⎨

⎩

a(t),ω(t), b(t) ≥ 0, ∀t ∈ [0, ξ ],

a(t)),ω(t), b(t) ≤ 0, ∀t ∈ [ξ , 1].

Moreover, a(t), ω(t), b(t) do not vanish identically on any subinterval of [0, 1].
(H2) f ∈ C(R+, R+), and f (s) > 0 for s > 0, where R+ = [0, +∞).
(H3) g, h ∈ L1[0, 1] are nonnegative on J , and � ∈ [0, 1), ν ∈ [0, 1), where

� =
∫ 1

0
g(s) ds, ν =

∫ 1

0
h(s) ds.
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We call a pair of functions (u,ϕ) with u,ϕ ∈ C2(0, 1) ∩ C[0, 1] being a solution to system
(1.9), if (u,ϕ) satisfies (1.9) for t ∈ J . A solution (u,ϕ) is called a positive solution if, for any
t ∈ J , we get u(t),ϕ(t) ≥ 0 and u(t),ϕ(t) �≡ 0.

Inspired by the work of the above papers, our aim in the present paper is to investigate
the multiplicity of positive solutions of system (1.9). We remark that this is probably the
first time that the existence of multiple positive solutions of the second-order nonlocal
differential system with indefinite weight and multiple parameters has been studied.

The rest of present article is organized as follows. In Sect. 2, we give an equivalent in-
tegral equation of system (1.9) and present several lemmas which are needed throughout
this article. Section 3 is devoted to the statement and proof the main results. Several re-
lated remarks are given in Sect. 4. Finally, we give an example to illustrate the main results
in the final section.

2 An equivalent formulation of system (1.9)
In this part, we will aim for changing system (1.9) into an equivalent integral equation, and
present several lemmas which play an important role in the proof of our main results.

It is clear that system (1.9) is equivalent to the following two boundary value problems:

⎧
⎨

⎩

–u′′ = a(t)φu + λω(t)f (u), 0 < t < 1,

u(0) =
∫ 1

0 g(s)u(s) ds, u′(1) = 0,
(2.1)

and
⎧
⎨

⎩

–ϕ′′ = μb(t)u, 0 < t < 1,

ϕ(0) = ϕ(1) =
∫ 1

0 h(s)ϕ(s) ds.
(2.2)

Lemma 2.1 Assume that (H1)–(H3) hold. Then problem (2.1) has a unique solution u and
u can be expressed in the form

u(t) =
∫ 1

0
H(t, s)a(s)u(s)φ(s) ds + λ

∫ 1

0
H(t, s)ω(s)f

(
u(s)

)
ds, (2.3)

where

H(t, s) = G(t, s) +
1

1 – �

∫ 1

0
G(s, τ )g(τ ) dτ , (2.4)

G(t, s) =

⎧
⎨

⎩

t, 0 ≤ t ≤ s ≤ 1,

s, 0 ≤ s ≤ t ≤ 1.
(2.5)

Proof The proof of Lemma 2.1 is analogous to that of Lemma 2.1 in [52]. �

It follows from (2.4) and (2.5) that H(t, s) and G(t, s) have the following properties.

Proposition 2.1 Assume that (H3) holds. Then we have

G(t, s) > 0, H(t, s) > 0, ∀t, s ∈ (0, 1), (2.6)
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G(t, s) ≥ 0, H(t, s) ≥ 0, ∀t, s ∈ J , (2.7)

tG(s, s) ≤ G(t, s) ≤ G(s, s), tH(s, s) ≤ H(t, s) ≤ H(s, s), ∀t, s ∈ J , (2.8)

G(t, s) ≥ ξG(s, s), H(t, s) ≥ ξH(s, s), ∀t ∈ [ξ , 1], s ∈ J . (2.9)

Proof By the definition of G(t, s) and H(t, s), it is not difficult to see that (2.6) and (2.7)
hold.

Next, turning to (2.8), if t ≤ s, then G(t, s) = t ≤ s; if t ≥ s, then G(t, s) = s. So we see that
G(t, s) ≤ s = G(s, s), ∀t, s ∈ J .

On the other hand, noticing that t, s ∈ J , if t ≤ s, then G(t, s) = t ≥ ts; if t ≥ s, then G(t, s) =
s ≥ st. Therefore, we obtain G(t, s) ≥ ts = tG(s, s), ∀t, s ∈ J .

Similarly, one can prove that tH(s, s) ≤ H(t, s) ≤ H(s, s), ∀t, s ∈ J . This gives the proof of
(2.8).

If t ∈ [ξ , 1], it is easy to see that by (2.8), G(t, s) ≥ tG(s, s) ≥ ξG(s, s), H(t, s) ≥ tH(s, s) ≥
ξH(s, s), ∀s ∈ J . This finishes the proof of (2.9). �

Lemma 2.2 Assume that (H1) and (H3) hold. Then the problem

⎧
⎨

⎩

–ϕ′′ = μb(t)u, 0 < t < 1,

ϕ(0) = ϕ(1) =
∫ 1

0 h(s)ϕ(s) ds,
(2.10)

has a unique solution ϕ given by

ϕ(t) = μ

∫ 1

0
H∗(t, s)b(s)u(s) ds, (2.11)

where

H∗(t, s) = G∗(t, s) +
1

1 – ν

∫ 1

0
G∗(s, τ )h(τ ) dτ , (2.12)

G∗(t, s) =

⎧
⎨

⎩

t(1 – s), 0 ≤ t ≤ s ≤ 1,

s(1 – t), 0 ≤ s ≤ t ≤ 1.
(2.13)

Proof The proof of Lemma 2.2 is similar to that of Lemma 2.1 in [52]. �

Similar to the proof of Proposition 2.1, we can get Proposition 2.2.

Proposition 2.2 Assume that (H3) holds. Then we have

G∗(t, s) ≥ 0, H∗(t, s) ≥ 0, ∀t, s ∈ J ,

G∗(t, s) > 0, H∗(t, s) > 0, ∀t, s ∈ (0, 1),
(2.14)

G∗(t, t)G∗(s, s) ≤ G∗(t, s) ≤ G∗(s, s) = s(1 – s) ≤ 1
4

, ∀t, s ∈ J , (2.15)

G∗(t, t)H∗(s, s) ≤ H∗(t, s) ≤ H∗(s, s), ∀t, s ∈ J , (2.16)

G∗(t, s) ≥ ξ 2G∗(s, s), H∗(t, s) ≥ ξ 2H(s, s), ∀t ∈ [ξ , 1 – ξ ], s ∈ J , (2.17)
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ρG∗(s, s) ≤ H∗(t, s) ≤ γ G∗(s, s) = γ e(s) ≤ 1
4
γ , ∀t, s ∈ J , (2.18)

where

ρ =
∫ 1

0 G∗(τ , τ )g(τ ) dτ

1 – ν
, γ =

1
1 – ν

. (2.19)

Remark 2.1 Letting (u,ϕ) be a solution of system (1.9), then from Lemma 2.1 and
Lemma 2.2, we have

u(t) = μ

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ 1

0
H(t, s)ω(s)f

(
u(s)

)
ds, (2.20)

and ϕ is defined in (2.11).

For the weight functions a(t), b(t), ω(t), we define a±(t), b±(t),ω±(t) : J → [0, +∞) as

a+(t) = max
{

a(t), 0
}

, a–(t) = – min
{

a(t), 0
}

,

b+(t) = max
{

b(t), 0
}

, b–(t) = – min
{

b(t), 0
}

,

ω+(t) = max
{
ω(t), 0

}
, ω–(t) = – min

{
ω(t), 0

}
,

consequently

a(t) = a+(t) – a–(t), b(t) = b+(t) – b–(t), ω(t) = ω+(t) – ω–(t), ∀t ∈ J .

Moreover, to obtain the existence of positive solution of system (1.9), we make the fol-
lowing hypotheses:

(H4) There exists 0 < σ1 < ξ such that

σ1

∫ ξ

σ1

G(t, s)b+(s) ds ≥ ξ

∫ 1

ξ

G(t, s)b–(s) ds.

(H5) There exists 0 < σ2 < ξ such that

σ2

∫ ξ

σ2

H(t, s)H∗(s, s)a+(s) ds ≥ ξ

1 – ν

∫ 1

ξ

H(t, s)a–(s) ds.

(H6) There exists 0 < l ≤ 1 such that

f (u) ≥ lφ(u), u ∈ [0, +∞),

where φ(u) = max{f (β) : 0 ≤ β ≤ u}.
(H7) There exist 0 < θ < +∞, θ �= 1 and k1, k2 > 0 such that

k1uθ ≤ f (u) ≤ k2uθ , u ∈ [0, +∞).
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(H8) There exists 0 < σ3 < ξ such that

l2k1σ
θ
3

∫ ξ

σ3

H(t, s)ω+(s) ds ≥ k2ξ
θ

∫ 1

ξ

H(t, s)ω–(s) ds.

We denote

C+
0 [0, 1] =

{

u ∈ C[0, 1] : min
t∈J

u(t) ≥ 0, u(0) =
∫ 1

0
g(s)u(s) ds, u′(1) = 0

}

,

K =
{

u ∈ C+
0 [0, 1] : and u is concave on [0, ξ ] and convex on [ξ , 1]

}
.

(2.21)

If u ∈ K , it is not difficult to see that ‖u‖ = max0≤t≤ξ u(t).
Also, for a positive number r, we define �r by

�r =
{

u ∈ K : ‖u‖ < r
}

,

and then we get ∂�r = {u ∈ K : ‖u‖ = r}.
Define a map T : K → C[0, 1] by

(Tu)(t) = μ

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)u(s)b(τ )u(τ ) dτ ds

+ λ

∫ 1

0
H(t, s)ω(s)f

(
u(s)

)
ds. (2.22)

It follows from Remark 2.1 and (2.18) that Lemma 2.3 holds.

Lemma 2.3 Assume that (H1)–(H8) hold. Then (u,ϕ) is a positive solution of system (1.9)
if and only if u is a fixed point of operator T in K , and ϕ satisfies (2.11).

Lemma 2.4 Assume that (H1)–(H8) hold. Then T(K) ⊂ K , and T : K → K is completely
continuous.

Proof For any u ∈ K , we firstly prove that

∫ 1

0
G(t, s)b(s)u(s) ds ≥

∫ σ0

0
G(t, s)b+(s)u(s) ds, t ∈ J . (2.23)

Define a function q : [0, 1] → [0, 1] as follows:

if u(1) = 0, then q(t) = min

{
t
ξ

,
1 – t
1 – ξ

}

, ∀t ∈ J ;

if u(1) > 0, then q(t) = min

{
t
ξ

, 1
}

, ∀t ∈ J .

So, we get min0<σ≤t≤ξ q(t) = σ
ξ

, maxξ≤t≤1 q(t) = 1.
Since u ∈ K , then u is concave on [0, ξ ] and convex on [ξ , 1]. Noticing that u(0) =

∫ 1
0 g(t)u(t) dt and u′(1) = 0, we get

u(t) ≥ q(t)u(ξ ), t ∈ [0, ξ ], u(t) ≤ q(t)u(ξ ), t ∈ [ξ , 1].
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Hence, for t ∈ J , by assumption (H4), we have

∫ 1

0
G(t, s)b(s)u(s) ds –

∫ σ1

0
G(t, s)b+(s)u(s) ds

=
∫ ξ

σ1

G(t, s)b+(s)u(s) ds –
∫ 1

ξ

G(t, s)b–(s)u(s) ds

≥
∫ ξ

σ1

G(t, s)b+(s)q(s)u(ξ ) ds –
∫ 1

ξ

G(t, s)b–(s)q(s)u(ξ ) ds

≥ u(ξ )
[

min
s∈[σ1,ξ ]

q(s)
∫ ξ

σ1

G(t, s)b+(s) ds – max
s∈[ξ ,1]

q(s)
∫ 1

ξ

G(t, s)b–(s) ds
]

= u(ξ )
[
σ1

ξ

∫ ξ

σ1

G(t, s)b+(s) ds –
∫ 1

ξ

G(t, s)b–(s) ds
]

≥ 0,

which shows that (2.23) holds.
Next, for any u ∈ K , we prove

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)u(s)b(τ )u(τ ) dτ ds

≥
∫ σ2

0

∫ 1

0
H(t, s)H∗(s, τ )a+(s)u(s)b(τ )u(τ ) dτ ds, t ∈ J . (2.24)

Since
∫ 1

0 G(t, s)b(s)u(s) ds ≥ 0, t ∈ J , it follows from (2.14) and (H5) that

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)u(s)b(τ )u(τ ) dτ ds

–
∫ σ2

0

∫ 1

0
H(t, s)H∗(s, τ )a+(s)u(s)b(τ )u(τ ) dτ ds

=
∫ ξ

σ2

∫ 1

0
H(t, s)H∗(s, τ )a+(s)u(s)b(τ )u(τ ) dτ ds

–
∫ 1

ξ

∫ 1

0
H(t, s)H∗(s, τ )a–(s)u(s)b(τ )u(τ ) dτ ds

≥
∫ ξ

σ2

H(t, s)a+(s)q(s)u(ξ )
∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ ds

–
∫ 1

ξ

H(t, s)a–(s)q(s)u(ξ )
∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ ds

≥ min
s∈[σ2,ξ ]

q(s)u(ξ )
∫ ξ

σ2

H(t, s)a+(s) ds
∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ

– max
s∈[ξ ,1]

q(s)u(ξ )
∫ 1

ξ

H(t, s)a–(s) ds
∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ

≥ u(ξ )
σ2

ξ

∫ ξ

σ2

H(t, s)a+(s)
∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ ds
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– u(ξ )
∫ 1

ξ

H(t, s)a–(s)
∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ ds

≥ u(ξ )
σ2

ξ

∫ ξ

σ2

H(t, s)a+(s)
∫ 1

0
H∗(s, s)G(τ , τ )b(τ )u(τ ) dτ ds

– u(ξ )
∫ 1

ξ

H(t, s)a–(s)
∫ 1

0

1
1 – ν

G(τ , τ )b(τ )u(τ ) dτ ds

= u(ξ )
∫ 1

0
G(τ , τ )b(τ )u(τ ) dτ

[
σ2

ξ

∫ ξ

σ2

H(t, s)H∗(s, s)a+(s) ds

–
1

1 – ν

∫ 1

ξ

H(t, s)a–(s) ds
]

.

This finishes the proof of (2.24).
Thirdly, for any u ∈ K , we show

∫ 1

0
H(t, s)ω(s)f

(
u(s)

)
ds ≥

∫ σ3

0
H(t, s)ω+(s)f

(
u(s)

)
ds, t ∈ J . (2.25)

In fact, t ∈ J , u ∈ K , it is easy to see by (H6)–(H8) that

∫ 1

0
H(t, s)g(s)f

(
x(s)

)
ds –

∫ σ3

0
H(t, s)g+(s)f

(
x(s)

)
ds

=
∫ ξ

σ3

H(t, s)g+(s)f
(
x(s)

)
ds –

∫ 1

ξ

H(t, s)g–(s)f
(
x(s)

)
ds

≥ l
∫ ξ

σ3

H(t, s)g+(s)ϕ
(
u(s)

)
ds –

∫ 1

ξ

H(t, s)g–(s)ϕ
(
u(s)

)
ds

≥ l
∫ ξ

σ3

H(t, s)g+(s)ϕ
(
e(s)u(ξ )

)
ds –

∫ 1

ξ

H(t, s)g–(s)ϕ
(
e(s)u(ξ )

)
ds

≥ l
∫ ξ

σ3

H(t, s)g+(s)f
(
e(s)u(ξ )

)
ds –

1
l

∫ 1

ξ

H(t, s)g–(s)f
(
e(s)u(ξ )

)
ds

≥ l
∫ ξ

σ3

H(t, s)g+(s)k1eα(s)uθ (ξ ) ds –
1
l

∫ 1

ξ

H(t, s)g–(s)k2eθ (s)uθ (ξ ) ds

≥ l
[

min
s∈[σ3,ξ ]

e(s)
]θ

∫ ξ

σ3

H(t, s)g+(s)k1uθ (ξ ) ds

–
1
l

[
min

s∈[ξ ,1]
e(s)

]θ
∫ 1

ξ

H(t, s)g–(s)k2uθ (ξ ) ds

≥ uθ (ξ )
[

lk1
σ θ

3
ξ θ

∫ ξ

σ3

H(t, s)g+(s) ds –
1
l

k2

∫ 1

ξ

H(t, s)g–(s) ds
]

≥ 0,

which shows that (2.25) holds.
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Thus, for u ∈ K , we have

(Tu)(t) = μ

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)u(s)b(τ )u(τ ) dτ ds + λ

∫ 1

0
H(t, s)ω(s)f

(
u(s)

)
ds

≥ μ

∫ σ2

0
H(t, s)a+(s)u(s)

∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ ds

+ λ

∫ σ3

0
H(t, s)ω+(s)f

(
u(s)

)
ds

≥ 0.

Moreover, by direct calculating, we get

(Tu)(0) =
∫ 1

0
g(t)(Tu)(t) dt, (Tu)′(1) = 0,

(Tu)′′(t) = –μa+(t)u(t)
∫ 1

0
H∗(t, s)b(s)u(s) ds – λω+(t)f

(
u(t)

) ≤ 0, t ∈ [0, ξ ],

(Tu)′′(t) = μa–(t)u(t)
∫ 1

0
H∗(t, s)b(s)u(s) ds + λω–(t)f

(
u(t)

) ≥ 0, t ∈ [ξ , 1],

which shows that Tx is concave on [0, ξ ] and convex on [ξ , 1]. It follows that T : K → K .
Finally, by standard methods and Arzelà-Ascoli theorem one can prove that operator T

is completely continuous. So it is omitted. �

Remark 2.2 In [44] and [45], it is not difficult to see that the function q plays an important
role in the proof of completely continuous operator. If u(0) = u(1) = 0, then we can define
q(t) = min{ t

ξ
, 1–t

1–ξ
}. However, if u(0) = u(1) = A �= 0, then the above definition of q is invalid.

This shows that when u(0) =
∫ 1

0 g(s)u(s) ds, u′(1) = 0, we require a special technique to give
a fine definition of q.

In fact, a fine definition of q is very difficult to give when u(0) =
∫ 1

0 g(s)u(s) ds, u′(1) = 0.
This is probably the main reason that there is almost no paper studying the existence of
positive solutions for the class of second-order nonlocal differential systems with indefi-
nite weights and multiple parameters.

Remark 2.3 When we consider nonlocal differential systems with indefinite weights, an-
other difficulty is to prove T : K → K ; for detail to see the proof of Lemma 2.4.

Lemma 2.5 (Theorem 2.3.4 of [53], Fixed point theorem of cone expansion and compres-
sion of norm type) Let �1 and �2 be two bounded open sets in a real Banach space E such
that 0 ∈ �1 and �̄1 ⊂ �2. Let operator T : P ∩ (�̄2\�1) → P be completely continuous,
where P is a cone in E. Suppose that one of the two conditions

(i) ‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�1 and ‖Tx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�2, and
(ii) ‖Tx‖ ≥ ‖x‖, ∀x ∈ P ∩ ∂�1, and ‖Tx‖ ≤ ‖x‖, ∀x ∈ P ∩ ∂�2,

is satisfied. Then T has at least one fixed point in P ∩ (�̄2\�1).

3 Main results
In this part, applying Lemma 2.5, we get the solvable intervals of positive parameters λ

and μ in which system (1.9) admits multiple positive solutions.
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Theorem 3.1 Assume that (H1)–(H8) hold. Then we get:
(I) If θ > 1, then there exist λ∗,μ∗,μ∗ > 0 such that, for λ ∈ [λ∗, +∞) and μ ∈ [μ∗,μ∗],

system (1.9) admits at least two positive solutions.
(II) If 0 < θ < 1, then there exist λ∗∗,μ∗∗ > 0 such that, for λ ∈ (0,λ∗∗] and μ ∈ (0,μ∗∗],

system (1.9) admits at least two positive solutions.

Proof Part (I). Considering the case θ > 1, it follows from (H7) that

lim
u→0

f (u)
u

≤ lim
u→0

k2uθ

u
= 0,

which shows that there exists a r′ > 0 such that

f (u) ≤ ε1u, 0 ≤ u ≤ r′,

where ε1 satisfies

2λε1

∫ ξ

0
H(s, s)g+(s) ds < 1. (3.1)

Let

A = μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ ) dτ ds, (3.2)

A∗ =
∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ ) dτ ds, (3.3)

and choose r = min{(2A)–1, r′
2 }.

Then, for any u ∈ K ∩ ∂�r , noticing (2.8), we get

(Tu)(t) = μ

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ 1

0
H(t, s)g(s)f

(
u(s)

)
ds

= μ

∫ ξ

0

∫ 1

0
H(t, s)H∗(s, τ )a+(s)b(τ )u(s)u(τ ) dτ ds

– μ

∫ 1

ξ

∫ 1

0
H(t, s)H∗(s, τ )a–(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(t, s)g+(s)f

(
u(s)

)
ds – λ

∫ 1

ξ

H(t, s)g–(s)f
(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ 1

0
H(t, s)H∗(s, τ )a+(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(t, s)g+(s)f

(
u(s)

)
ds

= μ

∫ ξ

0

∫ ξ

0
H(t, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds
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– μ

∫ ξ

0

∫ ξ

0
H(t, s)H∗(s, τ )a+(s)b–(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(t, s)g+(s)f

(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(s, s)g+(s)f

(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(s, s)g+(s)ε1u(s) ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ ) dτ ds‖u‖2

+ λε1

∫ ξ

0
H(s, s)g+(s) ds‖u‖

<
1
2
‖x‖ +

1
2
‖u‖

= ‖u‖, (3.4)

which shows that

‖Tu‖ < ‖u‖, ∀u ∈ K ∩ ∂�r . (3.5)

On the other hand, noticing that θ > 1, it follows from (H7) that

lim
u→∞

f (u)
u

≥ lim
u→∞

k1uα

u
= ∞,

which shows that there exists a R′ > 0 such that

f (u) ≥ ε2u, u ≥ R′,

where ε2 satisfies

σ2λε2�

∫ σ3

σ3
2

H(s, s)g+(s) ds > 1

and

� = min
σ3
2 ≤t≤σ3

δ(t) > 0, δ(t) = min

{
t
ξ

,
ξ – t

ξ

}

, t ∈ [0, ξ ]. (3.6)

If u ∈ K , then from the concavity on [0, ξ ], it follows that

u(t) ≥ δ(t)‖u‖, t ∈ [0, ξ ]. (3.7)
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Let B and B∗ denote the following constants:

B = μ
σ2

2
min

σ2
2 ≤t≤σ2

δ(t) min
σ1
2 ≤t≤σ1

δ(t)
∫ σ2

σ2
2

∫ σ1

σ1
2

H(s, s)H∗(s, τ )a+(s)b+(τ ) dτ ds > 0, (3.8)

B∗ =
σ2

2
min

σ2
2 ≤t≤σ2

δ(t) min
σ1
2 ≤t≤σ1

δ(t)
∫ σ2

σ2
2

∫ σ1

σ1
2

H(s, s)H∗(s, τ )a+(s)b+(τ ) dτ ds > 0. (3.9)

Noticing that, for all d ∈ (0, ξ ), min d
2 ≤t≤d δ(t) = min{ d

2ξ
, ξ–d

ξ
} > 0, B and B∗ are defined

well.
Setting R = max{(2B)–1, R′

�
, r′} + 1, it follows that μ > μ′ = 1

2B∗R , and then, for any x ∈
K ∩ ∂�R, it follows from (3.7) that

u(t) ≥ min
σ3
2 ≤t≤σ3

δ(t)‖u‖ ≥ �R > R′,

and then it follows from (2.8), (2.9), (2.20), (2.21), (3.7) and (3.8) that

‖Tu‖ = max
t∈J

{

μ

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ 1

0
G(t, s)g(s)f

(
u(s)

)
ds

}

≥ max
t∈J

{

μ

∫ σ2

0
H(t, s)a+(s)u(s)

∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ ds

+ λ

∫ σ3

0
G(t, s)g+(s)f

(
u(s)

)
ds

}

≥ μ min
σ2
2 ≤t≤σ2

∫ σ2

σ2
2

H(t, s)a+(s)u(s)
∫ σ1

σ1
2

H∗(s, τ )b+(τ )u(τ ) dτ ds

+ min
σ2
2 ≤t≤σ2

λ

∫ σ3

σ3
2

H(t, s)g+(s)f
(
u(s)

)
ds

≥ μ
σ2

2

∫ σ2

σ2
2

H(s, s)a+(s)δ(s)‖u‖
∫ σ1

σ1
2

H∗(s, τ )b+(τ )δ(τ )‖u‖dτ ds

+ λ
σ2

2

∫ σ3

σ3
2

H(s, s)g+(s)ε2u(s) ds

≥ μ
σ2

2

∫ σ2

σ2
2

H(s, s)a+(s)δ(s)‖u‖
∫ σ1

σ1
2

H∗(s, τ )b+(τ )δ(τ )‖u‖dτ ds

+ λ
σ2

2

∫ σ3

σ3
2

H(s, s)g+(s)ε2u(s) ds

≥ B‖u‖2 + λ
σ2

2
ε2 min

σ3
2 ≤t≤σ3

δ(t)
∫ σ3

σ3
2

H(s, s)g+(s) ds‖u‖

>
1
2
‖u‖ +

1
2
‖u‖

= ‖u‖.
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Consequently,

‖Tu‖ > ‖u‖, u ∈ K ∩ ∂�R. (3.10)

Let

λ∗ =
(4DA∗ – 2B∗)η

2DA∗σ2ση

∫ σ3
σ3
2

H(s, s)g+(s) ds
, μ∗ =

1
2DA∗η

,

where 0 < η < r, D = r2

η2 , A∗ is defined in (3.3), and B∗ is defined in (3.9).
We define ση by

ση = min
�η≤u≤η

{
f (u)

}
> 0,

where � is defined in (3.6). Noticing (H2), then ση is defined well and ση > 0. So, for any
u ∈ K ∩ ∂�η , we get

�η ≤ �‖u‖ ≤ min
σ3
2 ≤t≤σ3

u(t) ≤ u(t) ≤ η,
σ3

2
≤ t ≤ σ3,

and hence, we get

‖Tu‖ = max
t∈J

{

μ

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ 1

0
G(t, s)g(s)f

(
u(s)

)
ds

}

≥ max
t∈J

{

μ

∫ σ2

0
H(t, s)a+(s)u(s)

∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ ds

+ λ

∫ σ3

0
G(t, s)g+(s)f

(
u(s)

)
ds

}

≥ μ min
σ2
2 ≤t≤σ2

∫ σ2

σ2
2

H(t, s)a+(s)u(s)
∫ σ1

σ1
2

H∗(s, τ )b+(τ )u(τ ) dτ ds

+ min
σ2
2 ≤t≤σ2

λ

∫ σ3

σ3
2

H(t, s)g+(s)f
(
u(s)

)
ds

≥ μ
σ2

2

∫ σ2

σ2
2

H(s, s)a+(s)δ(s)‖u‖
∫ σ1

σ1
2

H∗(s, τ )b+(τ )δ(τ )‖u‖dτ ds

+ λ
σ2

2

∫ σ3

σ3
2

H(s, s)g+(s)ση ds

≥ μ∗B∗‖u‖2 + λ∗ σ2

2
ση

∫ σ3

σ3
2

H(s, s)g+(s) ds

≥ B∗

2DA∗ ‖u‖ +
2DA∗ – B∗

2DA∗ ‖u‖

= ‖u‖.
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This shows

‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�η. (3.11)

Let μ∗ > max{μ′,μ∗}, μ∗ = 1
2A∗r , then, for λ ∈ [λ∗, +∞) and μ ∈ [μ∗,μ∗], applying

Lemma 2.5 to (3.5), (3.10) and (3.11) shows that T has at least two fixed points in
K ∩ (�̄R \ �̄r) and K ∩ (�r \ �η). Thus it follows that system (1.9) admits at least two
positive solutions (u1,ϕ1) and (u2,ϕ2) with u1 ∈ K ∩ (�̄R \ �̄r), u2 ∈ K ∩ (�r \ �η), and

ϕi = μ

∫ 1

0
H∗(t, s)b(s)ui(s) ds, i = 1, 2.

Part (II). Next turning to 0 < θ < 1, it follows from (H7) that

lim
u→0

f (u)
u

≥ lim
u→0

k1uθ

u
= +∞,

which shows that there exists a positive constant r > 0 such that

f (u) ≥ ε3u, 0 ≤ u ≤ r,

where ε3 satisfies

λ
σ2

2
ε3 min

σ3
2 ≤t≤σ3

δ(t)
∫ σ3

σ3
2

H(s, s)g+(s) ds > 1, (3.12)

and δ(t) is defined in (3.6), A is defined in (3.2).
Therefore, for any x ∈ K ∩ ∂�r , noticing (3.7), we get

‖Tu‖ = max
t∈J

{

μ

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ 1

0
G(t, s)g(s)f

(
u(s)

)
ds

}

≥ max
t∈J

{

μ

∫ σ2

0
H(t, s)a+(s)u(s)

∫ 1

0
H∗(s, τ )b(τ )u(τ ) dτ ds

+ λ

∫ σ3

0
G(t, s)g+(s)f

(
u(s)

)
ds

}

≥ μ min
σ2
2 ≤t≤σ2

∫ σ2

σ2
2

H(t, s)a+(s)u(s)
∫ σ1

σ1
2

H∗(s, τ )b+(τ )u(τ ) dτ ds

+ min
σ2
2 ≤t≤σ2

λ

∫ σ3

σ3
2

H(t, s)g+(s)f
(
u(s)

)
ds

≥ λ
σ2

2

∫ σ3

σ3
2

H(s, s)g+(s)ε3u(s) ds

≥ λ
σ2

2
ε3 min

σ3
2 ≤t≤σ3

δ(t)
∫ σ3

σ3
2

H(s, s)g+(s) ds‖u‖

> ‖u‖.
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Consequently,

‖Tu‖ > ‖u‖, u ∈ K ∩ ∂�r . (3.13)

On the other hand, noticing that 0 < θ < 1, then it follows from (H7) that

lim
u→∞

f (u)
u

≤ lim
x→∞

k2uθ

u
= 0,

which shows that there exists a R′ > r such that

f (u) ≤ ε4u, u ≥ R′,

where ε4 satisfies

3λε4

∫

D(u)
H(s, s)g+(s) ds < 1

and

D(u) =
{

t ∈ [0, ξ ] : u(t) > R′}.

Let

M = λ max
‖u‖PC =R′ f (u)

∫ ξ

0
H(s, s)g+(s) ds.

Then it is not difficult to see that M < +∞.
Choosing max{R′, 3M} < R < (3A)–1, then M < R

3 .
Now, choosing u ∈ K ∩ ∂�R arbitrarily, and letting ū(t) = min{u(t), R′}, then ū(t) ≤ R′.

Therefore, for t ∈ D(u), we get R′ < u(t) ≤ ‖u‖PC = R, ∀t ∈ D(u). By the choice of R′, for
t ∈ D(u), we have f (u) ≤ ε4R.

Therefore, for any u ∈ K ∩ ∂�R, we get

(Tu)(t) = μ

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)b(τ )u(s)u(τ ) dτ ds + λ

∫ 1

0
H(t, s)g(s)f

(
u(s)

)
ds

= μ

∫ ξ

0

∫ 1

0
H(t, s)H∗(s, τ )a+(s)b(τ )u(s)u(τ ) dτ ds

– μ

∫ 1

ξ

∫ 1

0
H(t, s)H∗(s, τ )a–(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(t, s)g+(s)f

(
x(s)

)
ds – λ

∫ 1

ξ

G(t, s)g–(s)f
(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ 1

0
H(t, s)H∗(s, τ )a+(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(t, s)g+(s)f

(
u(s)

)
ds

= μ

∫ ξ

0

∫ ξ

0
H(t, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds
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– μ

∫ ξ

0

∫ ξ

0
H(t, s)H∗(s, τ )a+(s)b–(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(t, s)g+(s)f

(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(s, s)g+(s)f

(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds

+ λ

∫

D(x)
H(s, s)g+(s)f

(
u(s)

)
ds + λ

∫

[0,ξ ]\D(u)
H(s, s)g+(s)f

(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds

+ λ

∫

D(x)
H(s, s)g+(s)f

(
u(s)

)
ds + λ

∫ ξ

0
H(s, s)g+(s)f

(
ū(s)

)
ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ ) dτ ds‖u‖2

+ λε4

∫

D(u)
H(s, s)g+(s) ds‖u‖ + M

<
1
3
‖u‖ +

1
3
‖u‖ +

1
3
‖u‖

= ‖u‖, (3.14)

which shows that

‖Tu‖ < ‖u‖, ∀u ∈ K ∩ ∂�R. (3.15)

Let

λ∗∗ =
η

2Mη

∫ ξ

0 H(s, s)g+(s) ds
, μ∗∗ =

1
2A∗R

<
1

2A∗η
,

where 0 < η < r, and A∗ is defined in (3.3).
We define Mη by

Mη = max
0≤u≤η

{
f (u)

}
> 0.

Noticing (H2) and (H3), then Mη is defined well and Mη > 0. So, for any u ∈ K ∩ ∂�η ,
similarly to the proof of (3.4), we get

(Tu)(t) ≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(s, s)g+(s)f

(
u(s)

)
ds
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≤ μ‖u‖2A∗ + λ

∫ ξ

0
H(s, s)g+(s) dsMη

≤ μ∗∗‖u‖2A∗ + λ∗∗
∫ ξ

0
H(s, s)g+(s) dsMη

≤ 1
2
‖u‖ +

1
2
‖u‖

= ‖u‖,

which shows

‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�η. (3.16)

Therefore, applying Lemma 2.4 to (3.13), (3.15) and (3.16) shows that T has at least two
fixed points in K ∩ (�̄R \ �̄r) and K ∩ (�r \ �η). Thus it follows that system (1.9) admits
at least two positive solutions. �

Theorem 3.2 Assume that (H1)–(H8) hold. If 0 < θ < 1, there exist μ0 > 0 and λ0 > 0 such
that system (1.9) has three positive solutions for μ ∈ (0,μ0] and λ ∈ (0,λ0], with k2 satisfying

0 < k2 <
(2μA∗)θ–1

2λ
∫ ξ

0 H(s, s)ω+(s) ds
. (3.17)

Proof Firstly, since 0 < θ < 1, by (H7), we get

lim
u→0

f (u)
u

≥ lim
u→0

k1uθ

u
= +∞.

Then there exists sufficiently small r > 0 with 0 < r < (2λk2
∫ ξ

0 H(s, s)ω+(s) ds)
1

1–θ , such that

f (u) ≥ ε3u, 0 ≤ u ≤ r,

where ε3 satisfies (3.12). And hence, for u ∈ ∂�r , similar to the proof of (3.12), we obtain

‖Tu‖ > ‖u‖, ∀u ∈ ∂�r . (3.18)

Secondly, there exists a sufficiently large R1 > max{(2μA∗)–1, (μB∗)–1} such that

μB∗R1 > 1. (3.19)

Then, for u ∈ ∂�R1 , similar to the proof of (3.11), we get

‖Tu‖ ≥ ‖u‖, ∀u ∈ ∂�R1 . (3.20)

Thirdly, for any μ > 0, λ > 0, we choose R satisfying

(

2λk2

∫ ξ

0
H(s, s)ω+(s) ds

) 1
1–θ

< R <
(
2μA∗)–1. (3.21)
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Then, for u ∈ ∂�R, it follows from (2.8) and (H7) that

(Tu)(t) = μ

∫ 1

0

∫ 1

0
H(t, s)H∗(s, τ )a(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ 1

0
H(t, s)ω(s)f

(
u(s)

)
ds

= μ

∫ ξ

0

∫ 1

0
H(t, s)H∗(s, τ )a+(s)b(τ )u(s)u(τ ) dτ ds

– μ

∫ 1

ξ

∫ 1

0
H(t, s)H∗(s, τ )a–(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(t, s)ω+(s)f

(
u(s)

)
ds – λ

∫ 1

ξ

H(t, s)ω–(s)f
(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ 1

0
H(t, s)H∗(s, τ )a+(s)b(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(t, s)ω+(s)f

(
u(s)

)
ds

= μ

∫ ξ

0

∫ ξ

0
H(t, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds

– μ

∫ ξ

0

∫ ξ

0
H(t, s)H∗(s, τ )a+(s)b–(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(t, s)ω+(s)f

(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(s, s)ω+(s)f

(
u(s)

)
ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ )u(s)u(τ ) dτ ds

+ λ

∫ ξ

0
H(s, s)ω+(s)k2u(s) ds

≤ μ

∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ ) dτ ds‖u‖2

+ λ

∫ ξ

0
H(s, s)ω+(s)k2 ds‖u‖θ

= μA∗‖u‖2 + λ

∫ ξ

0
H(s, s)ω+(s)k2 ds‖u‖θ

<
1
2
‖u‖ +

1
2
‖u‖

= ‖u‖.

Consequently,

‖Tu‖ < ‖u‖, ∀u ∈ ∂�R. (3.22)
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Finally, choose a number r1 ∈ (0, r
2 ). Noticing that f (u) > 0 for all u > 0, we can define,

for r1 > 0,

αr1 = max
0≤u≤r1

{
f (u)

}
. (3.23)

It follows (3.23) that f (u) ≤ αr1 for 0 ≤ u ≤ r1. Let

μ0 =
1

2A∗r1
, λ0 =

r1

2
∫ ξ

0 H(s, s)ω+(s) dsαr1

. (3.24)

Then, for u ∈ ∂�r1 and 0 < μ ≤ μ0, 0 < λ ≤ λ0, similar to the proof of (3.15), we obtain

‖Tu‖ ≤ ‖u‖, ∀u ∈ ∂�r1 . (3.25)

Summing up we can show that T has three fixed point u1 ∈ �̄R1 \ �̄R, u2 ∈ �R \ �̄r

and u3 ∈ �r \ �r1 by applying Lemma 2.5 to (3.18), (3.20), (3.22) and (3.25). And hence,
if 0 < θ < 1, there exist μ0 > 0 and λ0 > 0 such that system (1.9) has at least three positive
solutions for 0 < μ ≤ μ0 and 0 < λ ≤ λ0, with k2 satisfying (3.17). The gives the proof of
Theorem 3.2. �

4 Remarks and comments
In this section, we offer some remarks and comments of the associated system (1.9).

Remark 4.1 In Theorem 3.1 and Theorem 3.2, we generalize the results of [38–43] in three
main directions:

(i) g, h ∈ L1[0, 1] are nonnegative on J , not only g ≡ 0 and h ≡ 0 on J .
(ii) Multi-parameter case is in order.

(iii) The method used in the present paper is complete different from those in [33–38].

Remark 4.2 Comparing with Wang and An [44], the main features of this paper are as
follows.

(i) The solvable intervals of positive parameter λi (i = 1, 2, 3) are given.
(ii) Nonlocal conditions are considered.

(iii) Triple positive solutions are obtained.

Remark 4.3 It is not difficult to see that the details of the proof of (3.14) are very different
from that of (3.4). And the idea of the proof of (3.14) comes from Theorem 3.2 of [54].

Remark 4.4 Some ideas of dealing with parameters in Theorem 3.1 come from Theorems
2.1–2.4 in [55], but there are very few papers in the literature considering the multiplicity
of positive solutions for second-order impulsive differential systems, especially in the case
the weight functions a(t), b(t) and g(t) change sign on [0, 1].

Remark 4.5 It is not difficult to see that the conditions (H2) and (H7) play an important
role in the proof of Theorem 3.1, and there are many functions satisfying (H2) and (H7),
for example

f (u) = uδ , 0 < δ < +∞.
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Remark 4.6 If we, respectively, replace the condition (H2) by
(H ′

2) f ∈ C(R+,R+),
then we cannot guarantee ση > 0, M > 0 and αr1 > 0, which are, respectively, defined in
Theorem 3.1 and Theorem 3.2. Further, we cannot obtain the results of Theorem 3.1 and
Theorem 3.2.

Remark 4.7 Similarly, one can consider the multiplicity of positive solutions for the fol-
lowing second-order nonlocal differential systems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = a(t)ϕu + λω(t)f (u), 0 < t < 1,

–ϕ′′ = μb(t)u, 0 < t < 1,

u′(0) = 0, u(1) =
∫ 1

0 g(s)u(s) ds,

ϕ(0) = ϕ(1) =
∫ 1

0 h(s)ϕ(s) ds,

(4.1)

where λ > 0 and μ > 0 are two parameters, a(t), ω(t), b(t) change sign on [0, 1].

On the other hand, we conjecture that the conclusions in Theorem 3.1 and Theorem 3.2
also hold for the following systems:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = a(t)ϕu + λω(t)f (u), 0 < t < 1,

–ϕ′′ = μb(t)u, 0 < t < 1,

u(0) = u(1) =
∫ 1

0 g(s)u(s) ds,

ϕ(0) = ϕ(1) =
∫ 1

0 h(s)ϕ(s) ds,

(4.2)

and

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

–u′′ = a(t)ϕu + λω(t)f (u), 0 < t < 1,

–(g(t)ϕ′(t))′ = μb(t)u, 0 < t < 1,

u(0) = u(1) =
∫ 1

0 g(s)u(s) ds,

aϕ(0) – b limt→0+ g(t)ϕ′(t) =
∫ 1

0 h(s)ϕ(s) ds,

aϕ(1) + b limt→1– g(t)ϕ′(t) =
∫ 1

0 h(s)ϕ(s) ds,

(4.3)

where λ > 0 and μ > 0 are two parameters, a, b > 0, g ∈ C1([0, 1], (0, +∞)), a(t), ω(t), b(t)
change sign on [0, 1].

5 An example
To illustrate how our main results can be used in practice, we present an example.

Example 5.1 Consider the following system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–u′′ = a(t)ϕu + λω(t)uθ , 0 < t < 1,

–ϕ′′ = μb(t)u, 0 < t < 1,

u(0) =
∫ 1

0 s3u(s) ds, u′(1) = 0,

ϕ(0) = ϕ(1) =
∫ 1

0 sϕ(s) ds,

(5.1)
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where 0 < θ < 1 and

a(t) =

⎧
⎨

⎩

2048
3 ( 1

3 – t), t ∈ [0, 1
3 ],

– 1
16 (t – 1

3 ), t ∈ [ 1
3 , 1],

ω(t) =

⎧
⎨

⎩

64√
3 ( 1

3 – t), t ∈ [0, 1
3 ],

– 1
16 (t – 1

3 ), t ∈ [ 1
3 , 1],

b(t) =

⎧
⎨

⎩

128
3 ( 1

3 – t), t ∈ [0, 1
3 ],

– 1
16 (t – 1

3 ), t ∈ [ 1
3 , 1],

g(t) = t3, h(t) = t.

Conclusion. System (5.1) admits at least two positive solution for 0 < λ ≤ 0.091, 0 < μ ≤
0.025.

For convenience, we give a corollary of Proposition 2.3 in [40].

Corollary 5.1 Consider the following system:

⎧
⎨

⎩

–x′′ = k(t)xα , 0 < t < 1,

x(0) =
∫ 1

0 g(t)x(t) dt, x′(1) = 0,
(5.2)

where α > 0 with α �= 1, k(t) satisfying the changing sign condition,

⎧
⎨

⎩

k(t) ≥ 0, t ∈ [0, ξ ],

k(t) ≤ 0, t ∈ [ξ , 1],
(5.3)

and

c1xα ≤ f (x) = xα ≤ c2xα , c1, c2 > 0.

If there exists 0 < σ < ξ such that

c1
ξ – σ

1 – ξ
σα+1μ2k+

(

ξ –
ξ – σ

1 – ξ
τ

)

≥ c2ξ
αk–(ξ + τ ), τ ∈ [0, 1 – ξ ], (5.4)

then the following inequalities hold:

σαμ2
∫ ξ

σ

H(t, s)k+(s) ds ≥ c2

c1
ξα

∫ 1

ξ

H(t, s)k–(s) ds, (5.5)

σαμ2
∫ ξ

σ

G(t, s)k+(s) ds ≥ c2

c1
ξα

∫ 1

ξ

G(t, s)k–(s) ds. (5.6)

Proof Similar to the proof of Proposition 2.3 in [40], one can prove

G(t,η – μξ ) ≥ σG(t,η + ξ ), ξ ∈ [0, 1 – η].
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And hence, it follows from (2.4) that

H(t,η – μξ ) = G(t,η – μξ ) +
1

1 – �

∫ 1

0
G(η – μξ , τ )x(τ ) dτ

= G(t,η – μξ ) +
1

1 – �

∫ 1

0
G(τ ,η – μξ )x(τ ) dτ

≥ σG(t,η + ξ ) +
σ

1 – �

∫ 1

0
G(τ ,η + ξ )x(τ ) dτ

= σ

[

G(t,η + ξ ) +
1

1 – �

∫ 1

0
G(τ ,η + ξ )x(τ ) dτ

]

= σH(t,η + ξ ), ξ ∈ [0, 1 – η].

Next, letting s = η – ξ–σ

1–ξ
ξ , ξ ∈ [0, 1 – η], we get

∫ η

σ

H(t, s)K+(s) ds =
ξ – σ

1 – ξ

∫ 1–η

0
H

(

t,η –
ξ – σ

1 – ξ
ξ

)

K+
(

η –
ξ – σ

1 – ξ
ξ

)

dξ ;

letting s = η + ξ , ξ ∈ [0, 1 – η], we have

∫ 1

η

H(t, s)K–(s) ds =
∫ 1–η

0
H(t,η + ξ )K–(η + ξ ) dξ .

Finally, by integrating in ξ both sides of (5.4) from 0 to 1 –η, it follows that the inequality
(5.5) holds.

Similarly, one can show that the inequality (5.6) holds. �

Remark 5.1 It is not difficult to see that Proposition 2.3 of [45] plays key roles in the proofs
of the main results of [44] and [45]. However, it is invalid for nonlocal problems; for details,
see the proof of Corollary 5.1.

Proof of Example 5.1 From the definitions of a(t), b(t) and g(t), we know that ξ = 1
3 .

Step 1. We show that (H4) holds. For fixed c1 = c2 = 1, σ1 = 1
4 , μ = 1 and α = 1, (5.4) is

equivalent to the following inequality:

3
128

b+
(

1
3

–
1
8
τ

)

≥ b–
(

1
3

+ τ

)

, τ ∈
[

0,
2
3

]

. (5.7)

Letting 1
3 – 1

8τ = ζ , it follows from (5.7) that

3
128

b+(ζ ) ≥ b–
(

8
3

– 8ζ

)

, ζ ∈
[

1
4

,
1
3

]

. (5.8)

According to the definition of b(t), the inequality (5.8) holds clearly. And hence it follows
from (5.6) that (H4) is reasonable.

Step 2. We prove the condition (H5) holds. Similar to the proof of Step 1, letting c1 = 1,
c2 = 16

ρ
, σ2 = 1

4 , μ = 1 and α = 1, by (5.5) we get

1
4

∫ 1
3

1
4

H(t, s)a+(s) ds ≥ 16
3ρ

∫ 1

1
3

H(t, s)a–(s) ds.
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Further, from the above inequality, it follows that

1
4

∫ 1
3

1
4

H(t, s)
3ρ

16
a+(s) ds ≥

∫ 1

1
3

H(t, s)a–(s) ds

⇔ 1
4

∫ 1
3

1
4

H(t, s)
(

min
s∈[ 1

4 , 1
3 ]

H∗(s, s)
)

a+(s) ds ≥
∫ 1

1
3

H(t, s)a–(s) ds

⇒ 1
4

∫ 1
3

1
4

H(t, s)H∗(s, s)a+(s) ds ≥
∫ 1

1
3

G(t, s)a–(s) ds

⇒ 1
4

∫ 1
3

1
4

H(t, s)H∗(s, s)a+(s) ds >
1
3

∫ 1

1
3

H(t, s)a–(s) ds,

which shows that (H5) holds.
Step 3. Similar to the proof of Step 1, choosing c1 = 1, c2 = 2, σ3 = 1

4 , μ = 1 and α = 1
2 ,

then (H8) holds.
Step 4. It is easy to see by direct calculating that

� =
∫ 1

0
g(s) ds =

∫ 1

0
s3 ds

1
4

, ν =
∫ 1

0
h(s) ds =

∫ 1

0
s ds =

1
2

,

∫ ξ

0
g+(s) ds =

∫ 1
3

0

64√
3

(
1
3

– s
)

ds =
32

9
√

3
,

A∗ =
∫ ξ

0

∫ ξ

0
H(s, s)H∗(s, τ )a+(s)b+(τ ) dτ ds ≈ 79.91.

Let η = 1
4 . Then we get

Mη = max
0≤u≤ 1

4

{√u} =
1
2

.

Therefore, we get

λ∗∗ =
η

2Mη

∫ ξ

0 H(s, s)g+(s) ds
≈ 0.091, μ∗∗ =

1
3A∗R

≈ 0.025.

Hence, by (II) of Theorem 3.1 the conclusion follows, and the proof is complete. �

6 Conclusion
In this paper, we obtained several sufficient conditions for the multiplicity of positive solu-
tions for a class of second-order nonlocal indefinite differential systems. Our results will
be a useful contribution to the existing literature on the topic of second-order nonlocal
indefinite differential systems.
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