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Abstract
The Riemann problem for a compressible perfect fluid with a constant external force
for the Chaplygin gas is considered. We obtain two kinds of exact solutions. The first
one consists of contact discontinuities, while the other one involves a delta shock
wave in which both density and internal energy contain a Dirac delta function. The
position, speed and weights of the delta shock wave are derived from both
generalized Rankine–Hugoniot relation and entropy condition, which are established
in detail. Moreover, the solutions are no longer self-similar due to the influence of the
constant external force.
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1 Introduction
The one-dimensional compressible perfect fluid is governed by

⎧
⎪⎨

⎪⎩

ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p)x = f ρ,
(ρu2/2 + ρe)t + ((ρu2/2 + ρe + p)u)x = f ρu,

(1.1)

where the ρ , u, p, e denote density, velocity, pressure and specific energy, and f repre-
sents a specific external force, such as gravity, Coriolis and electromagnetic forces [1, 2].
The pressure p and specific energy e are given functions of the density ρ and the specific
entropy s, satisfying the thermodynamical constraint

T ds = de + p d
1
ρ

, (1.2)

with T = T(ρ, s) being the temperature. In this paper, we are interested in a perfect fluid
characterized by the equation of state

p = –
1
ρ

, (1.3)

which is called the Chaplygin gas. It was introduced by Chaplygin [3], Tsien [4] and von
Karman [5] as a suitable approximation for calculating the lifting force on a wing of an
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airplane in aerodynamics. The Chaplygin gas possesses a negative pressure and describes
a transition from a decelerated cosmological expansion to a stage of cosmic acceleration.
Such a gas was also advertised as a possible model of dark energy [6–8].

The first and second equations of system (1.1) consist of the model

{
ρt + (ρu)x = 0,
(ρu)t + (ρu2 + p)x = f ρ.

(1.4)

If f = 0, the solutions with concentration to the Riemann problem for (1.4) with the Chap-
lygin gas were obtained by Brenier [9]. Guo, Sheng and Zhang [10] solved completely this
problem, where the delta shock wave solutions were constructed. Roughly speaking, the
delta shock wave solution is a solution such that at least one of the variables contains
Dirac delta function [11–16]. Besides, Wang [17] obtained the solutions to the Riemann
problem for system (1.4) with the generalized Chaplygin gas, and the formation of delta
shock wave was analyzed. The limit behavior of these solutions was clarified as the pres-
sure vanishes by Sheng, Wang and Yin [18]. Yang and Wang [19] studied further system
(1.4) for the modified Chaplygin gas, and the limit behavior of constructed Riemann so-
lutions was analyzed as the pressure vanishes. The reader is also referred to [12, 20–22]
and the references therein for related studies of system (1.4) with f = 0. For the case that
f = β is a constant, Shen [23] and Sun [24] constructed, respectively, the Riemann solu-
tions to system (1.4) for the Chaplygin gas and the generalized Chaplygin gas, while the
influence of the external force on these solutions was displayed. In addition, a global weak
solution to the Cauchy problem for system (1.4) was obtained by using the vanishing ar-
tificial viscosity and the compensated compactness theory [25]. However, only little work
has contributed to the investigations of system (1.1).

For analyzing the energy transport processes of a fluid, it is necessary to consider sys-
tem (1.1). Kraiko [26] studied the Riemann problem for system (1.1) with f = 0 and p = 0,
and the discontinuities which carry mass, impulse and energy, were used to construct the
solutions for arbitrary initial data. To avoid the definition of products of distributions,
Nilsson, Rozanova and Shelkovich [27, 28] also considered this problem by introducing
the internal energy H = ρe, and they have shown the processes of concentration of both
mass and internal energy on the delta shock wave front. Subsequently, this problem was
solved completely by Cheng [29], and the delta shock wave with Dirac delta function in
both the density and the internal energy was found in the solutions. The reader may refer
to [30–34] and the references cited therein for further studies on the delta shock wave
with Dirac delta function in multiple state variables. If f = 0, the solutions to the Riemann
problem for system (1.1) with the Chaplyin gas were constructed by Zhu and Sheng [35],
where the delta shock wave with Dirac delta function only in density was found. Besides,
Pang [36, 37] dealt with the Riemann problem for system (1.1) with the Chaplyin gas and
the generalized Chaplyin gas, and the delta shock wave with Dirac delta function in both
the density and the internal energy was revealed. Recently, we solved the Riemann prob-
lem to system (1.1) with f = β and p = 0; meanwhile, the influence of the external force
on the characteristic curves, contact discontinuities and the delta shock waves was clearly
shown.
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Based on the discussions above, the goal of this paper is to consider system (1.1) with a
constant external force for the Chaplygin gas in the following form:

⎧
⎪⎨

⎪⎩

ρt + (ρu)x = 0,
(ρu)t + (ρu2 – ρ–1)x = βρ,
(ρu2/2 + H)t + ((ρu2/2 + H – ρ–1)u)x = βρu,

(1.5)

here H ≥ 0 denotes the internal energy. The initial data are given as

(ρ, u, H)(0, x) =

{
(ρ–, u–, H–), x < 0,
(ρ+, u+, H+), x > 0,

(1.6)

where ρi > 0, ui, Hi > 0, i = –, +, are constants. The generalized Chaplygin gas case will be
considered in our future work.

According to (1.2), the physically relevant region of system (1.5) is presented. To solve
original Riemann problem (1.5) and (1.6), we write system (1.5) to a conservative one by
a change of state variable v = u – βt [38]. On the corresponding Riemann problem for the
conservative system of (1.5), we construct the solutions when u– – ρ–1

– < u+ + ρ–1
+ using

the method of analysis in phase space which consists of contact discontinuities. However,
when u– – ρ–1

– ≥ u+ + ρ–1
+ , the solutions cannot be obtained in a similar manner, while

the occurrence of delta shock wave with Dirac delta function in both density and internal
energy is clarified rigorously. In order to describe the delta shock wave, we establish its
generalized Rankine–Hugoniot relation and entropy condition, from which its position,
speed and weights are calculated. The delta shock wave solution is constructed in this case.
Based on these preparations, for the original Riemann problem, making a transformation
of state variables, we obtain a unique solution on the physically relevant region when u– –
ρ–1

– < u+ + ρ–1
+ , which is a combination of contact discontinuities. Besides, as u– – ρ–1

– ≥
u+ + ρ–1

+ , we propose both the generalized Rankine–Hugoniot relation and the entropy
condition for the delta shock wave, from which we derive explicitly the position, speed
and weights of the delta shock wave. Then the delta shock wave solution is obtained on
the physically relevant region.

In our study, the delta shock wave with Dirac delta function in both the density and the
internal energy occurs in the solution to the compressible perfect fluid with a constant ex-
ternal force for the Chaplygin gas, where the formation of delta shock wave stems from the
overlapping of the linearly degenerate characteristic curves. Besides, it is shown that the
characteristic curves, the contact discontinuities and the delta shock waves are bent into
parabolic shapes under the influence of the constant external force, such that the solutions
are no longer self-similar. Moreover, as the constant external force vanishes, the solutions
tend to the corresponding ones of the compressible Euler equations for the Chaplygin gas
with the same initial data [36].

This paper is organized as follows. In Sect. 2, we rewrite system (1.5) to a conservative
system, and investigate the Riemann problem for this conservative system. We also con-
firm the phenomenon of the delta shock wave with Dirac delta function in both the den-
sity and the internal energy. Meanwhile we establish both generalized Rankine–Hugoniot
relation and entropy condition for the delta shock wave in the conservative system of
(1.5), from which the position, speed and weights of the delta shock wave are shown. The
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solutions to this Rieman problem are constructed. In Sect. 3, the generalized Rankine–
Hugoniot relation for the delta shock wave in system (1.5) are derived. By a transformation
of the state variables, we obtain the solutions to the Riemann problem (1.5) and (1.6) on
the physically relevant region. Finally, a brief conclusion is given in Sect. 4.

2 Riemann problem for a conservative form of system (1.5)
Denote by

ℵ =
{

(ρ, u, H)
∣
∣
∣ρ > 0, H ≥ 1

2ρ
, u ∈ R

}

(2.1)

the physically relevant region for system (1.5), which can be derived by means of (1.2)
[36]. With the help of the change of state variable v = u – βt introduced by Faccanoni and
Mangeney [38], Eq. (1.5) can be rewritten in the conservative form

⎧
⎪⎨

⎪⎩

ρt + (ρ(v + βt))x = 0,
(ρv)t + (ρv(v + βt) – ρ–1)x = 0,
(ρv2/2 + H)t + ((ρv2/2 + H)(v + βt) – ρ–1v)x = 0.

(2.2)

Meanwhile, the corresponding initial data are prescribed as

(ρ, v, H)(0, x) =

{
(ρ–, u–, H–), x < 0,
(ρ+, u+, H+), x > 0,

(2.3)

and the physically relevant region ℵ in (ρ, v, H)-space becomes the region

ℵ∗ =
{

(ρ, v, H)
∣
∣
∣ρ > 0, H ≥ 1

2ρ
, v ∈ R

}

. (2.4)

Subsequently, we deal with the Riemann problem (2.2) and (2.3) in detail.

2.1 Classical wave solutions
The system (2.2) has three eigenvalues,

λ1 = v + βt – ρ–1, λ2 = v + βt, λ3 = v + βt + ρ–1, (2.5)

with the corresponding right eigenvectors

r1 =
(
–ρ2, 1, 1 – ρH

)T , r2 = (0, 0, 1)T , r3 =
(
ρ2, 1,ρH – 1

)T , (2.6)

satisfying ∇λi · ri = 0, i = 1, 2, 3. Thus, Eq. (2.2) is a linearly degenerate and strictly hyper-
bolic system, and the associated waves for them are contact discontinuities.

For bounded discontinuous solutions with a discontinuity x = x(t), the Rankine–
Hugoniot condition for (2.2) is shown as

⎧
⎪⎨

⎪⎩

–ω[ρ] + [ρ(v + βt)] = 0,
–ω[ρv] + [ρv(v + βt) – ρ–1] = 0,
–ω[ρv2/2 + H] + [(ρv2/2 + H)(v + βt) – ρ–1v] = 0,

(2.7)
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where ω = x′(t) is the speed of the discontinuity, and [G] = G+ – G–, with G– and G+ the
value of the function G on the left- and right-hand sides of the discontinuity, is the jump
of G across the discontinuity. Solving (2.7) yields

{
ω1 = v– + βt – ρ–1

– = v+ + βt – ρ–1
+ ,

v+ = ρ–1
+ + v– – ρ–1

– , H+ = ρ–1
+ /2 + ρ+ρ–1

– (H– – ρ–1
– /2),

(2.8)

{
ω2 = v– + βt = v+ + βt,
ρ+ = ρ–, v+ = v–, H+ �= H–,

(2.9)

{
ω3 = v– + βt + ρ–1

– = v+ + βt + ρ–1
+ ,

v+ = –ρ–1
+ + v– + ρ–1

– , H+ = ρ–1
+ /2 + ρ+ρ–1

– (H– – ρ–1
– /2).

(2.10)

Equations (2.8), (2.9) and (2.10) are three kinds of contact discontinuities, denoted by J1,
J2 and J3.

On the region ℵ∗, from point A(ρ–, u–, H–), we draw the contact discontinuity curves

J1(ρ–, u–, H–) : v = u– – ρ–1
– + ρ–1, H = ρ–1/2 + ρρ–1

–
(
H– – ρ–1

– /2
)
, (2.11)

J3(ρ–, u–, H–) : v = u– + ρ–1
– – ρ–1, H = ρ–1/2 + ρρ–1

–
(
H– – ρ–1

– /2
)
, (2.12)

and a surface

S(ρ–, u–, H–) : v = u– – ρ–1
– – ρ–1. (2.13)

The projection of J1(ρ–, u–, H–), J3(ρ–, u–, H–), S(ρ–, u–, H–) onto the (ρ, v)-plane has, re-
spectively, two asymptotes v = u– – ρ–1

– and ρ = 0, ρ = 0 and v = u– + ρ–1
– , ρ = 0 and

v = u– – ρ–1
– . These projections divide the (ρ, v)-plane into five regions I , II , III , IV and

V , as shown in Fig. 1.
Let us now construct the solutions to the Riemann problem (2.2) and (2.3). On the region

ℵ∗, when the projection of state (ρ+, u+, H+) onto the (ρ, v)-plane lies in I ∪ II ∪ III ∪ IV ,
namely, u– – ρ–1

– < u+ + ρ–1
+ , we draw the contact discontinuity curves J1(ρ–, u–, H–), and

J3(ρ+, u+, H+) : v = u+ + ρ–1
+ – ρ–1, H = ρ–1/2 + ρρ–1

+
(
H+ – ρ–1

+ /2
)
. (2.14)

The projections of these contact discontinuity curves onto the (ρ, v)-plane have a unique
intersection (ρ�, v�) determined by

u– – ρ–1
– = v� – ρ–1

� , u+ + ρ–1
+ = v� + ρ–1

� .

Figure 1 The projections of the curves J1, J3 and
surface S onto the (ρ , v)-plane
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We then draw the contact discontinuity curve

J2(ρ�, v�, H–) : ρ = ρ�, v = v�, (2.15)

which intersects the contact discontinuity curves J1(ρ–, u–, H–) and J3(ρ+, u+, H+) at the
unique points (ρ∗1 , v∗1 , H∗1 ) and (ρ∗2 , v∗2 , H∗2 ). The solution is described by the following
theorem.

Theorem 2.1 On the region ℵ∗, under the condition u+ + ρ–1
+ > u– – ρ–1

– , the solution to
(2.2) and (2.3) can be expressed as

(ρ, v, H)(t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ρ–, u–, H–), x < x1,
(ρ∗1 , v∗1 , H∗1 ), x1 ≤ x ≤ x2,
(ρ∗2 , v∗2 , H∗2 ), x2 < x ≤ x3,
(ρ+, u+, H+), x > x3,

(2.16)

where

{
v∗1 = v∗2 = v� = 1

2 (u+ + 1
ρ+

+ u– – 1
ρ–

), ρ∗1 = ρ∗2 = ρ� = 2
u++ρ–1

+ –u–+ρ–1–
,

H∗1 = ρ–1∗1 /2 + ρ∗1ρ
–1
– (H– – ρ–1

– /2), H∗2 = ρ–1∗2 /2 + ρ∗2ρ
–1
+ (H+ – ρ–1

+ /2),
(2.17)

and the contact discontinuities J1, J2 and J3 are given by x1(t) = (u– – ρ–1
– )t + βt2/2, x2(t) =

v�t + βt2/2 and x3(t) = (u+ + ρ–1
+ )t + βt2/2.

2.2 Delta shock wave solution
In this subsection, we discuss the case when the projection of the state (ρ+, u+, H+) onto
the (ρ, v)-plane lies in V , namely, u+ + ρ–1

+ ≤ u– – ρ–1
– . The characteristic curves defined

by

dx±
i (t)
dt

= λi(ρ±, u±), i = 1, 2, 3, (2.18)

will overlap in the domain � = {(t, x)|(u+ + ρ–1
+ )t + βt2/2 ≤ x ≤ (u– – ρ–1

– )t + βt2/2,
0 ≤ t < +∞}, as illustrated in Fig. 2. Hence, some singularities will happen in �, while
the singularities cannot be a jump with finite amplitudes.

Figure 2 The domain �
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We first study the special case u+ + ρ–1
+ = u– – ρ–1

– to show the singularity in �. When
ρ–, u–, H–, ρ+, H+ are fixed, u+ → u– – ρ–1

– – ρ–1
+ + 0, it gives from (2.16) that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v∗1 = v∗2 → u– – ρ–1
– = u+ + ρ–1

+ ,
ρ∗1 = ρ∗2 → +∞,

H∗1 →
{

+∞, if H– > ρ–1
– /2,

0, if H– = ρ–1
– /2,

H∗2 →
{

+∞, if H+ > ρ–1
+ /2,

0, if H+ = ρ–1
+ /2.

(2.19)

Therefore the three contact discontinuities J1, J2 and J3 coincide to form a new singularity.
Besides, for any fixed time t > 0, we deduce that

lim
u+→u––ρ–1– –ρ–1

+ +0

∫ (u++ρ–1
+ )t+βt2/2

(u––ρ–1– )t+βt2/2
ρ dx

= lim
u+→u––ρ–1– –ρ–1

+ +0

∫ (u++ρ–1
+ )t+βt2/2

(u––ρ–1– )t+βt2/2
ρ∗1 dx = 2t, (2.20)

lim
u+→u––ρ–1– –ρ–1

+ +0

∫ (u++ρ–1
+ )t+βt2/2

(u––ρ–1– )t+βt2/2
v dx

= lim
u+→u––ρ–1– –ρ–1

+ +0

∫ (u++ρ–1
+ )t+βt2/2

(u––ρ–1– )t+βt2/2
v∗1 dx = 0, (2.21)

lim
u+→u––ρ–1– –ρ–1

+ +0

∫ (u++ρ–1
+ )t+βt2/2

(u––ρ–1– )t+βt2/2
H dx

= lim
u+→u––ρ–1– –ρ–1

+ +0

(∫ v∗1 t+βt2/2

(u––ρ–1– )t+βt2/2
H∗1 dx +

∫ (u++ρ–1
+ )t+βt2/2

v∗1 t+βt2/2
H∗2 dx

)

=
(
ρ–1

–
(
H– – ρ–1

– /2
)

+ ρ–1
+

(
H+ – ρ–1

+ /2
))

t

�= 0, if H– > ρ–1
– /2 or H+ > ρ–1

+ /2. (2.22)

Hence, if H– > ρ–1
– /2 or H+ > ρ–1

+ /2, Eqs. (2.19)–(2.22) show that both ρ and H have the
same singularity as a weighed Dirac delta function supported by the curve x = (u– –ρ–1

– )t +
βt2/2, and that v has a bounded variation. These facts reveal the occurrence of a delta
shock wave with a Dirac delta function in the variables ρ and H . Moreover, the inequal-
ity

u+ + ρ–1
+ + βt ≤ σ (t) ≤ u– – ρ–1

– + βt

holds, where σ (t) is the velocity of delta shock wave, which means that all of the six char-
acteristic curves from the initial data on its two sides are incoming.

Therefore, based on the analysis above, the delta shock wave with Dirac delta function
in variables ρ and H is suggested in � for the case u+ + ρ–1

+ ≤ u– – ρ–1
– .
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Definition 2.2 ([12]) The two-dimensional weighted Dirac delta function w(s)δL sup-
ported on a smooth curve L parameterized as x = x(s), y = y(s) (c ≤ s ≤ d) is defined as

〈
w(s)δL,φ(x, y)

〉
=

∫ d

c
w(s)φ

(
x(s), y(s)

)
ds (2.23)

for all the test functions φ ∈ C∞
0 (R2).

Definition 2.3 The distribution (ρ, v, H) is a delta shock wave solution of (2.2) and (2.3)
in the sense of distributions if there exist a smooth curve L and two functions w(t), h(t) ∈
C1(L) such that ρ , v, H are of the following form:

ρ = ρ̄(t, x) + w(t)δL, v = v̄(t, x), H = H̄(t, x) + h(t)δL, (2.24)

and
⎧
⎪⎨

⎪⎩

〈ρ,φt〉 + 〈ρ(v + βt),φx〉 = 0,
〈ρv,φt〉 + 〈ρv(v + βt) – ρ–1,φx〉 = 0,
〈ρv2/2 + H ,φt〉 + 〈(ρv2/2 + H)(v + βt) – ρ–1v,φx〉 = 0,

(2.25)

for all the test functions φ ∈ C∞
0 ((0, +∞) × R), where ρ̄, v̄, H̄ ∈ L∞([0, +∞) × R; R), v|L =

vδ(t),

〈ρ,φ〉 =
∫ +∞

0

∫ +∞

–∞
ρ̄(t, x)φ dx dt +

〈
w(t)δL,φ

〉
,

〈ρv,φ〉 =
∫ +∞

0

∫ +∞

–∞
ρ̄v̄(t, x)φ dx dt +

〈
w(t)vδ(t)δL,φ

〉
,

and H obeys similar integral identities to the above.

With Definitions 2.2–2.3, we seek the delta shock wave solution to (2.2) and (2.3) in the
form

(ρ, v, H)(t, x) =

⎧
⎪⎨

⎪⎩

(ρ–, u–, H–), x < x(t),
(w(t)δ(x – x(t)), vδ(t), h(t)δ(x – x(t))), x = x(t),
(ρ+, u+, H+), x > x(t),

(2.26)

where ρi, ui, Hi, i = –, + are constants, δ is the standard Dirac delta function supported on
the curve x = x(t), vδ(t) is the value of the variable v on the curve x = x(t), and w(t), h(t) are
the weights of the delta shock wave on the variables ρ and H .

Lemma 2.4 Assume that (2.26) satisfies the following ordinary equations:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t)
dt = σ (t) = vδ(t) + βt,

dw(t)
dt = σ (t)[ρ] – [ρ(v + βt)],

d(w(t)vδ (t))
dt = σ (t)[ρv] – [ρv(v + βt) – ρ–1],

d(w(t)v2
δ (t)/2+h(t))
dt = σ (t)[ρv2/2 + H] – [(ρv2/2 + H)(v + βt) – ρ–1v],

(2.27)

then it is a delta shock wave solution to (2.2) and (2.3) in the sense of distributions.
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Proof Using the first and fourth equalities of (2.27), we have

〈
ρv2/2 + H ,φt

〉
+

〈(
ρv2/2 + H

)
(v + βt) – ρ–1v,φx

〉

=
∫ +∞

0

∫ +∞

–∞

(
ρv2/2 + H

)
φt +

((
ρv2/2 + H

)
(v + βt) – vρ–1)φx dx dt

+
∫ +∞

0

(
w(t)v2

δ (t)/2 + h(t)
)
φt +

(
w(t)v2

δ (t)/2 + h(t)
)(

vδ(t) + βt
)
φx dt

=
∫ +∞

0

∫ x(t)

–∞

((
ρ–u2

–/2 + H–
)
φ
)

t +
(((

ρ–u2
–/2 + H–

)
(u– + βt) – v–ρ–1

–
)
φ
)

x dx dt

+
∫ +∞

0

∫ +∞

x(t)

((
ρ+u2

+/2 + H+
)
φ
)

t +
(((

ρ+u2
+/2 + H+

)
(u+ + βt) – v+ρ–1

+
)
φ
)

x dx dt

+
∫ +∞

0

(
w(t)v2

δ (t)/2 + h(t)
)(

φt +
(
vδ(t) + βt

)
φx

)
dt

= –
∫ +∞

0
–
((

ρ–u2
–/2 + H–

)
(u– + βt) – v–ρ–1

–
)
φ dt +

(
ρ–u2

–/2 + H–
)
φ dx

+
∫ +∞

0
–
((

ρ+u2
+/2 + H+

)
(u+ + βt) – v+ρ–1

+
)
φ dt +

(
ρ+u2

+/2 + H+
)
φ dx

–
∫ +∞

0
φ

d(w(t)v2
δ (t)/2 + h(t))

dt
dt

=
∫ +∞

0
φ

(

σ (t)
[
ρv2/2 + H

]
–

[(
ρv2/2 + H

)
(v + βt) – vρ–1]

–
d(w(t)v2

δ (t)/2 + h(t))
dt

)

dt

= 0 (2.28)

for any test functions φ ∈ C∞
0 ((0, +∞) × R), which implies the third equality of (2.25). The

others can be proved similarly. The proof is complete. �

In addition, to ensure the uniqueness of delta shock wave solution, the curve x = x(t)
with x′(t) = σ (t) satisfies the following inequality:

u+ + ρ–1
+ + βt ≤ σ (t) ≤ u– – ρ–1

– + βt, (2.29)

which means that all of the characteristic curves from the initial data on both sides of
x = x(t) are incoming.

Definition 2.5 A discontinuity satisfying the system of equations (2.27) and the inequality
(2.29) is called a delta shock wave, denoted by δ.

Remark 2.6 The system of equations (2.27) is called the generalized Rankine–Hugoniot
relation of the delta shock wave. It describes the location, speed, weights as well as the
assignment of v on the delta shock wave. Besides, the inequality (2.29) is called the entropy
condition of the delta shock wave.
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In what follows, we solve the Riemann problem (2.2) and (2.3) when u+ + ρ–1
+ ≤ u– – ρ–1

–

using (2.27) and (2.29). At this moment, this problem is reduced to an initial value problem
for (2.27) with initial conditions

x(0) = 0, vδ(0) = 0, w(0) = 0, h(0) = 0. (2.30)

We have the following result.

Theorem 2.7 On the region ℵ∗, under the condition u+ + ρ–1
+ ≤ u– – ρ–1

– , if H– > ρ–1
– /2 or

H+ > ρ–1
+ /2, then the Riemann problem (2.2) and (2.3) admits uniquely a delta shock wave

solution defined in Definition 2.3,

(ρ, v, H)(t, x) =

⎧
⎪⎨

⎪⎩

(ρ–, u–, H–), x < x(t),
(w(t)δ(x – x(t)), vδ(t), h(t)δ(x – x(t))), x = x(t),
(ρ+, u+, H+), x > x(t),

(2.31)

where

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

vδ(t) =

{
(u+ + u–)/2, if ρ– = ρ+,
ρ+u+–ρ–u–+

√
ρ+ρ–((u––u+)2–(ρ–1– –ρ–1

+ )2)
ρ+–ρ–

, if ρ– �= ρ+,
x(t) = vδ(t)t + βt2/2,
w(t) =

(
(ρ+ – ρ–)vδ(t) – ρ+u+ + ρ–u–

)
t,

h(t) =
((

u– – vδ(t)
)(

ρ–
(
u– – vδ(t)

)2/2 + H– – ρ–1
–

)

+
(
vδ(t) – u+

)(
ρ+

(
vδ(t) – u+

)2/2 + H+ – ρ–1
+

))
t.

(2.32)

Proof We deduce from (2.27) and (2.30) that

{
w(t) = [ρ]

∫ t
0 vδ(s) ds – [ρv]t, w(t)vδ(t) = [ρv]

∫ t
0 vδ(s) ds – [ρv2 – ρ–1]t,

w(t)v2
δ (t)/2 + h(t) = [ρv2/2 + H]

∫ t
0 vδ(s) ds – [(ρv2/2 + H – ρ–1)v]t.

(2.33)

Substituting the first equality of (2.33) into the second one leads to

[ρ]vδ(t)
∫ t

0
vδ(s) ds – [ρv]

(

vδ(t)t +
∫ t

0
vδ(s) ds

)

+
[
ρv2 – ρ–1]t = 0,

that is,

[ρ]
(∫ t

0
vδ(s) ds

)2

– 2[ρv]t
∫ t

0
vδ(s) ds +

[
ρv2 – ρ–1]t2 = 0. (2.34)

When [ρ] = ρ+ – ρ– = 0, it is easy to calculate that

{
x(t) = (u– + u+)t/2 + βt2/2, vδ(t) = (u– + u+)/2,
w(t) = ρ–(u– – u+)t, h(t) = ( ρ–(u––u+)2

8 + H–+H+
2 – 1

ρ–
)(u– – u+)t,

(2.35)

which satisfies entropy condition (2.29).
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When [ρ] = ρ+ – ρ– �= 0, u+ + ρ–1
+ ≤ u– – ρ–1

– implies that for (2.34) there exist two solu-
tions,

∫ t

0
vδ(s) ds =

1
ρ+ – ρ–

(
ρ+u+ – ρ–u– ±

√

ρ+ρ–
(
(u– – u+)2 –

(
ρ–1

– – ρ–1
+

)2)
)

t,

which yields

vδ± (t) =
1

ρ+ – ρ–

(
ρ+u+ – ρ–u– ±

√

ρ+ρ–
(
(u– – u+)2 –

(
ρ–1

– – ρ–1
+

)2)
)

. (2.36)

Using entropy condition (2.29), one can choose from (2.36) that

vδ(t) =
1

ρ+ – ρ–

(
ρ+u+ – ρ–u– +

√

ρ+ρ–
(
(u– – u+)2 –

(
ρ–1

– – ρ–1
+

)2)
)

. (2.37)

Thus we obtain from (2.33)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(t) = vδ(t)t + βt2/2, w(t) = ((ρ+ – ρ–)vδ(t) – ρ+u+ + ρ–u–)t,
vδ(t) = 1

ρ+–ρ–
(ρ+u+ – ρ–u– +

√
ρ+ρ–((u– – u+)2 – (ρ–1

– – ρ–1
+ )2)),

h(t) = ((u– – vδ(t))(ρ–(u– – vδ(t))2/2 + H– – ρ–1
– )

+ (vδ(t) – u+)(ρ+(vδ(t) – u+)2/2 + H+ – ρ–1
+ ))t.

(2.38)

The proof is complete. �

Remark 2.8 On the region ℵ∗, under the condition u+ + ρ–1
+ ≤ u– – ρ–1

– , if H– = ρ–1
– /2 and

H+ = ρ–1
+ /2, the (2.19)–(2.22) imply that only the variable ρ contains Dirac delta function

supported on the curve x = (u– – ρ–1
– )t + βt2/2, and that both v and H have a bounded

variation. In this special case, one can prove similarly that for the Riemann problem (2.2)
and (2.3) there exists uniquely a delta shock wave solution defined in Definition 2.3, in
which only the density ρ contains a Dirac delta function.

3 Riemann problem for system (1.5)
In this section, we address the original Riemann problem (1.5) and (1.6) based on the
preparation in the last section. On the physically relevant region ℵ, when u– – ρ–1

– <
u+ + ρ–1

+ , we obtain the solution to (1.5) and (1.6) directly from the corresponding ones to
(2.2) and (2.3) by the transformation of the state variables (ρ, u, H)(t, x) = (ρ, v +βt, H)(t, x)
where the positions of the contact discontinuities remain unchanged, as shown in Fig. 3.
The solution is presented as follows.

Theorem 3.1 On the physically relevant region ℵ, under the condition u+ +ρ–1
+ > u– –ρ–1

– ,
the solution to (1.5) and (1.6) is described as

(ρ, u, H)(t, x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ρ–, u– + βt, H–), x < x1,
(ρ∗1 , v∗1 + βt, H∗1 ), x1 ≤ x ≤ x2,
(ρ∗2 , v∗2 + βt, H∗2 ), x2 < x ≤ x3,
(ρ+, u+ + βt, H+), x > x3,

(3.1)
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Figure 3 The structure of solution as
u– – ρ–1

– < u+ + ρ–1
+

where the ρ∗1 , v∗1 , H∗1 , ρ∗2 , v∗2 , H∗2 are presented in (2.17), and the contact discontinu-
ities J1, J2 and J3 are given by x1(t) = (u– – ρ–1

– )t + βt2/2, x2(t) = v�t + βt2/2 and x3(t) =
(u+ + ρ–1

+ )t + βt2/2.

When u+ + ρ–1
+ ≤ u– – ρ–1

– , one can define a delta shock wave solution to (1.5) and (1.6)
as follows.

Definition 3.2 The distribution (ρ, u, H) is a delta shock wave solution of (1.5) and (1.6)
in the sense of distributions if there exist a smooth curve L and two functions w(t), h(t) ∈
C1(L) such that ρ , u, H are of the following form:

ρ = ρ̄(t, x) + w(t)δL, u = ū(t, x), H = H̄(t, x) + h(t)δL, (3.2)

and
⎧
⎪⎨

⎪⎩

〈ρ,φt〉 + 〈ρu,φx〉 = 0,
〈ρu,φt〉 + 〈ρu2 – ρ–1,φx〉 + 〈βρ,φ〉 = 0,
〈ρu2/2 + H ,φt〉 + 〈(ρu2/2 + H – ρ–1)u,φx〉 + 〈βρu,φ〉 = 0

(3.3)

for all the test functions φ ∈ C∞
0 ((0, +∞) × R), where ρ̄, ū, H̄ ∈ L∞([0, +∞) × R; R), u|L =

uδ(t),

〈ρ,φ〉 =
∫ +∞

0

∫ +∞

–∞
ρ̄(t, x)φ dx dt +

〈
w(t)δL,φ

〉
,

〈ρu,φ〉 =
∫ +∞

0

∫ +∞

–∞
ρ̄ū(t, x)φ dx dt +

〈
w(t)uδ(t)δL,φ

〉
,

and H obeys similar integral identities to the above.

According to Definition 3.2, we propose the delta shock wave solution to (1.5) and (1.6)
in the form

(ρ, u, H)(t, x) =

⎧
⎪⎨

⎪⎩

(ρ–, u– + βt, H–), x < x(t),
(w(t)δ(x – x(t)), uδ(t), h(t)δ(x – x(t))), x = x(t),
(ρ+, u+ + βt, H+), x > x(t),

(3.4)

where (ρi, ui, Hi), i = –, + are constants, δ is the standard Dirac delta function supported
on the curve x = x(t), uδ(t) is the value of the variable u on the curve x = x(t), and w(t), h(t)
are the weights of the delta shock wave on the variables ρ , H .
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Lemma 3.3 If Eq. (3.4) satisfies the following generalized Rankine–Hugoniot relation:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

dx(t)
dt = σ (t) = uδ(t),

dw(t)
dt = σ (t)[ρ] – [ρu],

d(w(t)uδ (t))
dt = σ (t)[ρu] – [ρu2 – ρ–1] + βw(t),

d(w(t)u2
δ (t)/2+h(t))
dt = σ (t)[ρu2/2 + H] – [(ρu2/2 + H – ρ–1)u] + βw(t)uδ(t),

(3.5)

then it is a delta shock wave solution to (1.5) and (1.6) in the sense of distributions.

Proof Under the conditions (3.5), we deduce that

〈
ρu2/2 + H ,φt

〉
+

〈(
ρu2/2 + H – ρ–1)u,φx

〉
+ 〈βρu,φ〉

=
∫ +∞

0

∫ +∞

–∞

(
ρu2/2 + H

)
φt +

(
ρu2/2 + H – ρ–1)uφx + βρuφ dx dt

+
∫ +∞

0

(
w(t)u2

δ (t)/2 + h(t)
)
φt +

(
w(t)u2

δ (t)/2 + h(t)
)
uδ(t)φx + βw(t)uδ(t)φ dt

=
∫ +∞

0

∫ x(t)

–∞

((
ρ–(u– + βt)2/2 + H– – ρ–1

–
)
(u– + βt)φ

)

x

+
((

ρ–(u– + βt)2/2 + H–
)
φ
)

t dx dt

+
∫ +∞

0

∫ +∞

x(t)

((
ρ+(u+ + βt)2/2 + H+

)
φ
)

t

+
((

ρ+(u+ + βt)2/2 + H+ – ρ–1
+

)
(u+ + βt)φ

)

x dx dt

+
∫ +∞

0

(
w(t)u2

δ (t)/2 + h(t)
)(

φt + uδ(t)φx
)

+ βw(t)uδ(t)φ dt

= –
∫ +∞

0
–
((

ρ–(u– + βt)2/2 + H– – ρ–1
–

)
(u– + βt)φ

)

+
(
ρ–(u– + βt)2/2 + H–

)
φσ (t) dt

+
∫ +∞

0
–
((

ρ+(u+ + βt)2/2 + H+ – ρ–1
+

)
(u+ + βt)φ

)

+
(
ρ+(u+ + βt)2/2 + H+

)
φσ (t) dt

+
∫ +∞

0
βw(t)uδ(t)φ – φ

d(w(t)u2
δ (t)/2 + h(t))

dt
dt

=
∫ +∞

0
φ

(

σ (t)
[
ρu2/2 + H

]
–

[(
ρu2/2 + H – ρ–1)u

]

+ βw(t)uδ(t) –
d(w(t)u2

δ (t)/2 + h(t))
dt

)

dt

= 0 (3.6)

for any test functions φ ∈ C∞
0 ((0, +∞) × R), which yields the third equality of (3.3). The

others can be proved in a similar manner. The proof is finished. �
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Figure 4 The structure of solution as
u+ + ρ–1

+ ≤ u– – ρ–1
–

In addition, to guarantee the uniqueness of delta shock wave solution, the curve x = x(t)
with σ (t) = x′(t) satisfies the following entropy condition:

u+ + ρ–1
+ + βt ≤ σ (t) ≤ u– – ρ–1

– + βt, (3.7)

which means that all of the characteristic curves from the initial data on both sides of the
curve x = x(t) are incoming.

Subsequently, we solve Riemann problem (1.5) and (1.6) when u+ + ρ–1
+ < u– – ρ–1

– using
(3.5) and (3.7). At this moment, we need to handle an initial value problem for (3.5) with
initial conditions

x(0) = 0, uδ(0) = 0, w(0) = 0, h(0) = 0. (3.8)

The solution is described by the following theorem, as shown in Fig. 4.

Theorem 3.4 On the physically relevant region ℵ, under the condition u+ + ρ–1
+ ≤ u– –

ρ–1
– , if H– > ρ–1

– /2 or H+ > ρ–1
+ /2, then for the Riemann problem (1.5) and (1.6) there exists

uniquely a delta shock wave solution defined in Definition 3.2,

(ρ, u, H)(t, x) =

⎧
⎪⎨

⎪⎩

(ρ–, u– + βt, H–), x < x(t),
(w(t)δ(x – x(t)), vδ(t) + βt, h(t)δ(x – x(t))), x = x(t),
(ρ+, u+ + βt, H+), x > x(t),

(3.9)

where x(t), vδ(t), w(t) and h(t) are given by (2.32).

Proof One derives from (3.5) and (3.8) that
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

w(t) = (ρ+ – ρ–)
∫ t

0 (uδ(s) – βs) ds – (ρ+u+ – ρ–u–)t,
w(t)(uδ(t) – βt) = (ρ+u+ – ρ–u–)

∫ t
0 (uδ(s) – βs) ds

– (ρ+u2
+ – ρ–1

+ – ρ–u2
– + ρ–1

– )t,
w(t)

2 (uδ(t) – βt)2 + h(t) = ( ρ+
2 u2

+ + H+ – ρ–
2 u2

– – H–)
∫ t

0 (uδ(s) – βs) ds
– ((ρ+u2

+/2 + H+ – ρ–1
+ )u+ – (ρ–u2

–/2 + H– – ρ–1
– )u–)t.

(3.10)

Substituting the first equality of (3.10) into the second one yields

(ρ+ – ρ–)
(
uδ(t) – βt

)
∫ t

0

(
uδ(s) – βs

)
ds +

(
ρ+u2

+ – ρ–1
+ – ρ–u2

– + ρ–1
–

)
t

– (ρ+u+ – ρ–u–)
(

(
uδ(t) – βt

)
t +

∫ t

0

(
uδ(s) – βs

)
ds

)

= 0,
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that is,

(ρ+ – ρ–)
(∫ t

0

(
uδ(s) – βs

)
ds

)2

– 2(ρ+u+ – ρ–u–)t
∫ t

0

(
uδ(s) – βs

)
ds

+
(
ρ+u2

+ – ρ–1
+ – ρ–u2

– + ρ–1
–

)
t2 = 0. (3.11)

If [ρ] = ρ+ – ρ– = 0, one shows that

uδ(t) = (u– + u+)/2 + βt = vδ(t) + βt.

Thus, a simple calculation from (3.10) shows that

{
x(t) = vδ(t)t + βt2/2, uδ(t) = vδ(t) + βt,
w(t) = ρ–(u– – u+)t, h(t) = ( ρ–(u––u+)2

8 + H–+H+
2 – 1

ρ–
)(u– – u+)t,

(3.12)

which satisfies the entropy condition (3.7).
If [ρ] = ρ+ – ρ– �= 0, the inequality u+ + ρ–1

+ ≤ u– – ρ–1
– implies that Eq. (3.11) has two

solutions

∫ t

0

(
uδ(s) – βs

)
ds =

1
ρ+ – ρ–

(
ρ+u+ – ρ–u– ±

√

ρ+ρ–
(
(u– – u+)2 –

(
ρ–1

– – ρ–1
+

)2)
)

t,

that is,

uδ± (t) =
1

ρ+ – ρ–

(
ρ+u+ – ρ–u– ±

√

ρ+ρ–
(
(u– – u+)2 –

(
ρ–1

– – ρ–1
+

)2)
)

+ βt. (3.13)

With the entropy condition (3.7), one can check from (3.13) that

uδ(t) =
1

ρ+ – ρ–

(
ρ+u+ – ρ–u– +

√

ρ+ρ–
(
(u– – u+)2 –

(
ρ–1

– – ρ–1
+

)2)
)

+ βt

= vδ(t) + βt. (3.14)

Therefore, one can infer from (3.10) that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x(t) = vδ(t)t + βt2/2, uδ(t) = vδ(t) + βt,
w(t) = ((ρ+ – ρ–)vδ(t) – ρ+u+ + ρ–u–)t,
h(t) = ((u– – vδ(t))(ρ–(u– – vδ(t))2/2 + H– – ρ–1

– )
+ (vδ(t) – u+)(ρ+(vδ(t) – u+)2/2 + H+ – ρ–1

+ ))t.

(3.15)

We have finished the proof of the theorem. �

Remark 3.5 It is observed that, under the influence of a constant external force, the char-
acteristic curves, the contact discontinuities and the delta shock waves are bent into
parabolic shapes, such that the solutions (3.1) and (3.9) are no longer self-similar any more.
It is also shown that, when the constant external force vanishes, the solutions converge to
the corresponding ones of the compressible Euler equations for the Chaplygin gas with
the same initial data [36].
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4 Conclusion
We solve completely the Riemann problem for a compressible perfect fluid with a con-
stant external force for the Chaplygin gas. The delta shock wave with Dirac delta function
in both density and internal energy arises in the solutions for certain initial data, where
the formation of the delta shock wave stems from the overlapping of the linearly degen-
erate characteristic curves. It is also noticed that the solutions are no longer self-similar
anymore due to the influence of the constant external force. Moreover, this work provides
important ideas and techniques for handling the Riemann problem for system (1.1) with
the generalized Chaplygin gas.
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