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Abstract
Let L = –� + V be a Schrödinger operator on R

n, where n ≥ 3 and the nonnegative
potential V belongs to the reverse Hölder class RHq1 for some q1 > n/2. Let b belong
to a new Campanato space �θ

ν (ρ) and IL
β be the fractional integral operator

associated with L. In this paper, we study the boundedness of the commutators
[b,IL

β ] with b ∈ �θ
ν (ρ) on local generalized Morrey spaces LMα,V ,{x0}

p,ϕ , generalized

Morrey spacesMα,V
p,ϕ and vanishing generalized Morrey spaces VMα,V

p,ϕ associated with
Schrödinger operator, respectively. When b belongs to �θ

ν (ρ) with θ > 0, 0 < ν < 1
and (ϕ1,ϕ2) satisfies some conditions, we show that the commutator operator [b,IL

β ]

are bounded from LMα,V ,{x0}
p,ϕ1 to LMα,V ,{x0}

q,ϕ2 , fromMα,V
p,ϕ1

toMα,V
q,ϕ2

and from VMα,V
p,ϕ1

to
VMα,V

q,ϕ2
, 1/p – 1/q = (β + ν)/n.
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1 Introduction and main results
Let us consider the Schrödinger operator

L = –� + V on R
n, n ≥ 3,

where V is a nonnegative, V �= 0, and belongs to the reverse Hölder class RHq for some
q ≥ n/2, i.e., there exists a constant C > 0 such that the reverse Hölder inequality

(
1

|B(x, r)|
∫

B(x,r)
V q(y) dy

)1/q

≤ C
|B(x, r)|

∫
B(x,r)

V (y) dy (1.1)

holds for every x ∈ R
n and 0 < r < ∞, where B(x, r) denotes the ball centered at x with

radius r. In particular, if V is a nonnegative polynomial, then V ∈ RH∞.
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As in [29], for a given potential V ∈ RHq with q ≥ n/2, we define the auxiliary function

ρ(x) :=
1

mV (x)
= sup

r>0

{
r :

1
rn–2

∫
B(x,r)

V (y) dy ≤ 1
}

.

It is well known that 0 < ρ(x) < ∞ for any x ∈R
n.

Let θ > 0 and 0 < ν < 1, in view of [22], the Campanato class, associated with the
Schrödinger operator �θ

ν(ρ) consists of the locally integrable functions b such that

1
|B(x, r)|1+ν/n

∫
B(x,r)

∣∣b(y) – bB
∣∣dy ≤ C

(
1 +

r
ρ(x)

)θ

(1.2)

for all x ∈R
n and r > 0. A seminorm of b ∈ �θ

ν (ρ), denoted by [b]θβ , is given by the infimum
of the constants in the inequality above.

Note that if θ = 0, �θ
ν (ρ) is the classical Campanato space; if ν = 0, �θ

ν (ρ) is exactly the
space BMOθ (ρ) introduced in [5].

We now present the definition of generalized Morrey spaces Mα,V
p,ϕ (Rn) (including the

weak version) associated with a Schrödinger operator, which was introduced by the first
author in [18].

The classical Morrey spaces Lp,λ(Rn) was introduced by Morrey in [24] to study the
local behavior of solutions to second order elliptic partial differential equations. For the
properties and applications of classical Morrey spaces, we refer the reader to [9–12, 24,
35]. The generalized Morrey spaces are defined with rλ replaced by a general nonnegative
function ϕ(x, r) satisfying some assumptions (see, for example, [15, 23, 25, 30]).

For brevity, in the sequel we use the notations

A
α,V
p,ϕ (f ; x, r) :=

(
1 +

r
ρ(x)

)α

r–n/pϕ(x, r)–1‖f ‖Lp(B(x,r))

and

A
W ,α,V
�,ϕ (f ; x, r) :=

(
1 +

r
ρ(x)

)α

r–n/pϕ(x, r)–1‖f ‖WLp(B(x,r)).

Definition 1.1 Let ϕ(x, r) be a positive measurable function on R
n × (0,∞), 1 ≤ p < ∞,

α ≥ 0, and V ∈ RHq, q ≥ 1. For any fixed x0 ∈R
n we denote by LMα,V ,{x0}

p,ϕ = LMα,V ,{x0}
p,ϕ (Rn)

the local generalized Morrey space associated with Schrödinger operator, the space of all
functions f ∈ Lloc

p (Rn) with finite norm

‖f ‖LMα,V ,{x0}
p,ϕ

= sup
r>0

A
α,V
p,ϕ (f ; x0, r).

Also WLMα,V ,{x0}
p,ϕ = WLMα,V ,{x0}

p,ϕ (Rn) we denote the weak local generalized Morrey space
associated with Schrödinger operator, the space of all functions f ∈ WLloc

p (Rn) with

‖f ‖WLMα,V ,{x0}
p,ϕ

= sup
r>0

A
W ,α,V
p,ϕ (f ; x0, r) < ∞.
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The local spaces LMα,V ,{x0}
p,ϕ (Rn) and WLMα,V ,{x0}

p,ϕ (Rn) are Banach spaces with respect to
the norm

‖f ‖LMα,V ,{x0}
p,ϕ

= sup
r>0

A
α,V
p,ϕ (f ; x0, r), ‖f ‖WLMα,V ,{x0}

p,ϕ
= sup

r>0
A

W ,α,V
p,ϕ (f ; x0, r),

respectively.

Remark 1.1
(i) When α = 0, and ϕ(x, r) = r(λ–n)/p, LMα,V ,{x0}

p,ϕ (Rn) is the local (central) Morrey space
LM{0}

p,λ(Rn) studied in [4].
(ii) When α = 0, LMα,V ,{x0}

p,ϕ (Rn) is the local generalized Morrey space VM{x0}
p,ϕ (Rn) were

introduced by the first author in [13]; see also [14, 16, 21] etc.

Definition 1.2 The vanishing generalized Morrey space associated with the Schrödinger
operator VMα,V

p,ϕ (Rn) is defined as the spaces of functions f ∈ Mα,V
p,ϕ (Rn) such that

lim
r→0

sup
x∈Rn

A
α,V
p,ϕ (f ; x, r) = 0. (1.3)

The vanishing weak generalized Morrey space associated with the Schrödinger operator
VWMα,V

p,ϕ (Rn) is defined as the spaces of functions f ∈ WMα,V
p,ϕ (Rn) such that

lim
r→0

sup
x∈Rn

A
W ,α,V
p,ϕ (f ; x, r) = 0.

The vanishing spaces VMα,V
p,ϕ (Rn) and VWMα,V

p,ϕ (Rn) are Banach spaces with respect to
the norm

‖f ‖VMα,V
p,ϕ

≡ ‖f ‖Mα,V
p,ϕ

= sup
x∈Rn ,r>0

A
α,V
p,ϕ (f ; x, r),

‖f ‖VWMα,V
p,ϕ

≡ ‖f ‖WMα,V
p,ϕ

= sup
x∈Rn ,r>0

A
α,V
W ,p,ϕ(f ; x, r),

respectively.
In the case α = 0, and ϕ(x, r) = r(λ–n)/p VMα,V

p,ϕ (Rn) is the vanishing Morrey space VMp,λ

introduced in [33], where applications to PDE were considered.
We refer to [3, 20, 27, 28] for some properties of vanishing generalized Morrey spaces.

Definition 1.3 Let L = –�+ V with V ∈ RHq1 , q1 > n/2. The fractional integral associated
with L is defined by

IL
β f (x) = L–β/2f (x) =

∫ ∞

0
e–tL(f )(x)tβ/2–1 dt

for 0 < β < n. The commutator of IL
β is defined by

[
b,IL

β

]
f (x) = b(x)IL

β f (x) – IL
β (bf )(x).
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Note that, if L = –� is the Laplacian on R
n, then IL

β and [b,IL
β ] are the Riesz potential Iβ

and the commutator of the Riesz potential [b, Iβ ], respectively, that is,

Iβ f (x) =
∫
Rn

f (y)
|x – y|n dy, [b, Iβ ]f (x) =

∫
Rn

b(x) – b(y)
|x – y|n f (y) dy.

When b ∈ BMO, Chanillo proved in [8] that [b, Iβ ] is bounded from Lp(Rn) to Lq(Rn)
with 1/q = 1/p – β/n, 1 < p < n/β . When b belongs to the Campanato space �ν , 0 < ν < 1,
Paluszynski in [26] showed that [b, Iβ ] is bounded from Lp(Rn) to Lq(Rn) with 1/q = 1/p –
(β + ν)/n, 1 < p < n/(β + ν). When b ∈ BMOθ (ρ), Bui in [6] obtained the boundedness of
[b,IL

β ] from Lp(Rn) to Lq(Rn) with 1/q = 1/p – β/n, 1 < p < n/β .
Inspired by the above results, we are interested in the boundedness of [b,IL

β ] on gener-
alized Morrey spaces Mα,V

p,ϕ (Rn) and the vanishing generalized Morrey spaces VMα,V
p,ϕ (Rn),

when b belongs to the new Campanato class �θ
ν (ρ).

In this paper, we consider the boundedness of the commutator of IL
β on the local gen-

eralized Morrey spaces LMα,V ,{x0}
p,ϕ , the generalized Morrey spaces Mα,V

p,ϕ (Rn) and the van-
ishing generalized Morrey spaces VMα,V

p,ϕ (Rn). When b belongs to the new Campanato
space �θ

ν (ρ), 0 < ν < 1, we show that [b,IL
β ] are bounded from LMα,V ,{x0}

p,ϕ1 to LMα,V ,{x0}
q,ϕ2 ,

from Mα,V
p,ϕ (Rn) to Mα,V

q,ϕ (Rn) and from VMα,V
p,ϕ (Rn) to VMα,V

q,ϕ (Rn) with 1/q = 1/p – (β +ν)/n,
1 < p < n/(β + ν).

Our main results are as follows.

Theorem 1.1 Let x0 ∈ R
n, b ∈ �θ

ν(ρ), V ∈ RHq1 , q1 > n/2, 0 < ν < 1, α ≥ 0, 1 ≤ p < n/(β +
ν), 1/q = 1/p – (β + ν)/n and let ϕ1,ϕ2 ∈ �

α,V
p,loc satisfy the condition

∫ ∞

r

ess inft<s<∞ ϕ1(x0, s)s
n
p

t
n
q

dt
t

≤ c0ϕ2(x0, r), (1.4)

where c0 does not depend on r. Then the operator [b,IL
β ] is bounded from LMα,V ,{x0}

p,ϕ1 to
LMα,V ,{x0}

q,ϕ2 for p > 1 and from LMα,V ,{x0}
1,ϕ1 to WLMα,V ,{x0}

n
n–β–ν

,ϕ2
. Moreover, for p > 1

∥∥[
b,IL

β

]
f
∥∥

LMα,V ,{x0}
q,ϕ2

≤ C[b]θν‖f ‖LMα,V ,{x0}
p,ϕ1

,

and for p = 1

∥∥[
b,IL

β

]
f
∥∥

WLMα,V ,{x0}
n

n–β–ν
,ϕ2

≤ C[b]θν‖f ‖LMα,V ,{x0}
1,ϕ1

,

where C does not depend on f .

Corollary 1.1 Let b ∈ �θ
ν(ρ), V ∈ RHq1 , q1 > n/2, 0 < ν < 1, α ≥ 0, 1 ≤ p < n/(β + ν), 1/q =

1/p – (β + ν)/n and let ϕ1 ∈ �α,V
p , ϕ2 ∈ �α,V

q satisfy the condition

∫ ∞

r

ess inft<s<∞ ϕ1(x, s)s
n
p

t
n
q

dt
t

≤ c0ϕ2(x, r), (1.5)
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where c0 does not depend on x and r. Then the operator [b,IL
β ] is bounded from Mα,V

p,ϕ1 to
Mα,V

q,ϕ2 for p > 1 and from Mα,V
1,ϕ1 to WMα,V

n
n–β–ν

,ϕ2
. Moreover, for p > 1

∥∥[
b,IL

β

]
f
∥∥

Mα,V
q,ϕ2

≤ C[b]θ‖f ‖Mα,V
p,ϕ1

,

and for p = 1

∥∥[
b,IL

β

]
f
∥∥

WMα,V
n

n–β–ν
,ϕ2

≤ C‖f ‖Mα,V
1,ϕ1

,

where C does not depend on f .

Theorem 1.2 Let b ∈ �θ
ν(ρ), V ∈ RHq1 , q1 > n/2, 0 < ν < 1, α ≥ 0, b ∈ �θ

ν(ρ), 1 < p < n/(β +
ν), 1/q = 1/p – (β + ν)/n, and let ϕ1 ∈ �

α,V
p,1 , ϕ2 ∈ �

α,V
q,1 satisfy the conditions

cδ :=
∫ ∞

δ

sup
x∈Rn

ϕ1(x, t)
dt
t

< ∞

for every δ > 0, and

∫ ∞

r
ϕ1(x, t)

dt
t1–β–ν

≤ C0ϕ2(x, r), (1.6)

where C0 does not depend on x ∈ R
n and r > 0. Then the operator [b,IL

β ] is bounded from
VMα,V

p,ϕ1 to VMα,V
q,ϕ2 for p > 1 and from VMα,V

1,ϕ1 to VWMα,V
n

n–β–ν
,ϕ2

.

Remark 1.2 Note that, in the case of V ≡ 0, ν = 0 Corollary 1.1 and Theorem 1.2 were
proved in [19, Corollary 5.5 and 7.5] and in the case of ϕ(x, r) = r(λ–n)/p, ν = 0 in [32, The-
orems 1.3 and 1.4].

In this paper, we shall use the symbol A � B to indicate that there exists a universal
positive constant C, independent of all important parameters, such that A ≤ CB. A ≈ B
means that A � B and B � A.

2 Some technical lemmas and propositions
We would like to recall the important properties concerning the critical function.

Lemma 2.1 ([29]) Let V ∈ RHq1 with q1 > n/2. For the associated function ρ there exist C
and k0 ≥ 1 such that

C–1ρ(x)
(

1 +
|x – y|
ρ(x)

)–k0

≤ ρ(y) ≤ Cρ(x)
(

1 +
|x – y|
ρ(x)

) k0
1+k0

(2.1)

for all x, y ∈R
n.

Lemma 2.2 ([2]) Suppose x ∈ B(x0, r). Then for k ∈ N we have

1
(1 + 2k r

ρ(x) )N
� 1

(1 + 2k r
ρ(x0) )N/(k0+1)

.
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According to [5], the new BMO space BMOθ (ρ) with θ ≥ 0 is defined as a set of all locally
integrable functions b such that

1
|B(x, r)|

∫
B(x,r)

∣∣b(y) – bB
∣∣dy ≤ C

(
1 +

r
ρ(x)

)θ

for all x ∈ R
n and r > 0, where bB = 1

|B|
∫

B b(y) dy. A norm for b ∈ BMOθ (ρ), denoted by
[b]θ , is given by the infimum of the constants in the inequalities above. Clearly, BMO ⊂
BMOθ (ρ).

Let θ > 0 and 0 < ν < 1, a seminorm on the Campanato class �θ
ν(ρ) is denoted by [b]θν ,

[b]θν := sup
x∈Rn ,r>0

1
|B(x,r)|1+ν/n

∫
B(x,r) |b(y) – bB|dy

(1 + r
ρ(x) )θ

< ∞.

The Lipschitz space, associated with the Schrödinger operator (see [22]), consists of the
functions f satisfying

‖f ‖Lipθ
ν (ρ) := sup

x∈Rn ,r>0

|f (x) – f (y)|
|x – y|ν(1 + |x–y|

ρ(x) + |x–y|
ρ(y) )θ

< ∞.

It is easy to see that this space is exactly the Lipschitz space when θ = 0.
Note that if θ = 0 in (1.2), �θ

ν(ρ) is exactly the classical Campanato space; if ν = 0, �θ
ν (ρ)

is exactly the space BMOθ (ρ); if θ = 0 and ν = 0, it is exactly the John–Nirenberg space
BMO.

The following relations between Lipθ
ν (ρ) and �θ

ν(ρ) were proved in [22, Theorem 5].

Lemma 2.3 ([22]) Let θ > 0 and 0 < ν < 1. Then following embedding is valid:

�θ
ν(ρ) ⊆ Lipθ

ν(ρ) ⊆ �(k0+1)θ
ν (ρ),

where k0 is the constant appearing in Lemma 2.1.

We give some inequalities about the Campanato space, associated with the Schrödinger
operator �θ

ν(ρ).

Lemma 2.4 ([22]) Let θ > 0 and 1 ≤ s < ∞. If b ∈ �θ
ν(ρ), then there exists a positive con-

stant C such that

(
1

|B|
∫

B

∣∣b(y) – bB
∣∣s dy

)1/s

≤ C[b]θνrν

(
1 +

r
ρ(x)

)θ ′

for all B = B(x, r), with x ∈R
n and r > 0, where θ ′ = (k0 +1)θ and k0 is the constant appearing

in (2.1).

Let Kβ be the kernel of IL
β . The following result gives the estimate on the kernel Kβ (x, y).
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Lemma 2.5 ([6]) If V ∈ RHq1 with q1 > n/2, then, for every N , there exists a constant C
such that

∣∣Kβ (x, y)
∣∣ ≤ C

(1 + |x–y|
ρ(x) )N

1
|x – y|n–β

. (2.2)

Finally, we recall a relationship between an essential supremum and an essential infi-
mum.

Lemma 2.6 ([34]) Let f be a real-valued nonnegative function and measurable on E. Then

(
ess inf

x∈E
f (x)

)–1
= ess sup

x∈E

1
f (x)

.

It is natural, first of all, to find conditions ensuring that the spaces LMα,V ,{x0}
p,ϕ and Mα,V

p,ϕ

are nontrivial, that is, consist not only of functions equivalent to 0 on R
n.

Lemma 2.7 Let x0 ∈R
n, ϕ(x, r) be a positive measurable function on R

n × (0,∞), 1 ≤ p <
∞, α ≥ 0, and V ∈ RHq, q ≥ 1. If

sup
t<r<∞

(
1 +

r
ρ(x0)

)α r– n
p

ϕ(x0, r)
= ∞ for some t > 0, (2.3)

then LMα,V ,{x0}
p,ϕ (Rn) = �, where � is the set of all functions equivalent to 0 on R

n.

Proof Let (2.4) be satisfied and f be not equivalent to zero. Then ‖f ‖Lp(B(x0,t)) > 0, hence

‖f ‖LMα,V ,{x0}
p,ϕ

≥ sup
t<r<∞

(
1 +

r
ρ(x0)

)α

ϕ(x0, r)–1r– n
p ‖f ‖Lp(B(x0,r))

≥ ‖f ‖Lp(B(x0,t)) sup
t<r<∞

(
1 +

r
ρ(x0)

)α

ϕ(x0, r)–1r– n
p .

Therefore ‖f ‖LMα,V ,{x0}
p,ϕ

= ∞. �

Remark 2.1 We denote by �
α,V
p,loc the sets of all positive measurable functions ϕ on R

n ×
(0,∞) such that, for all t > 0,

sup
x∈Rn

∥∥∥∥
(

1 +
r

ρ(x)

)α r– n
p

ϕ(x, r)

∥∥∥∥
L∞(t,∞)

< ∞.

In what follows, keeping in mind Lemma 2.7, for the non-triviality of the space
LMα,V ,{x0}

p,ϕ (Rn) we always assume that ϕ ∈ �
α,V
p,loc.

Lemma 2.8 ([2]) Let ϕ(x, r) be a positive measurable function on R
n × (0,∞), 1 ≤ p < ∞,

α ≥ 0, and V ∈ RHq, q ≥ 1.
(i) If

sup
t<r<∞

(
1 +

r
ρ(x)

)α r– n
p

ϕ(x, r)
= ∞ for some t > 0 and for all x ∈R

n, (2.4)
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then Mα,V
p,ϕ (Rn) = �.

(ii) If

sup
0<r<τ

(
1 +

r
ρ(x)

)α

ϕ(x, r)–1 = ∞ for some τ > 0 and for all x ∈R
n, (2.5)

then Mα,V
p,ϕ (Rn) = �.

Remark 2.2 We denote by �α,V
p the sets of all positive measurable functions ϕ on R

n ×
(0,∞) such that, for all t > 0,

sup
x∈Rn

∥∥∥∥
(

1 +
r

ρ(x)

)α r– n
p

ϕ(x, r)

∥∥∥∥
L∞(t,∞)

< ∞, and

sup
x∈Rn

∥∥∥∥
(

1 +
r

ρ(x)

)α

ϕ(x, r)–1
∥∥∥∥

L∞(0,t)
< ∞,

respectively. In what follows, keeping in mind Lemma 2.8, for the non-triviality of the
space Mα,V

p,ϕ (Rn) we always assume that ϕ ∈ �α,V
p .

Remark 2.3 We denote by �
α,V
p,1 the sets of all positive measurable functions ϕ on R

n ×
(0,∞) such that

inf
x∈Rn

inf
r>δ

(
1 +

r
ρ(x)

)–α

ϕ(x, r) > 0, for some δ > 0, (2.6)

and

lim
r→0

(
1 +

r
ρ(x)

)α rn/p

ϕ(x, r)
= 0.

For the non-triviality of the space VMα,V
p,ϕ (Rn) we always assume that ϕ ∈ �

α,V
p,1 .

3 Proof of Theorem 1.1
We first prove the following conclusions.

Lemma 3.1 Let 0 < ν < 1, 0 < β +ν < n and b ∈ �θ
ν(ρ), then the following pointwise estimate

holds:

∣∣[b,IL
β

]
f (x)

∣∣ � [b]θνIβ+ν

(|f |)(x).

Proof Note that

[
b,IL

β

]
f (x) = b(x)IL

β (f )(x) – IL
β (bf )(x)

=
∫
Rn

[
b(x) – b(y)

]
Kβ (x, y)f (y) dy.
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If b ∈ �θ
ν(ρ), then from Lemma 2.5 we have

∣∣[b,IL
β

]
f (x)

∣∣ ≤
∫
Rn

∣∣b(x) – b(y)
∣∣∣∣Kβ (x, y)

∣∣∣∣f (y)
∣∣dy

� [b]θν
∫
Rn

|x – y|ν∣∣Kβ (x, y)
∣∣∣∣f (y)

∣∣dy

= [b]θνIβ+ν

(|f |)(x). �

From Lemma 3.1 we get the following.

Corollary 3.1 Suppose V ∈ RHq1 with q1 > n/2 and b ∈ �θ
ν (ρ) with 0 < ν < 1. Let 0 < β +ν <

n and let 1 ≤ p < q < ∞ satisfy 1/q = 1/p – (β + ν)/n. Then for all f in Lp(Rn) we have

∥∥[
b,IL

β

]
f
∥∥

Lq(Rn) � ‖f ‖Lp(Rn)

when p > 1, and also

∥∥[
b,IL

β

]
f
∥∥

WLq(Rn) � ‖f ‖L1(Rn)

when p = 1.

In order to prove Theorem 1.1, we need the following.

Theorem 3.1 Suppose V ∈ RHq1 with q1 > n/2, b ∈ �θ
ν(ρ), θ > 0, 0 < ν < 1. Let 0 < β +ν < n

and let 1 ≤ p < q < ∞ satisfy 1/q = 1/p – (β + ν)/n then the inequality

∥∥[
b,IL

β

]
f
∥∥

Lq(B(x0,r)) �
∥∥Iβ+ν

(|f |)∥∥Lq(B(x0,r))

� r
n
q

∫ ∞

2r

‖f ‖Lp(B(x0,t))

t
n
q

dt
t

holds for any f ∈ Lp
loc(Rn). Moreover, for p = 1 the inequality

∥∥[
b,IL

β f
]∥∥

WL n
n–β–ν

(B(x0,r)) �
∥∥Iβ+ν

(|f |)∥∥WL n
n–β–ν

(B(x0,r))

� rn–β

∫ ∞

2r

‖f ‖L1(B(x0,t))

tn–β–ν

dt
t

holds for any f ∈ L1
loc(Rn).

Proof For arbitrary x0 ∈R
n, set B = B(x0, r) and λB = B(x0,λr) for any λ > 0. We write f as

f = f1 + f2, where f1(y) = f (y)χB(x0,2r)(y), and χB(x0,2r) denotes the characteristic function of
B(x0, 2r). Then

∥∥[
b,IL

β

]
f
∥∥

Lq(B(x0,r)) �
∥∥Iβ+ν

(|f |)∥∥Lq(B(x0,r))

≤ ‖Iβ+ν f1‖Lq(B(x0,r)) + ‖Iβ+ν f2‖Lq(B(x0,r)).
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Since f1 ∈ Lp(Rn) and from the boundedness of Iβ+ν from Lp(Rn) to Lq(Rn) (see [31]) it
follows that

‖Iβ+ν f1‖Lq(B(x0,r)) � ‖f ‖Lp(B(x0,2r))

� r
n
q ‖f ‖Lp(B(x0,2r))

∫ ∞

2r

dt

t
n
q +1

� r
n
q

∫ ∞

2r

‖f ‖Lp(B(x0,t))

t
n
q

dt
t

. (3.1)

To estimate ‖Iβ+ν f2‖Lp(B(x0,r)), the obverse of x ∈ B, y ∈ (2B)c implies |x – y| ≈ |x0 – y|. Then
by (2.2) we have

sup
x∈B

∣∣Iβ+ν f2(x)
∣∣ �

∫
(2B)c

|f (y)|
|x0 – y|n–β–ν

dy �
∞∑

k=1

(
2k+1r

)–n+β

∫
2k+1B

∣∣f (y)
∣∣dy.

By Hölder’s inequality we get

sup
x∈B

∣∣Iβ+ν f2(x)
∣∣ �

∞∑
k=1

‖f ‖Lp(2k+1B)
(
2k+1r

)–1– n
p +β

∫ 2k+1r

2k r
dt

�
∞∑

k=1

∫ 2k+1r

2k r

‖f ‖Lp(B(x0,t))

t
n
q

dt
t

�
∫ ∞

2r

‖f ‖Lp(B(x0,t))

t
n
q

dt
t

. (3.2)

Then

‖Iβ+ν f2‖Lq(B(x0,r)) � r
n
q

∫ ∞

2r

‖f ‖Lp(B(x0,t))

t
n
q

dt
t

(3.3)

holds for 1 ≤ p < n/β . Therefore, by (3.1) and (3.3) we get

∥∥Iβ+ν

(|f |)∥∥Lq(B(x0,r)) � r
n
q

∫ ∞

2r

‖f ‖Lp(B(x0,t))

t
n
q

dt
t

(3.4)

for 1 < p < n/β .
When p = 1, by the boundedness of Iβ+ν from L1(Rn) to WL n

n–β–ν
(Rn), we get

‖Iβ+ν f1‖WL n
n–β–ν

(B(x0,r)) � ‖f ‖L1(B(x0,2r)) � rn–β–ν

∫ ∞

2r

‖f ‖L1(B(x0,t))

tn–β–ν

dt
t

.

By (3.3) we have

‖Iβ+ν f2‖WL n
n–β–ν

(B(x0,r)) ≤ ‖Iβ+ν f2‖L n
n–β–ν

(B(x0,2r))

� rn–β–ν

∫ ∞

2r

‖f ‖L1(B(x0,t))

tn–β–ν

dt
t

.

Then

∥∥Iβ+ν

(|f |)∥∥WL n
n–β–ν

(B(x0,r)) � rn–β–ν

∫ ∞

2r

‖f ‖L1(B(x0,t))

tn–β–ν

dt
t

. �
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Proof of Theorem 1.1 From Lemma 2.6, we have

1

ess inft<s<∞ ϕ1(x, s)s
n
p

= ess sup
t<s<∞

1

ϕ1(x, s)s
n
p

.

Note the fact that ‖f ‖Lp(B(x0,t)) is a nondecreasing function of t, and f ∈ Mα,V
p,ϕ1 , then

(1 + t
ρ(x0) )α‖f ‖Lp(B(x0,t))

ess inft<s<∞ ϕ1(x, s)s
n
p

� ess supt<s<∞
(1 + t

ρ(x0) )α‖f ‖Lp(B(x0,t))

ϕ1(x, s)s
n
p

� sup
0<s<∞

(1 + s
ρ(x0) )α‖f ‖Lp(B(x0,s))

ϕ1(x, s)s
n
p

� ‖f ‖Mα,V
p,ϕ1

.

Since α ≥ 0, and (ϕ1,ϕ2) satisfies the condition (1.5),

∫ ∞

2r

‖f ‖Lp(B(x0,t))

t
n
q

dt
t

=
∫ ∞

2r

(1 + t
ρ(x0) )α‖f ‖Lp(B(x0,t))

ess inft<s<∞ ϕ1(x, s)s
n
p

ess inft<s<∞ ϕ1(x, s)s
n
p

(1 + t
ρ(x0) )αt

n
q

dt
t

� ‖f ‖Mα,V
p,ϕ1

∫ ∞

2r

ess inft<s<∞ ϕ1(x, s)s
n
p

(1 + t
ρ(x0) )αt

n
q

dt
t

� ‖f ‖Mα,V
p,ϕ1

(
1 +

r
ρ(x0)

)–α ∫ ∞

r

ess inft<s<∞ ϕ1(x, s)s
n
p

t
n
q

dt
t

� ‖f ‖Mα,V
p,ϕ1

(
1 +

r
ρ(x0)

)–α

ϕ2(x0, r). (3.5)

Then by Theorem 3.1 we get

∥∥[
b,IL

β

]
f
∥∥

Mα,V
q,ϕ2

�
∥∥Iβ+ν

(|f |)∥∥Mα,V
q,ϕ2

� sup
x0∈Rn ,r>0

(
1 +

r
ρ(x0)

)α

ϕ2(x0, r)–1r–n/q∥∥Iβ+ν

(|f |)∥∥Lp(B(x0,r))

� sup
x0∈Rn ,r>0

(
1 +

r
ρ(x0)

)α

ϕ2(x0, r)–1
∫ ∞

2r

‖f ‖Lp(B(x0,t))

t
n
q

dt
t

� ‖f ‖Mα,V
p,ϕ1

.

Let q = n
n–β–ν

, similar to the estimates of (3.5) we have

∫ ∞

2r

‖f ‖L1(B(x0,t))

tn–β–ν

dt
t

� ‖f ‖Mα,V
1,ϕ1

(
1 +

r
ρ(x0)

)–α

ϕ2(x0, r).

Thus by Theorem 3.1 we get

∥∥[
b,IL

β

]
f
∥∥

WMα,V
n

n–β–ν
,ϕ2

�
∥∥Iβ+ν

(|f |)∥∥WMα,V
n

n–β–ν
,ϕ2

� sup
x0∈Rn ,r>0

(
1 +

r
ρ(x0)

)α

ϕ2(x0, r)–1rβ–n∥∥Iβ+ν

(|f |)∥∥WL n
n–β–ν

(B(x0,r))
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� sup
x0∈Rn ,r>0

(
1 +

r
ρ(x0)

)α

ϕ2(x0, r)–1
∫ ∞

2r

‖f ‖L1(B(x0,t))

tn–β–ν

dt
t

� ‖f ‖Mα,V
1,ϕ1

. �

4 Proof of Theorem 1.2
The statement is derived from the estimate (3.4). The estimation of the norm of the oper-
ator, that is, the boundedness in the non-vanishing space, immediately follows by Theo-
rem 1.1. So we only have to prove that

lim
r→0

sup
x∈Rn

A
α,V
p,ϕ1 (f ; x, r) = 0 ⇒ lim

r→0
sup
x∈Rn

A
α,V
q,ϕ2

([
b,IL

β

]
f ; x, r

)
= 0 (4.1)

and

lim
r→0

sup
x∈Rn

A
α,V
1,ϕ1 (f ; x, r) = 0 ⇒ lim

r→0
sup
x∈Rn

A
W ,α,V
n/(n–β),ϕ2

([
b,IL

β

]
f ; x, r

)
= 0. (4.2)

To show that supx∈Rn (1 + r
ρ(x) )αϕ2(x, r)–1r–n/p‖[b,IL

β ]f ‖Lq(B(x,r)) < ε for small r, we split the
right-hand side of (3.4):

(
1 +

r
ρ(x)

)α

ϕ2(x, r)–1r–n/p∥∥[
b,IL

β

]
f
∥∥

Lq(B(x,r)) ≤ C
[
Iδ0 (x, r) + Jδ0 (x, r)

]
, (4.3)

where δ0 > 0 (we may take δ0 > 1), and

Iδ0 (x, r) :=
(1 + r

ρ(x) )α

ϕ2(x, r)

∫ δ0

r
t– n

q –1‖f ‖Lp(B(x,t)) dt

and

Jδ0 (x, r) :=
(1 + r

ρ(x) )α

ϕ2(x, r)

∫ ∞

δ0

t– n
q –1‖f ‖Lp(B(x,t)) dt

and it is supposed that r < δ0. We use the fact that f ∈ VMα,V
p,ϕ1 (Rn) and choose any fixed

δ0 > 0 such that

sup
x∈Rn

(
1 +

t
ρ(x)

)α

ϕ1(x, t)–1t–n/p‖f ‖Lp(B(x,t)) <
ε

2CC0
,

where C and C0 are constants from (1.6) and (4.3). This allows one to estimate the first
term uniformly in r ∈ (0, δ0):

sup
x∈Rn

CIδ0 (x, r) <
ε

2
, 0 < r < δ0.

The estimation of the second term now my be made already by the choice of r sufficiently
small. Indeed, thanks to the condition (2.6) we have

Jδ0 (x, r) ≤ cσ0

(1 + r
ρ(x) )α

ϕ1(x, r)
‖f ‖VMα,V

p,ϕ1
,
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where cσ0 is the constant from (1.3). Then by (2.6) it suffices to choose r small enough such
that

sup
x∈Rn

(1 + r
ρ(x) )α

ϕ2(x, r)
≤ ε

2cσ0‖f ‖VMα,V
p,ϕ1

,

which completes the proof of (4.1).
The proof of (4.2) is similar to the proof of (4.1).

5 Conclusions
In this paper, we study the boundedness of the commutators [b,IL

β ] with b ∈ �θ
ν (ρ) on

local generalized Morrey spaces LMα,V ,{x0}
p,ϕ , generalized Morrey spaces Mα,V

p,ϕ and vanishing
generalized Morrey spaces VMα,V

p,ϕ associated with the Schrödinger operator, respectively.
When b belongs to �θ

ν (ρ) with θ > 0, 0 < ν < 1 and (ϕ1,ϕ2) satisfies some conditions, we
show that the commutator operator [b,IL

β ] are bounded from LMα,V ,{x0}
p,ϕ1 to LMα,V ,{x0}

q,ϕ2 , from
Mα,V

p,ϕ1 to Mα,V
q,ϕ2 and from VMα,V

p,ϕ1 to VMα,V
q,ϕ2 , 1/p – 1/q = (β + ν)/n.

Our results about the boundedness of [b,IL
β ] with b ∈ �θ

ν(ρ) from LMα,V ,{x0}
p,ϕ1 to

LMα,V ,{x0}
q,ϕ2 (Theorem 1.1) are based on the local estimate for the commutators [b,IL

β ] (The-
orem 3.1).
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