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Abstract
In this paper, we study Riemann boundary-value problem for doubly-periodic
bianalytic functions. By the decomposition of doubly-periodic polyanalytic functions,
the problem is transformed into two equivalent and independent Riemann
boundary-value problems of doubly-periodic analytic functions, which has been
discussed according to growth order of functions at the origin by Jianke Lu. Finally,
we obtain the explicit expression of solutions and the conditions of solvability for the
doubly-periodic bianalytic functions.
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1 Introduction
An extension of analytic function leads to polyanalytic function, which is usually defined
as solutions of simple complex partial differential equation ∂n

z̄ f = 0, where ∂z̄ is the classical
Cauchy–Riemann operator ∂z̄ = 1/2[∂/∂x + i(∂/∂y)]. Polyanalytic function stemmed from
planar elasticity problems and was first investigated by Kolossov in 1908. A good overview
of polyanalytic function is included in Balk’s excellent monograph [1] or the literature
[2]. Recently, various boundary-value problems (BVP) of polyanalytic functions and other
functions determined by the general partial differential equations have been widely in-
vestigated by Begehr, Schmersau, Hile, Vanegas, Kumar, Jinyuan Du, Yufeng Wang, Ying
Wang, Zhihua Du and others (see, for example, [1–21]). The general partial differential
equations include the inhomogeneous polyanalytic equation [5], the higher order Poisson
equation [6], and polyharmonic equations [7, 8].

Riemann BVP of single-periodic polyanalytic functions has been investigated [10, 11].
Analogously, a Riemann BVP of rotation-invariant polyanalytic functions has been dis-
cussed in [20]. Actually, a single-periodic polyanalytic function is defined by a translation-
invariant group

T =
{
τn : τn(z) = z + nω, n ∈ Z

}
with ω ∈C \ {0},

which is generated by two elements {τ1, τ–1} with τ±1(z) = z ± ω. Generally speaking, the
single-periodic polyanalytic function is translation-invariant under the group T , and the
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rotation-invariant polyanalytic function is invariant under a rotation group

R =
{
ρk : ρk(z) = e

2kπ i
m z, k = 0, 1, 2, . . . , m – 1

}
.

In general, single-periodic polyanalytic function and rotation-invariant polyanalytic func-
tion are automorphic.

In 1935, Natanzon first made use of doubly-periodic bianalytic function to deal with
a problem on stresses deriving from a stretched plate. In 1957, Erwe also studied other
classes of doubly-periodic polyanalytic functions. In 1982, Pokazeev further considered
a general form of doubly-periodic polyanalytic functions. A concise history of investiga-
tion of doubly-periodic polyanalytic function has been introduced in the literature [2].
Doubly-periodic polyanalytic function is also automorphic and is determined by another
translation-invariant group

G =
{
τk,� : τk,�(z) = z + 2kω1 + 2�ω2, k,� ∈ Z

}
with Im(ω2/ω1) �= 0.

Investigation of Riemann BVP for this kind of functions is a spontaneous thing.
For the compact Riemann surfaces of finite genus, the classical BVP of analytic func-

tions was discussed in [22, 23]. However, for the very important doubly-periodic prob-
lem, it is essential to have an effective method of solution which has been systematically
investigated by Jianke Lu [24]. Later, BVP of automorphic analytic functions has been first
discussed by Gakhov and Chibrikova [25, 26].

Up to now, Riemann BVP for doubly-periodic polyanalytic function has not been well-
posed and systematically investigated. In this article, our main objective is to set up the
theory of doubly-periodic bianalytic function. The way to solve this problem is the conver-
sion method used in [16]. Riemann BVP for doubly-periodic polyanalytic functions will
be presented in the forthcoming paper.

This article is organized as follows. In Sect. 2, we give a decomposition of doubly-
periodic polyanalytic functions, which will be used to solve BVPs of doubly-periodic bi-
analytic functions. It is worth mentioning that the decomposition obtained here is dis-
tinct from the classical decomposition described in [2]. In Sect. 3, the growth order of
doubly-periodic polyanalytic functions at the origin is defined. To pose the reasonable
BVPs of doubly-periodic bianalytic functions, the definition of growth order at the origin
is needed. In the classical monographs [24, 25], the growth order of doubly-periodic func-
tions is not explicitly defined. In Sect. 4, Riemann BVP of doubly-periodic bianalytic func-
tions is presented. The solutions and conditions of solvability of this kind of problem are
obtained by Jianke Lu [24]. By the decomposition of doubly-periodic bianalytic functions,
the problem is transformed into two independent Riemann-type BVPs of doubly-periodic
analytic functions. Finally, the solution is explicitly expressed as an integral representation.

2 Doubly-periodic polyanalytic functions
Without loss of generality, we always assume that Im(ω2/ω1) > 0 in the following. The
parallelogram with vertices ω1 +ω2, –ω1 +ω2, –ω1 –ω2, and ω1 –ω2 is denoted by S0, which
is usually called the fundamental cell. Obviously, the origin is the center of the fundamental
cell S0.
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The classical Weierstrass’s ζ -function is defined by

ζ (z) =
1
z

+
∑

(k,�) �=(0,0)

(
1

z – 	k�

+
1

	k�

+
z

	2
k�

)
, (2.1)

with 	k� = 2kω1 + 2�ω2, and k, l are integers. Clearly,

ζ (z + 2ωj) = ζ (z) + 2ηj, j = 1, 2,

where ηj = ζ (ωj) satisfies the relation

2η1ω2 – 2η2ω1 = π i. (2.2)

Let

φ(z) = z̄ – λz – δζ (z), (2.3)

with

λ =
2i
π

(w1η2 – w2η1), δ = –
2i
π

(w1w2 – w2w1). (2.4)

By simple computation, one has

φ(z + 2ωj) = z + 2ωj – λ(z + 2ωj) – δζ (z + 2ωj) = φ(z), z �= 0.

This implies that φ is a doubly-periodic bianalytic function.
If the open set 	 on the complex plane C satisfies the condition z + 2kω1 + 2�ω2 ∈ 	 for

∀z ∈ 	, ∀k,� ∈ Z, then 	 is called a doubly-periodic open set with periods 2ω1, 2ω2. Sim-
ilar to the definition of single-periodic polyanalytic function in [10], we give the following
definition.

Definition 2.1 Suppose f to be a polyanalytic function [1] of order n on 	, where 	 is a
doubly-periodic open set with periods 2ω1, 2ω2. If

f (z + 2ωj) = f (z), ∀z ∈ 	, j = 1, 2, (2.5)

then we say that f is a doubly-periodic polyanalytic function of order n with periods
2ω1, 2ω2 on 	, or simply doubly-periodic polyanalytic function. The collection of all the
doubly-periodic polyanalytic functions on 	 is denoted by DPHn(	).

By Definition 2.1, DPH1(	) is just a set of all the doubly-periodic analytic functions
on the doubly-periodic open set 	. The function f ∈ DPH1(	) is called doubly-periodic
bianalytic function. DPHn(	) is a subset of the collection of polyanalytic functions on 	

denoted by Hn(	) = {f : ∂n
z̄ f (z) = 0, z ∈ 	}. Equation (2.5) is equivalent to

∂k
z̄ f (z + 2ωj) = ∂k

z̄ f (z), ∀z ∈ 	 for k = 0, 1, . . . , n – 1 and j = 1, 2. (2.6)
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Now we introduce the subset of DPHn(	) as follows:

DPHn(	; 2ω1, 2ω2) =
{

f ∈ DPHn(	) : f (z + 2ωj) = f (z),∀z ∈ 	 for j = 1, 2
}

,

which is an object of investigation in the following.
Finally, one arrives at the decomposition of doubly-periodic polyanalytic functions, used

to solve Riemann BVP of doubly-periodic bianalytic functions in the sequel.

Theorem 2.1 Let 	 be a doubly-periodic open set with periods 2ω1, 2ω2 and 0 /∈ 	. Then

DPHn(	; 2ω1, 2ω2) = DPH1(	; 2ω1, 2ω2)

⊕ [
z – λz – δζ (z)

]
DPH1(	; 2ω1, 2ω2)

⊕ · · · ⊕ [
z – λz – δζ (z)

]n–1DPH1(	; 2ω1, 2ω2), (2.7)

with [z – λz – δζ (z)]jDPH1(	; 2ω1, 2ω2) = {[z – λz – δζ (z)]jf (z) : f ∈ DPH1(	; 2ω1, 2ω2)} for
j = 0, 1, . . . , n – 1, where ζ is defined by (2.1), and λ, δ are given by (2.4).

Proof We only need to verify the relation ⊆ by induction. Obviously, if n = 1, the theorem
is straightforward. Suppose that the relation

DPHn–1(	; 2ω1, 2ω2) ⊆ DPH1(	; 2ω1, 2ω2)

⊕ [
z – λz – δζ (z)

]
DPH1(	; 2ω1, 2ω2)

⊕ · · · ⊕ [
z – λz – δζ (z)

]n–2DPH1(	; 2ω1, 2ω2)

is valid. Next one has to verify

DPHn(	; 2ω1, 2ω2) ⊆ DPH1(	; 2ω1, 2ω2)

⊕ [
z – λz – δζ (z)

]
DPH1(	; 2ω1, 2ω2)

⊕ · · · ⊕ [
z – λz – δζ (z)

]n–1DPH1(	; 2ω1, 2ω2). (2.8)

Let f ∈ DPHn(	; 2ω1, 2ω2). Then ∂z̄f ∈ DPHn–1(	; 2ω1, 2ω2). And hence, by the induc-
tive hypothesis, there exist gj(z) ∈ DPH1(	; 2ω1, 2ω2), j = 0, 1, . . . , n – 2, such that

∂z̄f (z) = g0(z) +
n–2∑

j=1

[z – λz – δζ (z)]j

j!
gj(z), z ∈ 	. (2.9)

Setting

h(z) = f (z) –
[
z – λz – δζ (z)

]
g0(z) –

n–2∑

j=1

[z – λz – δζ (z)]j+1

(j + 1)!
gj(z), z ∈ 	, (2.10)

one has, by (2.9),

∂z̄h(z) = ∂z̄f (z) – g0(z) –
n–2∑

j=1

[z – λz – δζ (z)]j

j!
gj(z) = 0, z ∈ 	.
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Therefore, h ∈ DPH1(	; 2ω1, 2ω2). And (2.10) is rewritten as

f (z) = h(z) +
[
z – λz – δζ (z)

]
g0(z) +

n–2∑

j=1

[z – λz – δζ (z)]j+1

(j + 1)!
gj(z), z ∈ 	,

which implies that (2.8) remains true. �

Theorem 2.1 indicates that f ∈ DPHn(	; 2ω1, 2ω2) admits a unique decomposition

f (z) =
n–1∑

j=0

[
z – λz – δζ (z)

]jfj(z), z ∈ 	, (2.11)

where fj ∈ DPH1(	; 2ω1, 2ω2) is called j-component of f with respect to the base {[z – λz –
δζ (z)]j : j = 0, 1, 2, . . . , n – 1}. Specially, g ∈ DPH2(	; 2ω1, 2ω2) has the unique expansion

g(z) = g1(z) +
[
z – λz – δζ (z)

]
g2(z), z ∈ 	, (2.12)

with gj ∈ DPH1(	; 2ω1, 2ω2), j = 1, 2.

3 Growth order of doubly-periodic bianalytic functions
First, the following definition is analogous to that in [10]. This is just the definition of
growth order for the general polyanalytic function at the origin [15].

Definition 3.1 Suppose 	 to be a doubly-periodic open set with periods 2ω1, 2ω2, 0 ∈ 	

and f ∈ DPHn(	; 2ω1, 2ω2). If there exists an integer m such that

lim sup
z∈	,z→0

∣∣zmf (z)
∣∣ = α, α ∈ (0, +∞),

then we say that f possesses order m at the origin, denoted by Ord(f , 0) = m. If

lim sup
z∈	,z→0

∣∣zmf (z)
∣∣ = +∞ for any m ∈ Z,

then we say that f has order +∞ at the origin, denoted by Ord(f , 0) = +∞. We assume
Ord(f , 0) = –∞ if and only if f = 0.

Now, one has the following result needed in the sequel.

Lemma 3.1 Suppose 	 to be a doubly-periodic open set with periods 2ω1, 2ω2, 0 ∈ 	 and
f ∈ DPH1(	; 2ω1, 2ω2). At the deleted neighbor of the origin, one has

f (z) = c0(z) +
∞∑

j=1

cjζ
(j)(z), (3.1)

where ζ is defined by (2.1), the order of c0(z) ∈ DPH1(	; 2ω1, 2ω2) is not more than 1 and
cj ∈C, j = 1, 2, . . . .
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Proof Since 0 ∈ 	 and f ∈ DPH1(	; 2ω1, 2ω2), at the deleted neighbor of the origin, one
has Laurent’s expansion

f (z) =
+∞∑

j=–∞
dj

1
zj , dj =

1
2π i

∫

|t|=r
f (t)tj–1 dt, (3.2)

for sufficiently small r > 0. Let

ζ (z) =
1
z

+ ζ0(z), ζ0(z) =
∑

(k,�) �=(0,0)

(
1

z – 	k�

+
1

	k�

+
z

	2
k�

)
, (3.3)

where ζ0(0) = 0 and ζ0(z) is analytic at the origin. Thus one gets

ζ (j)(z) =
(–1)j

zj+1 + ζ
(j)
0 (z), j ∈ Z

+,

which is equivalent to

1
zj = (–1)j–1[ζ (j–1)(z) – ζ

(j–1)
0 (z)

]
, j ∈ Z

+. (3.4)

Inserting (3.4) into (3.2), we get

f (z) = d(z) +
∞∑

j=1

dj+1(–1)jζ (j)(z),

with

d(z) =
+∞∑

j=–1

d–jzj –
∞∑

j=1

dj+1(–1)jζ
(j)
0 (z) ∈ DPH1(	; 2ω1, 2ω2).

The order of d(z) is obviously not more than 1. This completes the proof. �

Corollary 3.1 Suppose that f ∈ DPH1(C; 2ω1, 2ω2) possesses a uniquely possible singular
point z = 0 in the fundamental cell S0. Then one has

f (z) = c0 +
∞∑

j=1

cjζ
(j)(z), z ∈ S0 \ {0}, (3.5)

where ζ is defined by (2.1), and cj ∈C, j = 0, 1, 2, . . . .

Proof By Lemma 3.1, at the deleted neighbor of the origin, one has

f (z) = c0(z) +
∞∑

j=1

cjζ
(j)(z),

where ζ is defined by (2.1), the order of c0(z) ∈ DPH1(	; 2ω1, 2ω2) is not more than 1 and
cj ∈ C, j = 1, 2, . . . . And c0(z) ∈ DPH1(C; 2ω1, 2ω2) implies that c0(z) is an elliptic function.
By Liouville’s theorem, c0(z) is a constant function. �
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Lemma 3.2 Suppose 	 to be a doubly-periodic open set with periods 2ω1, 2ω2, 0 ∈ 	 and
f ∈ DPH2(	; 2ω1, 2ω2). If Ord(f , 0) ≤ m, then Ord(f1, 0) ≤ m + 2 and Ord(f2, 0) ≤ m + 1,
where fj is j-component of f .

Proof First, this theorem is verified under m > 1. By Theorem 2.1, there exist f1, f2 ∈
DPH1(	; 2ω1, 2ω2) such that f (z) = f1(z) + φ(z)f2(z). This leads to

f (z) =
{

f1(z) –
[
λz + δζ (z)

]
f2(z)

}
+ zf2(z)

=
∞∑

j=–∞
ajzj + z

∞∑

k=–∞
bkzk , (3.6)

near the origin, where aj, bk are constants.
Let � ∈ Z

+ and � ≥ m. We choose sufficiently small r > 0 such that Dr = {z : |z| < r} ⊆ 	.
By (3.6), one has

1
2π i

∫

|t|=r
f (t)t� dt =

1
2π i

∫

|t|=r

( ∞∑

j=–∞
ajtj +

r2

t

∞∑

k=–∞
bktk

)

t� dt

=
1

2π i

∫

|t|=r

a–(�+1)

t
dt + r2 1

2π i

∫

|t|=r

b–�

t
dt

= a–(�+1) + r2b–�. (3.7)

Now Ord(f , 0) ≤ m implies that there exist M > 0, r1 > 0 such that

∣∣f (z)
∣∣ ≤ M

|z|m , |z| < r1.

We assume 0 < r < r1, and one has the estimation

∣∣∣∣
1

2π i

∫

|t|=r
f (t)t� dt

∣∣∣∣ ≤ Mr�+1–m. (3.8)

Combining (3.7) with (3.8), we get

|a–(�+1)| + r2|b–�| ≤ Mr�+1–m

for sufficiently small r > 0. Let r → 0+, and one has

a–(�+1) = 0, � ≥ m.

This leads to

Ord
(
f1 –

[
λz + δζ (z)

]
f2, 0

) ≤ m.

Therefore,

Ord(f2, 0) = Ord(zf2, 0) + 1 ≤ max
{
Ord(f , 0), Ord

(
f1 –

[
λz + δζ (z)

]
f2, 0

)}
+ 1 ≤ m + 1,
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and

Ord(f1, 0) ≤ max
{
Ord(f , 0), Ord(φf2, 0)

} ≤ m + 2,

where φ is defined by (2.3).
Finally, if m ≤ 1, by Corollary 3.1 in [15], similar to the discussion above, it is not difficult

to know that the conclusion remains true. �

In what follows, we need the operators

Lj[f ] = dj, j ∈ Z, (3.9)

where dj is the j-coefficient of Laurent’s expansion of the function f defined in (3.2).

Theorem 3.1 Suppose 	 to be a doubly-periodic open set with periods 2ω1, 2ω2, 0 ∈ 	

and f ∈ DPH2(	; 2ω1, 2ω2). Then Ord(f , 0) ≤ m if and only if

Ord(fj, 0) ≤ m + 3 – j, j = 1, 2, (3.10)

and

Lj+1[f1] = δLj[f2], j = m, m + 1, (3.11)

where Lj is the operator defined by (3.9), and δ is given in (2.4).

Proof First, we assume m > 3. And we prove the necessity. By Theorem 2.1, there exist
f1, f2 ∈ DPH1(	; 2ω1, 2ω2) such that f (z) = f1(z) + φ(z)f2(z). By Lemma 3.2, Ord(f , 0) ≤ m
implies Ord(f1, 0) ≤ m + 2 and Ord(f2, 0) ≤ m + 1. Also by Lemma 3.1,

f1(z) = c0(z) +
m+1∑

j=1

cjζ
(j)(z), (3.12)

f2(z) = d0(z) +
m∑

j=1

djζ
(j)(z). (3.13)

Inserting (3.12) and (3.13) into the expression f (z) = f1(z) + φ(z)f2(z), one easily gets

f (z) = c0(z) +
m+1∑

k=1

ckζ
(k)(z)

+
[
z – λz – δζ (z)

]
[

d0(z) +
m∑

j=1

djζ
(j)(z)

]

. (3.14)

Thus, Ord(f , 0) ≤ m, where f given in (3.14), if and only if

P.P
(
ck+1ζ

(k+1)(z) – δdkζ (z)ζ (k)(z), 0
)

= 0, k = m – 1, m, (3.15)
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where P.P(h, 0) denotes the principal part of h. Equation (3.15) is equivalent to

dk =
ck+1

δ
, k = m – 1, m.

Inserting this expression into (3.14), one has

f (z) = c0(z) +
m–1∑

k=1

ckζ
(k)(z) + cmζ (m)(z) + cm+1ζ

(m+1)(z)

+
[
z – λz – δζ (z)

]
[

d0(z) +
m–2∑

j=1

djζ
(j)(z) +

cm

δ
ζ (m–1)(z) +

cm+1

δ
ζ (m)(z)

]

, (3.16)

where c0(z), d0(z) ∈ DPH1(	; 2ω1, 2ω2), Ord(c0, 0) ≤ 1, Ord(d0, 0) ≤ 1, and dj, ck ∈ C.
Therefore, (3.11) is true.

The sufficiency is obvious. Finally, if m ≤ 3, analogously to the discussion above, the
conclusion is also true. This completes the proof of this theorem. �

4 Riemann BVP for doubly-periodic analytic functions
In this section, we will give the solutions and conditions of solvability for Riemann BVP
for doubly-periodic analytic functions, which was investigated in detail by Jianke Lu [24].

Let L0 be a closed smooth Jordan curve, oriented counterclockwise. The fundamen-
tal cell S0 is divided into two domains denoted by S+

0 and S–
0 , respectively. Without loss

of generality, we always assume 0 ∈ S+
0 . Let Lk,� = 2kω1 + 2�ω2 + L0 for k,� ∈ Z, S+ =

⋃
k,�∈Z(2kω1 + 2�ω2 + S+

0 ), S– = C \ S+, and we assume that Lk,� has the same orientation
as L0 for every k,� ∈ Z. For the convenience, we set L =

⋃
k,�∈Z Lk,�.

Now, our problem is to find a sectionally doubly-periodic analytic function �(z) ∈
DPH1(	; 2ω1, 2ω2) satisfying a boundary condition and a growth condition

⎧
⎨

⎩
�+(t) = G(t)�–(t) + g(t), t ∈ L,

Ord(�, 0) ≤ m,
(4.1)

where the given Hölder-continuous functions G, g satisfy G(t +2ωj) = G(t), g(t +2ωj) = g(t),
j = 1, 2 and G(t) �= 0, t ∈ L. This problem is simply called DRm problem.

Introduce the function

μ(z) =
σ (z)σ (z – ω1 – ω2)
σ (z – ω1)σ (z – ω2)

, (4.2)

with

σ (z) = z
∏

(k,�) �=(0,0)

(
1 –

z
2kω1 + 2�ω2

)
exp

(
z

2kω1 + 2�ω2
+

z2

2kω1 + 2�ω2

)
. (4.3)

Then μ is an elliptic function with periods 2ω1, 2ω2 and Ord(μ, 0) = –1. Let

κ =
1

2π

[
G(t)

]
L0

, (4.4)
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which is called the index, and

G∗ =
1

2π i

∫

L0

log
[
μ–κ (t)G(t)

]
dt. (4.5)

Without loss of generality, we assume G∗ /∈ L in the following. The solutions and condi-
tions of solvability of DRm problem (4.1) are presented in two cases.

4.1 The case G∗ = 2kω1 + 2�ω2 for some k,� ∈ Z

In this case, G∗ = 0 (mod 2ω1, 2ω2). Let

X(z) =

⎧
⎨

⎩
μκ (z)h(z)e�(z), z ∈ S+,

h(z)e�(z), z ∈ S–,
(4.6)

where

�(z) =
1

2π i

∫

L0

log
[
μ–κ (t)G(t)

]
ζ (t – z) dt, z ∈ S+ ∪ S– (4.7)

and

h(z) = exp
[
2(kη1 + �η2)z

]
. (4.8)

In (4.8), ηj = ζ (ωj), j = 1, 2. X defined by (4.6) is called the canonical function which pos-
sesses the following five properties:

(1) X ∈ DPH1(	; 2ω1, 2ω2);
(2) X+(t) = G(t)X–(t), t ∈ L;
(3) X±(t) ∈ H(L);
(4) X(z) �= 0, z �= 2(pω1 + qω2) with p, q ∈ Z and X±(t) �= 0 for t ∈ L;
(5) X(z) has a pole of order –κ at the origin, or say Ord(X, 0) = –κ .
If the function Y also satisfies five properties from (1) to (5) above, then there exists

C ∈ C such that Y (z) = CX(z), where X is given by (4.6).
For convenience, we introduce the set of elliptic functions of order k with an exclusive

singular point z = 0 as follows:

�k(ζ ) =

⎧
⎪⎪⎨

⎪⎪⎩

{c0 + c1ζ
′(z) + · · · + ckζ

(k)(z) : cj ∈C, j = 0, 1, . . . , k}, k > 0,

C, k = 0,

{0}, k < 0.

(4.9)

Now we state the results obtained by Jianke Lu.

Theorem 4.1 Under this case, two subcases arise:
(1) When κ + m > 0, DRm problem (4.1) is solvable and its solution can be expressed as

�(z) =
X(z)
2π i

∫

L0

g(t)
X+(t)

[
ζ (t – z) + ζ (z)

]
dt

+ X(z)pκ+m–1(z), pκ+m–1 ∈ �κ+m–1(ζ ), (4.10)

where �κ+m–1(ζ ) is defined by (4.9) and X is given by (4.6).
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(2) When κ + m ≤ 0, if and only if

1
2π i

∫

L0

g(t)
X+(t)

ζ (k)(t) dt = 0, k = –1, 0, 1, 2, . . . , –κ – m – 1, (4.11)

DRm problem (4.1) is solvable and its solution can be written as

�(z) =
X(z)
2π i

∫

L0

g(t)
X+(t)

[
ζ (t – z) – ζ (t)

]
dt + CX(z), C ∈ �κ+m(ζ ). (4.12)

We assume ζ (–1)(t) = ζ (0)(t) = 1 in (4.11).
In general, the freedom of solutions is κ + m.

4.2 The case G∗ �= 2kω1 + 2�ω2 for any k,� ∈ Z

In this case, there exists G0 ∈ S0 such that G∗ = G0 (mod 2ω1, 2ω2), and G0 �= 0. Let X be
defined by (4.6), where

h(z) =
σ (z)

σ (z – G∗)
. (4.13)

At this time, X is also the canonical function which satisfies four properties from (1) to (4)
in Sect. 4.1, and

(5′) X(z) has a pole of order –κ – 1 at the origin, precisely Ord(X, 0) = –κ – 1.
The following result is also obtained by Jianke Lu. X used in the following theorem is

defined by (4.6) with (4.13).

Theorem 4.2 Under this case, two subcases arise:
(1) When κ + m + 1 ≥ 0, if and only if the condition of solvability

1
2π i

∫

L0

g(t)
X+(t)

ζ (k)(t) dt = 0, k = 0, 1, 2, . . . , –κ – m – 1, (4.14)

is fulfilled, DRm problem (4.1) is solvable and its solution can be expressed as

�(z) =
X(z)
2π i

∫

L0

g(t)
X+(t)

[
ζ (t – z) + ζ (z) – ζ (t – G0) – ζ (G0)

]
dt

+ X(z)
[
pκ+m(z) – pκ+m(G0)

]
, (4.15)

with pκ+m ∈ �κ+m(ζ ). We assume ζ (0)(t) = 1 and ζ (j)(t) = 0 for j < 0 in (4.14).
(2) When κ + m + 1 < 0, if and only if

1
2π i

∫

L0

g(t)
X+(t)

[
ζ (t – G0) – ζ (t)

]
dt = 0 (4.16)

and

1
2π i

∫

L0

g(t)
X+(t)

ζ (k)(t) dt = 0, k = 0, 1, 2, . . . , –κ – m – 2, (4.17)

are satisfied, DRm problem (4.1) is solvable and its solution can be written as (4.15).
We assume ζ (0)(t) = 1 in (4.17).

In general, the freedom of solutions is κ + m.
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5 Riemann BVP for doubly-periodic bianalytic functions
In this section, we consider the following Riemann BVP for doubly-periodic bianalytic
functions with the same factor: find a function V ∈ DPH2(S+ ∪ S–; 2ω1, 2ω2) satisfying
two Riemann-type boundary conditions and a growth condition

⎧
⎪⎪⎨

⎪⎪⎩

V +(t) = G(t)V –(t) + g1(t), t ∈ L,

(∂z̄V )+(t) = G(t)(∂z̄V )–(t) + g2(t), t ∈ L,

Ord(V , 0) ≤ m,

(5.1)

where the given boundary datum G and gj, j = 1, 2, are Hölder-continuous on every curve
Lk,� and G(t) �= 0, t ∈ L. In addition, G(t + 2ωj) = G(t), g1(t + 2ωj) = g(t), g2(t + 2ωj) = g(t)
for j = 1, 2 and t ∈ L. This problem is simply called DBRm problem.

Since V ∈ DPH2(S+ ∪S–; 2ω1, 2ω2), by Theorem 2.1 or (2.12), one has the decomposition

V (z) = V1(z) +
[
z – λz – δζ (z)

]
V2(z), z ∈ S+ ∪ S–, (5.2)

where Vj ∈ DPH1(	; 2ω1, 2ω2) for j = 1, 2.
Now, we will prove that DBRm problem (5.1) can be transformed to two independent

DRm+2 problem (5.3) and DRm+1 problem (5.4) as follows:

⎧
⎨

⎩
V +

1 (t) = G(t)V –
1 (t) + g̃1(t), t ∈ L,

Ord(V1, 0) ≤ m + 2,
(5.3)

and
⎧
⎨

⎩
V +

2 (t) = G(t)V –
2 (t) + g2(t), t ∈ L,

Ord(V2, 0) ≤ m + 1,
(5.4)

where

g̃1(t) = g1(t) –
[
t̄ – λt – δζ (t)

]
g2(t). (5.5)

The solutions and conditions of solvability for those two problems have been presented
in the preceding section.

Lemma 5.1 Let V , V1, V2 be given in (5.2). Then V is the solution of DBRm problem (5.1) if
and only if V1, V2 are respectively the solutions of DRm+2 problem (5.3) and DRm+1 problem
(5.4) satisfying the relation

Lj+1[V1] = δLj[V2], j = m, m + 1, (5.6)

where Lj is the operator defined by (3.9), and δ is given in (2.4).

Proof Suppose that V1, V2 are respectively the solutions of DRm+2 problem (5.3) and
DRm+1 problem (5.4) satisfying relation (5.6). By Theorem 3.1 and (5.6), Ord(V1, 0) ≤ m + 2
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and Ord(V2, 0) ≤ m + 1 lead to

Ord(V , 0) ≤ m. (5.7)

On the other hand, one has

V +(t) = V +
1 (t) + φ(t)V +

2 (t)

= G(t)
[
V –

1 (t) + φ(t)V –
2 (t)

]
+ g1(t) = G(t)V –(t) + g1(t), (5.8)

and

(∂z̄V )+(t) =
[
∂z̄(V1 + φV2)

]+(t) = V +
2 (t) = G(t)V –

2 (t)

=
[
∂z̄(V1 + φV2)

]–(t) = G(t)(∂z̄V )–(t) + g2(t). (5.9)

Combining (5.7), (5.8) with (5.9), V is just a solution of DBRm problem (5.1).
Conversely, if V is the solution of DBRm problem (5.1), obviously boundary conditions

in (5.3) and (5.4) are valid. By Theorem 3.1, Ord(V , 0) ≤ m implies Ord(V1, 0) ≤ m + 2 and
Ord(V2, 0) ≤ m + 1, and the validity of relation (5.6). This completes the proof. �

Analogously to the preceding section, we will discuss DBRm problem (5.1) in two cases
according to G∗ = 0 (mod 2ω1, 2ω2) or G∗ �= 0 (mod 2ω1, 2ω2).

5.1 The case G∗ = 2kω1 + 2�ω2 for some k,� ∈ Z

In this case, G∗ = 0 (mod 2ω1, 2ω2). And we will discuss DBRm problem (5.1) in three sub-
cases.

Theorem 5.1 If κ + m + 1 > 0, DBRm problem (5.1) is solvable and its solution can be
expressed as

V (z) = X(z)W [g1, g2](z) + X(z)
[
pκ+m+1(z) + φ(z)qκ+m(z)

]
, (5.10)

with

Lj+1[pj+1] = δLj[qj], j = κ + m,κ + m + 1, (5.11)

where pκ+m+1 ∈ �κ+m+1(ζ ), qκ+m ∈ �κ+m(ζ ) and

W [g1, g2](z) =
1

2π i

∫

L0

g1(t)
X+(t)

[
ζ (t – z) + ζ (z)

]
dt

+
1

2π i

∫

L0

g2(t)
X+(t)

[
φ(z) – φ(t)

][
ζ (t – z) + ζ (z)

]
dt. (5.12)

Proof By Theorem 4.1, the solution of DRm+2 problem (5.3) can be expressed as

V1(z) =
X(z)
2π i

∫

L0

g̃1(t)
X+(t)

[
ζ (t – z) + ζ (z)

]
dt

+ X(z)pκ+m+1(z), pκ+m+1 ∈ �κ+m+1(ζ ), (5.13)



Han et al. Boundary Value Problems  (2018) 2018:88 Page 14 of 20

where �κ+m+1(ζ ) is defined by (4.9) and X is given by (4.6). By Theorem 4.1, the solution
of DRm+1 problem (5.4) can be expressed as

V2(z) =
X(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) + ζ (z)

]
dt + X(z)pκ+m(z), pκ+m ∈ �κ+m(ζ ). (5.14)

According to Lemma 5.1, inserting (5.13) and (5.14) into (5.2), one gets

V (z) =
X(z)
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

[
ζ (t – z) + ζ (z)

]
dt + X(z)pκ+m+1(z)

+
φ(z)X(z)

2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) + ζ (z)

]
dt + φ(z)X(z)pκ+m(z)

=
X(z)
2π i

∫

L0

g1(t) + [φ(z) – φ(t)]g2(t)
X+(t)

[
ζ (t – z) + ζ (z)

]
dt

+ X(z)
[
pκ+m+1(z) + φ(z)pκ+m(z)

]
,

which leads to (5.10). At the same time, (5.6) is reduced to (5.11). This completes the
proof. �

Remark 5.1 Under this case, combining (5.10) with (5.11), the solution of DBRm problem
(5.1) can be rewritten as

V (z) = X(z)W [g1, g2](z) + X(z)
{

pκ+m–1(z) + cκ+mζ (κ+m)(z) + cκ+m+1ζ
(κ+m+1)(z)

+ φ(z)
[

qκ+m–2(z) +
cκ+m

δ
ζ (κ+m–1)(z) +

cκ+m+1

δ
ζ (κ+m)(z)

]}
,

where pκ+m–1 ∈ �κ+m–1(ζ ), qκ+m–2 ∈ �κ+m–2(ζ ), cκ+m ∈ C and cκ+m+1 ∈ C.

Theorem 5.2 If κ + m + 1 = 0, if and only if

1
2π i

∫

L0

g2(t)
X+(t)

dt = 0, (5.15)

DBRm problem (5.1) is solvable and its solution can be represented as

V (z) = X(z)W̃ [g1, g2](z) +
C
δ

X(z)
[
δ + φ(z)

]
, C ∈C, (5.16)

with

L–1
[{

W̃ [g1, g2]
}

0

]
= δL–2

[{
W̃ [g1, g2]

}
1

]
, (5.17)

where {W̃ [g1, g2]}j is j-component of W̃ [g1, g2] defined by

W̃ [g1, g2](z) = W [g1, g2](z) –
φ(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (z) + ζ (t)

]
dt. (5.18)
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Proof By Theorem 4.1, the solution of DRm+2 problem (5.3) can be expressed as

V1(z) =
X(z)
2π i

∫

L0

g̃1(t)
X+(t)

[
ζ (t – z) + ζ (z)

]
dt + X(z)C1, C1 ∈ C. (5.19)

By Theorem 4.1, if and only if the condition of solvability (5.15) is fulfilled, the solution of
DRm+1 problem (5.4) can be expressed as

V2(z) =
X(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) – ζ (t)

]
dt + X(z)C2, C2 ∈C. (5.20)

By Lemma 5.1, putting (5.19) and (5.20) into (5.2), one easily gets

V (z) = X(z)
{

1
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

[
ζ (t – z) + ζ (z)

]
dt

+
φ(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) – ζ (t)

]
dt

}

+ X(z)
[
C1 + φ(z)C2

]
, (5.21)

with C1, C2 ∈ C. Also by Lemma 5.1, V given by (5.21) is the solution of DBRm problem
(5.1) if and only if C1 = δC2 and (5.17) are satisfied. And hence the proof of the theorem is
completed. �

Theorem 5.3 If κ + m + 1 < 0, if and only if

1
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

ζ (k)(t) dt = 0, k = –1, 0, 1, 2, . . . , –κ – m – 3, (5.22)

and

1
2π i

∫

L0

g2(t)
X+(t)

ζ (k)(t) dt = 0, k = –1, 0, 1, 2, . . . , –κ – m – 2, (5.23)

DBRm problem (5.1) is solvable and its solution can be represented as

V (z) = X(z)
{

Ŵ [g1, g2](z) + C
}

, (5.24)

with
⎧
⎨

⎩
C = δLκ+m+1[{Ŵ [g1, g2]}1],

Lκ+m+1[{Ŵ [g1, g2]}0] = δLκ+m[{Ŵ [g1, g2]}1],
(5.25)

where {Ŵ [g1, g2]}j is j-component of Ŵ [g1, g2] defined by

Ŵ [g1, g2](z) =
1

2π i

∫

L0

g1(t)
X+(t)

[
ζ (t – z) – ζ (t)

]
dt

+
1

2π i

∫

L0

g2(t)
X+(t)

[
φ(z) – φ(t)

][
ζ (t – z) – ζ (t)

]
dt. (5.26)
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Proof By Theorem 4.1, if and only if the conditions of solvability (5.22) are fulfilled, the
solution of DRm+2 problem (5.3) can be expressed as

V1(z) =
X(z)
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

[
ζ (t – z) – ζ (t)

]
dt

+ CX(z), C ∈ �κ+m+2(ζ ). (5.27)

Analogously, by Theorem 4.1, if and only if the conditions of solvability (5.23) are satisfied,
the solution of DRm+2 problem (5.4) can be written as

V2(z) =
X(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) – ζ (t)

]
dt. (5.28)

Therefore, by Lemma 5.1, if and only if the conditions of solvability (5.22) and (5.23) are
fulfilled, the solution of DBRm problem (5.1) can be expressed as

V (z) =
X(z)
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

[
ζ (t – z) – ζ (t)

]
dt + X(z)C

+
φ(z)X(z)

2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) – ζ (t)

]
dt

=
X(z)
2π i

∫

L0

g1(t) + [φ(z) – φ(t)]g2(t)
X+(t)

[
ζ (t – z) – ζ (t)

]
dt

+ X(z)C, C ∈ �κ+m+2(ζ ),

satisfying relation (5.25). This completes the proof. �

5.2 The case G∗ �= 2kω1 + 2�ω2 for any k,� ∈ Z

In this case, there exists G0 ∈ S0 such that G∗ = G0 (mod 2ω1, 2ω2), and G0 �= 0. We will
investigate the problem in four subcases.

Theorem 5.4 If κ + m + 2 ≥ 0, DBRm problem (5.1) is solvable and its solution can be
expressed as

V (z) = X(z)
{

W [g1, g2](z) – W [g1, g2](G0)
}

+ X(z)
{[

pκ+m+2(z) – pκ+m+2(G0)
]

+ φ(z)
[
qκ+m+1(z) – qκ+m+1(G0)

]}
, (5.29)

with

Lj+1[pj+1] = δLj[qj], j = κ + m + 1,κ + m + 2, (5.30)

and pκ+m+1 ∈ �κ+m+1(ζ ), qκ+m ∈ �κ+m(ζ ), where X is the same as that in Sect. 4.2 and
W [g1, g2](z) is given in (5.12).

Proof By Theorem 4.2, the solution of DRm+2 problem (5.3) can be expressed as

V1(z) =
X(z)
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

[
ζ (t – z) + ζ (z) – ζ (t – G0) – ζ (G0)

]
dt

+ X(z)
[
pκ+m+2(z) – pκ+m+2(G0)

]
, (5.31)
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with pκ+m+2 ∈ �κ+m+2(ζ ), where �κ+m+2(ζ ) is defined by (4.9) and X is given by (4.6) with
(4.13). By Theorem 4.2, the solution of DRm+1 problem (5.4) can be represented as

V2(z) =
X(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) + ζ (z) – ζ (t – G0) – ζ (G0)

]
dt

+ X(z)
[
pκ+m+1(z) – pκ+m+1(G0)

]
, (5.32)

with pκ+m+1 ∈ �κ+m+1(ζ ). Observe

W [g1, g2](z) – W [g1, g2](G0)

=
1

2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

[
ζ (t – z) + ζ (z) – ζ (t – G0) – ζ (G0)

]
dt

+
φ(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) + ζ (z) – ζ (t – G0) – ζ (G0)

]
.

Inserting (5.31) and (5.32) into (5.2), one easily gets expression (5.29). By Lemma 5.1, (5.29)
is the solution of DBRm problem (5.1) if and only if (5.30) is satisfied. �

Theorem 5.5 If κ + m + 2 = –1, if and only if

1
2π i

∫

L0

g2(t)
X+(t)

dt = 0, (5.33)

DBRm problem (5.1) is solvable and its solution can be expressed as

V (z) = X(z)
{

W [g1, g2](z) – W [g1, g2](G0)
}

, (5.34)

with

Lj+1
[{

W [g1, g2]
}

0

]
= δLj

[{
W [g1, g2]

}
1

]
, j = –1, 0, (5.35)

where W [g1, g2](z) is given by (5.12).

Proof By Theorem 4.2, the solution of DRm+2 problem (5.3) can be expressed as

V1(z) =
X(z)
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

[
ζ (t – z) + ζ (z) – ζ (t – G0) – ζ (G0)

]
dt. (5.36)

By Theorem 4.2, if and only if the condition of solvability (5.33) is fulfilled, the solution of
DRm+1 problem (5.4) can be written as

V2(z) =
X(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) – ζ (t – G0)

]
dt. (5.37)

By (5.33), expression (5.37) can be rewritten as

V2(z) =
X(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) + ζ (z) – ζ (t – G0) – ζ (G0)

]
dt.
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Thus, by Lemma 5.1, similar to the preceding discussion, the desired conclusion is ob-
tained. �

Theorem 5.6 If κ + m + 2 < –1, if and only if

1
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

[
ζ (t – G0) – ζ (t)

]
dt = 0, (5.38)

1
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – G0) – ζ (t)

]
dt = 0, (5.39)

1
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

ζ (k)(t) dt = 0, k = 0, 1, 2, . . . , –κ – m – 4 (5.40)

and

1
2π i

∫

L0

g2(t)
X+(t)

ζ (k)(t) dt = 0, k = 0, 1, 2, . . . , –κ – m – 3, (5.41)

DBRm problem (5.1) is solvable and its solution can be expressed as

V (z) = X(z)
{

W [g1, g2](z) – W [g1, g2](G0)
}

, (5.42)

with

Lj+1
[{

W [g1, g2]
}

0

]
= δLj

[{
W [g1, g2]

}
1

]
, j = κ + m + 1,κ + m + 2, (5.43)

where W [g1, g2](z) is given by (5.12).

Proof By Theorem 4.2, if and only if conditions (5.38) and (5.40) are fulfilled, the solution
of DRm+2 problem (5.3) can be expressed as

V1(z) =
X(z)
2π i

∫

L0

g1(t) – φ(t)g2(t)
X+(t)

[
ζ (t – z) – ζ (t – G0)

]
dt. (5.44)

By Theorem 4.2, if and only if the conditions of solvability (5.39) and (5.41) are fulfilled,
the solution of DRm+1 problem (5.4) can be written as

V2(z) =
X(z)
2π i

∫

L0

g2(t)
X+(t)

[
ζ (t – z) – ζ (t – G0)

]
dt. (5.45)

And hence, analogously to the preceding discussion, the desired conclusion is obtained.
�

Remark 5.2 To sum up the discussion above, the freedom of solutions of DBRm problem
(5.1) is 2(κ + m) + 1.

6 Conclusion
In this article, we define doubly-periodic polyanalytic functions and growth order of
doubly-periodic polyanalytic functions at the origin. Riemann BVP of doubly-periodic
bianalytic functions is presented. The problem is transformed into two independent
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Riemann-type BVPs of doubly-periodic analytic functions. Finally, the solution is explic-
itly expressed as the integral representation.

Boundary value problems are always related with the theory of elasticity (see, for ex-
ample, [24, 27, 28]). If the stresses and the elastic region are doubly periodic, BVPs of
doubly-periodic functions can be applied to the theory of planar elasticity. Furthermore,
the number and the shape of cracks in the so-called fundamental periodic parallelogram
described in Sect. 2 could be arbitrary. In some sense, the results obtained here could
contribute to the investigation of planar elasticity of doubly-periodic functions.
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