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Abstract
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1 Introduction
Consider the following nonlinear impulsive fractional boundary value problem (BVP, for
short):

⎧
⎪⎨

⎪⎩

Dα
T–�p(cDα

0+ u(t)) + |u(t)|p–2u(t) = f (t, u(t)), t ∈ [0, T], t �= tj,
�(Dα–1

T– �p(cDα
0+ u))(tj) = Ij(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0,
(1.1)

where α ∈ ( 1
p , 1], p > 1, �p(s) = |s|p–2s, Dα

T– represents the right Riemann–Liouville frac-
tional derivative of order α and cDα

0+ represents the left Caputo fractional derivative of
order α, 0 = t0 < t1 < · · · < tm+1 = T and

�
(
Dα–1

T– �p
(cDα

0+ u
))

(tj) = Dα–1
T– �p

(cDα
0+ u

)(
t+
j
)

– Dα–1
T– �p

(cDα
0+ u

)(
t–
j
)
,

Dα–1
T– �p

(cDα
0+ u

)(
t+
j
)

= lim
t→t+

j
Dα–1

T– �p
(cDα

0+ u
)
(t),

Dα–1
T– �p

(cDα
0+ u

)(
t–
j
)

= lim
t→t–

j
Dα–1

T– �p
(cDα

0+ u
)
(t).

f : [0, T] ×R →R and Ij : R →R are continuous.
Fractional differential equations have gained importance because of their numerous ap-

plications in various fields such as chemical physics, neural network model, signal pro-
cessing and control, mechanics and engineering, fractal theory, and so on. For details,
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see [1–5] and the references therein. Recently, the existence and multiplicity of solutions
for nonlinear fractional differential equations have been studied extensively by using the
theory of coincidence degree, some fixed point theorems, upper-lower solution method,
monotone iterative method, etc. [6–9]. It should be noted that the critical point theory
and variational methods have proved to be a very effective approach in dealing with the
existence and multiple solutions for fractional boundary value problems, see [10–17].

On the other hand, the impulsive differential equation is used to describe the dynamics
of processes in which sudden, discontinuous jumps occur. It has numerous applications
in many fields such as population dynamics, ecology, optimal control, economics, and so
on. For details, see [18–21] and the references therein. Recently, many authors have stud-
ied the existence of solutions for impulsive fractional boundary value problem by using
variational methods and critical point theory, see [22–30].

For example, Heidarkhani et al. [26] and [28] studied the following impulsive nonlinear
fractional boundary value problem:

⎧
⎪⎨

⎪⎩

Dα
T– (cDα

0+ u(t)) + a(t)u(t) = λf (t, u(t)) + h(u(t)), t ∈ [0, T], t �= tj,
�(Dα–1

T– (cDα
0+ u))(tj) = μIj(u(tj)), j = 1, 2, . . . , m,

u(0) = u(T) = 0.
(1.2)

Based on variational methods and critical point theory, they obtained the existence results
of infinitely many classical solutions and three solutions for problem (1.2). In particular,
Rodríguez-López and Tersian [22] established one and three solutions for problem (1.2)
when h(u(t)) ≡ 0. In [25], Heidarkhani and Salari obtained the existence of two and three
weak solutions for a class of nonlinear impulsive fractional systems by applying variational
methods.

Furthermore, the p-Laplacian often occurs in non-Newtonian fluid theory, nonlinear
elastic mechanics, and so on. So, the impulsive fractional boundary value problem with p-
Laplacian is worth considering. For instance, in [31], basing on the mountain pass theorem
and minimax methods, the existence of multiple solutions for BVP(1.1) is obtained.

To the best of our knowledge, there are fewer results on the existence and multiplicity
of solutions for impulsive fractional boundary value problem with p-Laplacian. Inspired
by the above references, we apply variant fountain theorems to study the existence of in-
finitely many small or high energy solutions for BVP (1.1). The main new features pre-
sented in this paper are as follows. Firstly, the main results of this paper are different from
those in the aforementioned references, and extend the results obtained in [31]. Secondly,
the main tool of this paper is variant fountain theorems, which is different from the afore-
mentioned papers. Thirdly, the assumed conditions in this paper are easier to verify than
those in [31]. Finally, two examples are worked out to demonstrate the effectiveness of our
results.

For convenience, we list the following assumptions.
(H1) Ij(u) (j = 1, 2, . . . , m) are odd about u and satisfy

∫ u
0 Ij(s) ds ≥ 0 for all u ∈R.

(H2) There exist bj > 0 and γj ∈ (p – 1, +∞) such that

∣
∣Ij(u)

∣
∣ ≤ bj|u|γj .
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(H3) There exist bj > 0, μ > p, and γj ∈ (p – 1,μ – 1) such that

∣
∣Ij(u)

∣
∣ ≤ bj|u|γj , Ij(u)u ≤ μ

∫ u

0
Ij(s) ds.

(F1) There exist η ∈ (p – 1, p) and b(t) ∈ L
p

p–η [0, T] with b(t) ≥ 0 such that

∣
∣f (t, u)

∣
∣ ≤ b(t)

(
1 + |u|η–1), ∀(t, u) ∈ [0, T] ×R.

(F2) There exist σ ∈ (p – 1,η) and d > 0 such that

lim|u|→∞
F(t, u)
|u|σ > d, uniformly for t ∈ [0, T], where F(t, u) =

∫ u

0
f (t, s) ds.

(F3) lim|u|→0
f (t,u)
|u|p–1 = 0, uniformly for t ∈ [0, T].

(F4) F(t, u) ≥ 0, ∀(t, u) ∈ [0, T] ×R.
(F5) F(t, –u) = F(t, u), ∀(t, u) ∈ [0, T] ×R.
(F6) There exist constants θ1 > 0, θ2 > 0, and q > p such that

∣
∣f (t, u)

∣
∣ ≤ θ1|u|p–1 + θ2|u|q–1 for all t ∈ [0, T], u ∈R.

(F7) There exists μ > p such that

–μF(t, u) + uf (t, u) ≥ 0 for all t ∈ [0, T], u ∈R.

Here are our main results.

Theorem 1.1 Assume that (H1)–(H2) and (F1)–(F5) hold. Then BVP (1.1) possesses in-
finitely many small energy solutions uk ∈ E \ {0} satisfying

1
p

∫ T

0

(∣
∣cDα

0+ uk(t)
∣
∣p +

∣
∣uk(t)

∣
∣p)dt

+
m∑

j=1

∫ uk (tj)

0
Ij(s) ds –

∫ T

0
F
(
t, uk(t)

)
dt → 0– as k → ∞.

Theorem 1.2 Assume that (H1), (H3) and (F4)–(F7) hold. Then BVP (1.1) possesses in-
finitely many high energy solutions uk ∈ E \ {0} satisfying

1
p

∫ T

0

(∣
∣cDα

0+ uk(t)
∣
∣p +

∣
∣uk(t)

∣
∣p)dt

+
m∑

j=1

∫ uk (tj)

0
Ij(s) ds –

∫ T

0
F
(
t, uk(t)

)
dt → ∞ as k → ∞.

The rest of this paper is organized as follows. Section 2 contains some preliminary re-
sults. In Sect. 3, we apply variant fountain theorems to prove the existence of infinitely
many small or high energy solutions for BVP (1.1). In Sect. 4, two examples are presented
to illustrate the main results.
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2 Preliminaries
To obtain multiple solutions for BVP (1.1), it is necessary to introduce several definitions
and preliminary lemmas which are used further in this paper.

Let AC[a, b] be the space of absolutely continuous functions on [a, b].

Definition 2.1 ([10]) Let f be a function defined on [a, b] and 0 < α ≤ 1. The left and right
Riemann–Liouville fractional integrals of order α for the function f are defined by

D–α
a+ f (t) =

1

(α)

∫ t

a
(t – s)α–1f (s) ds, t ∈ [a, b],

D–α
b– f (t) =

1

(α)

∫ b

t
(s – t)α–1f (s) ds, t ∈ [a, b],

while the right-hand side is pointwise defined on [a, b].

Definition 2.2 ([10]) Let f ∈ AC[a, b] and 0 < α ≤ 1. The left and right Riemann–Liouville
fractional derivatives of order α for the function f are defined by

Dα
a+ f (t) =

d
dt

Dα–1
a+ f (t) =

1

(1 – α)

d
dt

∫ t

a
(t – s)–αf (s) ds, t ∈ [a, b],

Dα
b– f (t) = –

d
dt

Dα–1
b– f (t) = –

1

(1 – α)

d
dt

∫ b

t
(s – t)–αf (s) ds, t ∈ [a, b].

Definition 2.3 ([10]) Let f ∈ AC[a, b] and 0 < α ≤ 1. The left and right Caputo fractional
derivatives of order α for the function f are defined by

cDα
a+ f (t) = Dα–1

a+ f ′(t) =
1


(1 – α)

∫ t

a
(t – s)–αf ′(s) ds, t ∈ [a, b],

cDα
b– f (t) = –Dα–1

b– f ′(t) = –
1


(1 – α)

∫ b

t
(s – t)–αf ′(s) ds, t ∈ [a, b].

In particular, when α = 1, we have cD1
a+ f (t) = f ′(t) and cD1

b– f (t) = –f ′(t).

Lemma 2.4 ([32])
(1) If u ∈ Lp[a, b], v ∈ Lp[a, b], and p ≥ 1, q ≥ 1, 1

p + 1
q ≤ 1 + α or p �= 1, q �= 1,

1
p + 1

q = 1 + α, then

∫ b

a

(
D–α

a+ u(t)
)
v(t) dt =

∫ b

a
u(t)

(
D–α

b– v(t)
)

dt.

(2) If 0 < α ≤ 1, u ∈ AC[a, b], and v ∈ Lp[a, b] (1 ≤ p < ∞), then

∫ b

a
u(t)

(cDα
a+ v(t)

)
dt = Dα–1

b– u(t)v(t)
∣
∣t=b
t=a +

∫ b

a
Dα

b– u(t)v(t) dt.

Denote

‖u‖Lp =
(∫ T

0

∣
∣u(t)

∣
∣p dt

) 1
p

, ‖u‖∞ = max
t∈[0,T]

∣
∣u(t)

∣
∣.
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Definition 2.5 Let 0 < α ≤ 1, 1 < p < ∞. The fractional derivative space Eα,p
0 is defined by

the closure of C∞
0 ([0, T],R) with respect to the norm

‖u‖Eα,p
0

=
(∫ T

0

(
∣
∣cDα

0+ u(t)
∣
∣p dt +

∫ T

0

∣
∣u(t)

∣
∣p

)

dt
) 1

p
, ∀u ∈ Eα,p

0 . (2.1)

Remark 2.6
(1) Eα,p

0 is a reflexive and separable Banach space.
(2) For any u ∈ Eα,p

0 , we have u ∈ Lp([0, T],R), cDα
a+ u ∈ Lp([0, T],R), and

u(0) = u(T) = 0.

Lemma 2.7 ([32]) Let 0 < α ≤ 1 and 1 < p < ∞. For any u ∈ Eα,p
0 , we have

‖u‖Lp ≤ Tα


(α + 1)
∥
∥cDα

0+ u
∥
∥

Lp . (2.2)

In addition, for 1
p < α ≤ 1 and 1

p + 1
q = 1, we have

‖u‖∞ ≤ Tα– 1
p


(α)(αq – q + 1)
1
q

∥
∥cDα

0+ u
∥
∥

Lp . (2.3)

Remark 2.8 According to Lemma 2.7, it is easy to see that the norm of Eα,p
0 defined in (2.1)

is equivalent to the following norm:

‖u‖α,p =
(∫ T

0

∣
∣cDα

0+ u(t)
∣
∣p dt

) 1
p

, ∀u ∈ Eα,p
0 . (2.4)

Lemma 2.9 ([32]) Let 1
p < α ≤ 1. If the sequence {uk} converges weakly to u in Eα,p

0 , i.e.,
uk ⇀ u, then uk → u in C[0, T], i.e., ‖u – uk‖∞ → 0 as k → ∞.

In the following, we denote E = Eα,p
0 , ‖u‖ = ‖u‖Eα,p

0
, ‖u‖p = ‖u‖Lp for convenience.

Definition 2.10 A function

u ∈
{

u ∈ AC[0, T] :
∫ tj+1

tj

(∣
∣cDα

0+ u(t)
∣
∣p +

∣
∣u(t)

∣
∣p)dt < ∞, j = 0, 1, . . . , m

}

is called a classical solution of BVP (1.1) if
(1) u satisfies (1.1).
(2) The limits Dα–1

T– �p(cDα
0+ u)(t+

j ), Dα–1
T– �p(cDα

0+ u)(t–
j ) exist.

Definition 2.11 A function u ∈ E is a weak solution of BVP (1.1) if

∫ T

0

∣
∣cDα

0+ u(t)
∣
∣p–2(cDα

0+ u(t)
)(cDα

0+ v(t)
)

dt +
∫ T

0

∣
∣u(t)

∣
∣p–2u(t)v(t) dt

+
m∑

j=1

Ij
(
u(tj)

)
v(tj) –

∫ T

0
f
(
t, u(t)

)
v(t) dt = 0, ∀u ∈ E. (2.5)
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The energy functional J : E →R associated with BVP (1.1) is defined by

J(u) =
1
p

∫ T

0

(∣
∣cDα

0+ u(t)
∣
∣p +

∣
∣u(t)

∣
∣p)dt

+
m∑

j=1

∫ u(tj)

0
Ij(s) ds –

∫ T

0
F
(
t, u(t)

)
dt, ∀u ∈ E. (2.6)

It is easy to see that J ∈ C1(E,R), and

(
J ′(u), v

)
=

∫ T

0

∣
∣cDα

0+ u(t)
∣
∣p–2(cDα

0+ u(t)
)(cDα

0+ v(t)
)

dt +
∫ T

0

∣
∣u(t)

∣
∣p–2u(t)v(t) dt

+
m∑

j=1

Ij
(
u(tj)

)
v(tj) –

∫ T

0
f
(
t, u(t)

)
v(t) dt

= 0, ∀u ∈ E. (2.7)

Moreover, the critical points of J correspond to the weak solutions of BVP (1.1).

Lemma 2.12 ([31]) If u ∈ E is a weak solution of BVP (1.1), then u is a classical solution of
BVP (1.1).

To prove our main results, we need the following two variant fountain theorems in [33].
Let X be a Banach space with the norm ‖ · ‖ and X =

⊕
j∈N Xj with dim Xj < ∞ for each

j ∈ N. Set Wk =
⊕k

j=1 Xj, Zk =
⊕∞

j=k Xj, Bk = {u ∈ Wk : ‖u‖ ≤ ρk}, Sk = {u ∈ Zk : ‖u‖ = rk},
where ρk > rk > 0.

Consider a family of C1 functionals Jλ : X →R defined by

Jλ(u) = A(u) – λB(u), λ ∈ [1, 2],

where A, B : X →R are two functions.

Lemma 2.13 ([33]) Assume that the functional Jλ defined above satisfies:
(B1) Jλ maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and Jλ(–u) = Jλ(u)

for all (λ, u) ∈ [1, 2] × X ;
(B2) B(u) ≥ 0 for all u ∈ X , B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace

of X ;
(B3) there exist ρk > rk > 0 such that

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Jλ(u) ≥ 0, bk(λ) = max
u∈Wk ,‖u‖=rk

Jλ(u) < 0, ∀λ ∈ [1, 2]

and

dk(λ) = inf
u∈Zk ,‖u‖≤ρk

Jλ(u) → 0 as k → ∞ uniformly for λ ∈ [1, 2].

Then there exist λn → 1, un(λn) ∈ Wn such that

J ′
λn |Wn

(
u(λn)

)
= 0, Jλn

(
u(λn)

) → ck as n → ∞,
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where ck ∈ [dk(2), bk(1)]. In particular, if {u(λn)} has a convergent subsequence for every k,
then J1 has infinitely many nontrivial critical points {uk} ∈ X \ {0} satisfying J1(uk) → 0–

as k → ∞.

Lemma 2.14 ([33]) Assume that the functional Jλ defined above satisfies
(A1) Jλ maps bounded sets into bounded sets uniformly for λ ∈ [1, 2], and Jλ(–u) = Jλ(u)

for all (λ, u) ∈ [1, 2] × X ;
(A2) B(u) ≥ 0 for all u ∈ X , A(u) → ∞ or B(u) → ∞ as ‖u‖ → ∞; or
(A3) B(u) ≤ 0 for all u ∈ X , B(u) → –∞ as ‖u‖ → ∞;
(A4) there exist ρk > rk > 0 such that

bk(λ) = inf
u∈Zk ,‖u‖=rk

Jλ(u) > ak(λ) = max
u∈Wk ,‖u‖=ρk

Jλ(u), ∀λ ∈ [1, 2].

Then

bk(λ) ≤ ck(λ) = inf
γ∈
k

max
u∈Bk

Jλ
(
γ (u)

)
, ∀λ ∈ [1, 2],

where 
k = {γ ∈ C(Bk , X) : γ is odd,γ |∂Bk = id}. Moreover, for almost every λ ∈ [1, 2], there
exists a sequence {uk

n(λ)} such that

sup
n

∥
∥uk

n(λ)
∥
∥ < ∞, J ′

λ

(
uk

n(λ)
) → 0 and Jλ

(
uk

n(λ)
) → ck(λ) as n → ∞.

As E is a separable and reflexive Banach space, then there exist {ej}∞j=1 ⊂ E and {e∗
j }∞j=1 ⊂

E∗ such that

E = span{ej}, E∗ = span
{

e∗
j
}

,
(
e∗

i , ei
)

= 1,
(
e∗

j , ei
)

= 0 (i �= j).

Define Xj = span{ej}, Wk =
⊕k

j=1 Xj, Zk =
⊕∞

j=k Xj. In order to apply Lemma 2.13 and
Lemma 2.14 to prove the existence of infinitely many solutions of BVP (1.1), we define
A, B, and Jλ on a fractional derivative space E by

A(u) =
1
p
‖u‖p +

m∑

j=1

∫ u(tj)

0
Ij(s) ds, B(u) =

∫ T

0
F
(
t, u(t)

)
dt,

and

Jλ(u) = A(u) – λB(u)

=
1
p
‖u‖p +

m∑

j=1

∫ u(tj)

0
Ij(s) ds – λ

∫ T

0
F
(
t, u(t)

)
dt, ∀u ∈ E,λ ∈ [1, 2].

3 Proof of the main results
In order to complete the proof of our main results, it is necessary to give the following two
lemmas. Because of using similar arguments to the proofs of Lemma 3.2 and Lemma 3.5
in [15], we omit the proving processes for convenience.
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Lemma 3.1 Let H be any finite dimensional subspace of E. Then there exists a constant
ε0 > 0 such that

meas
{

t ∈ [0, T] :
∣
∣u(t)

∣
∣ ≥ ε0‖u‖} ≥ ε0, ∀u ∈ H \ {0}. (3.1)

Lemma 3.2 Let αr(k) = supu∈Zk ,‖u‖=1 ‖u‖r with r ≥ p. Then αr(k) → 0 as k → ∞.

Now we are ready to prove Theorem 1.1 and Theorem 1.2.

Proof of Theorem 1.1 By (F1) and (F3), for ∀ε > 0, there exists δε > 0 such that

∣
∣F(t, u)

∣
∣ ≤ ε|u|p + δεb(t)|u|η. (3.2)

Combining (3.2), (H2), and Lemma 2.7, it is easily seen that Jλ maps bounded sets into
bounded sets uniformly for λ ∈ [1, 2]. It follows from (H1) and (F5) that Jλ(–u) = Jλ(u) for
all (λ, u) ∈ [1, 2] × E. Thus, condition (B1) holds.

Next, we verify condition (B2).
According to (F4), B(u) ≥ 0 is obvious. By (F2), there exists M > 0 such that

F(t, u) ≥ d|u|σ for all |u| > M. (3.3)

Assume that H is a finite dimensional subspace of E. According to Lemma 3.1, there exists
ε0 > 0 such that (3.1) holds. Then

meas(Du) ≥ ε0, ∀u ∈ H \ {0},

where Du = {t ∈ [0, T] : |u(t)| ≥ ε0‖u‖}. Hence, for any u ∈ H with ‖u‖ ≥ M
ε0

, by (3.3), we
get

B(u) =
∫ T

0
F
(
t, u(t)

)
dt

≥
∫

Du

d
∣
∣u(t)

∣
∣σ dt

≥ dεσ
0 ‖u‖σ meas(Du)

≥ dε1+σ
0 ‖u‖σ .

This means that B(u) → ∞ as ‖u‖ → ∞ on any finite dimensional subspace. Hence, con-
dition (B2) holds.

In the end, we claim that condition (B3) holds.
For u ∈ Zk , by (3.2), Hölder’s inequality, and (H1), we have

Jλ(u) ≥ 1
p
‖u‖p –

∫ T

0

(
ε|u|p + δεb(t)|u|η)dt

≥ 1
2p

‖u‖p – δ
∥
∥b(t)

∥
∥ p

p–η
‖u‖η

p,
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where we choose ε = 1
2p . According to the definition of αr(k) in Lemma 3.2, we have

‖u‖η
p ≤ αη

p (k)‖u‖η, ∀u ∈ Zk .

Hence,

Jλ(u) ≥ 1
2p

‖u‖p – δ
∥
∥b(t)

∥
∥ p

p–η
αη

p (k)‖u‖η.

Choose ρk = (4pδ‖b(t)‖ p
p–η

α
η
p (k))

1
p–η . Then ρk → 0+ as k → ∞. Therefore,

ak(λ) = inf
u∈Zk ,‖u‖=ρk

Jλ(u) ≥ 1
4p

ρ
p
k > 0.

In addition, for λ ∈ [1, 2] and u ∈ Zk with ‖u‖ ≤ ρk , we have

Jλ(u) ≥ –δ
∥
∥b(t)

∥
∥ p

p–η
αη

p (k)ρη

k → 0+, k → ∞.

So,

dk(λ) = inf
u∈Zk ,‖u‖≤ρk

Jλ(u) → 0 as k → ∞.

By (F1)–(F3), we have

F(t, u) ≥ d|u|σ – ε|u|p – δεb(t)|u|η. (3.4)

If u ∈ Wk , by the equivalence of any norm in a finite dimensional space, (3.4), (H2),
Lemma 2.7, and Hölder’s inequality, we get

Jλ(u) =
1
p
‖u‖p +

m∑

j=1

∫ u(tj)

0
Ij(s) ds – λ

∫ T

0
F
(
t, u(t)

)
dt

≤ 1
p
‖u‖p +

m∑

j=1

bj

γj + 1
∣
∣u(tj)

∣
∣γj+1 – d

∫ T

0
|u|σ dt + ε

∫ T

0
|u|p dt + δε

∫ T

0
b(t)|u|η dt

≤ ‖u‖p + M‖u‖γj+1 – δ1‖u‖σ + δ
∥
∥b(t)

∥
∥ p

p–η
‖u‖η.

Choose rk > 0 small enough and rk < ρk such that

bk(λ) = max
u∈Wk ,‖u‖=rk

Jλ(u) < 0.

This guarantees that condition (B3) holds.
Consequently, by Lemma 2.13, for every k ∈ N, there exist λn → 1, un(λn) ∈ Wn such

that

J ′
λn |Wn

(
u(λn)

)
= 0, Jλn

(
u(λn)

) → ck ∈ [
dk(2), bk(1)

]
as n → ∞.
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For simplicity, denote u(λn) by un. Now we show that {un} has a strong convergent sub-
sequence for every k ∈ N. In fact, by (3.2), (H1), Hölder’s inequality, and Lemma 2.7, we
get

‖un‖p = pJλn (un) – p
m∑

j=1

∫ un(tj)

0
Ij(s) ds + pλn

∫ T

0
F(t, un) dt

≤ pck + pλnδ2‖un‖p + pλnδ
∥
∥b(t)

∥
∥ p

p–η
‖un‖η.

This means that {un} is bounded in E. Without loss of generality, we may assume
un ⇀ u in E. Since {ej} is a completely orthonormal basis of E, Wn = L(e1, e2, . . . , en),
u =

∑∞
j=1(ej, u)ej. Let Pn : E �→ Wn be the orthogonal projection operator. We know that

Pnu =
∑n

j=1(ej, u)ej and Pnu → u in E as n → ∞. Therefore un – Pnu ⇀ 0 in E as n → ∞.
Moreover, it follows from J ′

1(u) ∈ E∗ that

(
J ′
1(u), un – Pnu

) → 0, n → ∞. (3.5)

Also, since J ′
1 ∈ C(E → E∗) and Pnu → u in E, we have

(
J ′
1(Pnu) – J ′

1(u), un – Pnu
) → 0, n → ∞. (3.6)

Therefore, by (3.5) and (3.6), we get

(
J ′
1(Pnu), un – Pnu

) → 0, n → ∞. (3.7)

Note that Pnun = un and (J ′
λn (Pnun), Pn(un – u)) = 0 since un ∈ Wn and J ′

λn |Wn (un) = 0. By
the continuity of f , Ij, and Lemma 2.9, it is easily seen that

λn

∫ T

0
f (t, un)(un – Pnu) dt → 0, n → ∞.

∫ T

0
f (t, Pnu)(un – Pnu) dt → 0, n → ∞.

m∑

j=1

[
Ij
(
un(tj)

)
– Ij

(
Pnu(tj)

)](
un(tj) – Pnu(tj)

) → 0, n → ∞.

Set

ψ1 =
∫ T

0

[∣
∣cDα

0+ un(t)
∣
∣p–2(cDα

0+ un(t)
)

–
∣
∣cDα

0+ Pnu(t)
∣
∣p–2(cDα

0+ Pnu(t)
)]

× [cDα
0+ un(t) – cDα

0+ Pnu(t)
]

dt,

ψ2 =
∫ T

0

(∣
∣un(t)

∣
∣p–2un –

∣
∣Pnu(t)

∣
∣p–2Pnu(t)

)(
un(t) – Pnu(t)

)
dt.
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Therefore,

ψ1 + ψ2 =
(
J ′
λn (un), un – Pnu

)
–

(
J ′
1(Pnu), un – Pnu

)

–
m∑

j=1

[
Ij
(
un(tj)

)
– Ij

(
Pnu(tj)

)](
un(tj) – Pnu(tj)

)

+ λn

∫ T

0
f (t, un)(un – Pnu) dt –

∫ T

0
f (t, Pnu)(un – Pnu) dt

→ 0.

In what follows, we prove ‖un – Pnu‖ → 0 in two cases.
Case 1: p ≥ 2.
According to the following inequality (see [34], Lemma 4.2)

(|x|p–2x – |y|p–2y
)
(x – y) ≥ ω|x – y|p,

there exist ω1 > 0, ω2 > 0 such that

ψ1 ≥ ω1

∫ T

0

∣
∣cDα

0+ un(t) – cDα
0+ Pnu(t)

∣
∣p dt, (3.8)

ψ2 ≥ ω2

∫ T

0

∣
∣un(t) – Pnu(t)

∣
∣p dt. (3.9)

Combining (3.8) and (3.9), we get

ψ1 + ψ2 ≥ M1‖un – Pnu‖p,

where M1 = min{ω1,ω2}. Thus, ‖un – Pnu‖ → 0.
Case 2: 1 < p < 2.
According to the following inequality (see [34], Lemma 4.2)

((|x|p–2x – |y|p–2y
)
(x – y)

) p
2
(|x|p + |y|p)

2–p
2 ≥ ω|x – y|p,

there exist positive numbers ω3 and ω4 such that

ψ1 ≥ ω3

∫ T

0

|cDα
0+ un(t) – cDα

0+ Pnu(t)|2
(|cDα

0+ un(t)| + |cDα
0+ Pnu(t)|)2–p dt, (3.10)

ψ2 ≥ ω4

∫ T

0

|un(t) – Pnu(t)|2
(|un(t)| + |Pnu(t)|)2–p dt. (3.11)

By Hölder’s inequality, we get

∫ T

0

∣
∣un(t) – Pnu(t)

∣
∣p dt

≤
(∫ T

0

|un(t) – Pnu(t)|2
(|un(t)| + |Pnu(t)|)2–p dt

) p
2
(∫ T

0

(∣
∣un(t)

∣
∣ +

∣
∣Pnu(t)

∣
∣
)p dt

) 2–p
2

≤ M2
(‖un‖p

p + ‖Pnu‖p
p
) 2–p

2

(∫ T

0

|un(t) – Pnu(t)|2
(|un(t)| + |Pnu(t)|)2–p dt

) p
2

,
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where M2 = 2
(p–1)(2–p)

2 . Therefore,

∫ T

0

|un(t) – Pnu(t)|2
(|un(t)| + |Pnu(t)|)2–p dt

≥ M
– 2

p
2

(∫ T

0

∣
∣un(t) – Pnu(t)

∣
∣p dt

) 2
p (‖un‖p

p + ‖Pnu‖p
p
) p–2

p . (3.12)

Similarly, we have

∫ T

0

|cDα
0+ un(t) – cDα

0+ Pnu(t)|2
(|cDα

0+ un(t)| + |cDα
0+ Pnu(t)|)2–p dt

≥ M
– 2

p
2

(∫ T

0

∣
∣cDα

0+ un(t) – cDα
0+ Pnu(t)

∣
∣p dt

) 2
p

· (∥∥cDα
0+ un

∥
∥p

p +
∥
∥cDα

0+ Pnu
∥
∥p

p

) p–2
p . (3.13)

Combining (3.10)–(3.13), we get

ψ1 + ψ2 ≥ M3n‖un – Pnu‖2,

where M3n = M
– 2

p–1
2 min{ω3(‖cDα

0+ un‖p
p + ‖cDα

0+ Pnu‖p
p)

p–2
p ,ω4(‖un‖p

p + ‖Pnu‖p
p)

p–2
p }.

If {un} has a subsequence (still relabeled {un} for convenience) such that ‖un‖ → 0 as
n → ∞, it is easy to see that ‖un – Pnu‖ → 0. On the other hand, if infn≥1 ‖un‖ > 0,
by the boundedness of {un} in E, there exists M3 > 0 such that M3n ≥ M3 > 0. Then
‖un – Pnu‖ → 0.

So, un – Pnu → 0 in E as n → ∞, which means that un → u in E as n → ∞. By
Lemma 2.13, we know that J = J1 has infinitely many nontrivial critical points uk . Con-
sequently, BVP (1.1) has infinitely many small energy solutions. �

Proof of Theorem 1.2 For any ε > 0, it follows from (F6) that there exist positive numbers
θ3 and θ4 such that

∣
∣F(t, u)

∣
∣ ≤ θ3|u|p + θ4|u|q. (3.14)

Combining (3.14), (H3), and Lemma 2.7, it is easily seen that Jλ maps bounded sets into
bounded sets uniformly for λ ∈ [1, 2]. By (H1) and (F5), Jλ(–u) = Jλ(u) for all (λ, u) ∈
[1, 2] × E. Thus, condition (A1) holds. Assumption (F4) means that B(u) ≥ 0. Condition
(A2) holds for the fact that A(u) ≥ 1

p‖u‖p → ∞ as n → ∞ and B(u) ≥ 0.
In what follows, we verify condition (A4). For this sake, we need to prove that there exist

two sequences ρk > rk > 0 such that

bk(λ) = inf
u∈Zk ,‖u‖=rk

Jλ(u) > 0, ∀λ ∈ [1, 2], (3.15)

ak(λ) = max
u∈Wk ,‖u‖=ρk

Jλ(u) < 0, ∀λ ∈ [1, 2]. (3.16)

First, we prove that (3.15) is true.



Wang et al. Boundary Value Problems  (2018) 2018:94 Page 13 of 16

For u ∈ Zk , by (3.14), (H1), and the definition of αr(k) in Lemma 3.2, we have

Jλ(u) ≥ 1
p
‖u‖p – 2θ3‖u‖p

p – 2θ4‖u‖q
q

≥ 1
p
‖u‖p – 2θ3α

p
p(k)‖u‖p – 2θ4α

q
q(k)‖u‖q.

Choose rk = 1
αp(k)+αq(k) . Then rk → ∞ as k → ∞. For any u ∈ Zk with ‖u‖ = rk , we know

Jλ(u) ≥ 1
p
‖u‖p – 2θ3

α
p
p(k)

|αp(k) + αq(k)|p – 2θ4
α

q
q(k)

|αp(k) + αq(k)|q

≥ 1
p

rp
k – 2θ3 – 2θ4

> 0.

Therefore,

bk(λ) = inf
u∈Zk ,‖u‖=rk

Jλ(u) > 0, ∀λ ∈ [1, 2].

Next, we prove that (3.16) is true.
By (F7), there exists δ3 > 0 such that

F(t, u) ≥ δ3|u|μ, for all t ∈ [0, T], u ∈ R. (3.17)

According to (3.17), (H3), and Lemma 2.7, we have

Jλ(u) =
1
p
‖u‖p +

m∑

j=1

∫ u(tj)

0
Ij(s) ds – λ

∫ T

0
F
(
t, u(t)

)
dt

≤ 1
p
‖u‖p +

m∑

j=1

bj

γj + 1
∣
∣u(tj)

∣
∣γj+1 – δ3

∫ T

0
|u|μ dt

≤ 1
p
‖u‖p + δ4‖u‖γj+1 – δ5‖u‖μ.

Hence, one can take ρk > γk large enough such that

ak(λ) = max
u∈Wk ,‖u‖=ρk

Jλ(u) < 0.

Until now, all the conditions of Lemma 2.14 hold. Hence, for λ ∈ [1, 2], there exists a
sequence {uk

n(λ)}∞n=1 such that

sup
n

∥
∥uk

n(λ)
∥
∥ < ∞,

J ′
λ

(
uk

n(λ)
) → 0, Jλ

(
uk

n(λ)
) → ck(λ) = inf

γ∈
k
max
u∈Bk

Jλ
(
γ (u)

)
, n → ∞.

(3.18)
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Furthermore,

ck(λ) ≥ bk(λ) ≥ 1
p

rp
k – 2θ3 – 2θ4 := bk → ∞, k → ∞,

ck(λ) ≤ max
u∈Bk

J1(u) := ck .

Thus,

bk ≤ ck(λ) ≤ ck , λ ∈ [1, 2]. (3.19)

Choose a sequence λm → 1 such that (3.18) holds. Using similar arguments of the proof
of Theorem 1.1, we can show that {uk

n(λm)}∞n=1 possesses a strong convergent subsequence.
Thus, we suppose that uk

n(λm) → uk(λm) in E as n → ∞. By (3.18) and (3.19), we can get

J ′
λm

(
uk(λm)

)
= 0, Jλm

(
uk(λm)

) ∈ [bk , ck] for k ≥ k1.

In the following we prove that {uk(λm)}∞m=1 is bounded.
From (H3) and (F6), we have

μJλm

(
uk(λm)

)
–

(
J ′
λm

(
uk(λm)

)
, uk(λm)

)

=
(

μ

p
– 1

)
∥
∥uk(λm)

∥
∥p +

m∑

j=1

(

μ

∫ uk (λm)(tj)

0
Ij(s) ds – Ij

(
uk(λm)(tj)

)
uk(λm)(tj)

)

+ λm

∫ T

0

[
f
(
t, uk(λm)

)
uk(λm) – μF

(
t, uk(λm)

)]
dt

≥
(

μ

p
– 1

)
∥
∥uk(λm)

∥
∥p.

Therefore, {uk(λm)}∞m=1 is bounded in E. Similar arguments of the proof of Theorem 1.1
show that uk(λm) → uk in E as m → ∞ (k ≥ k1). Then uk is a critical point of J = J1 with
I(uk) ∈ [bk , ck]. According to bk → ∞ as k → ∞, we know that BVP (1.1) has infinitely
many nontrivial high energy solutions. �

4 Examples
In this section, two examples are given to illustrate our results.

Example 4.1 Consider the following nonlinear impulsive fractional boundary value prob-
lem:

⎧
⎪⎨

⎪⎩

D0.8
T–�4(cD0.8

0+ u(t)) + |u(t)|u(t) = f (t, u), t ∈ [0, T], t �= t1,
�(D–0.2

T– �4(cD0.8
0+ u))(t1) = u5(t1),

u(0) = u(T) = 0,
(4.1)

where

f (t, u) =

{
7
2 et|u|4, |u| ≤ 1,
7
2 et|u| 5

2 , |u| > 1.
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Choose p = 4, α = 0.8 ∈ ( 1
4 , 1], and I1(u) = u5(t1). It is easy to show that assumption (H1)

holds. Take b1 = 2, γ1 = 5 ∈ (3, +∞). From this we can see that assumption (H2) holds.
Moreover,

∣
∣f (t, u)

∣
∣ ≤ 4et(1 + |u| 5

2
)
.

Choose η = 7
2 ∈ (3, 4) and b(t) = 4et . This means that assumption (F1) is satisfied.

Take σ = 13
4 ∈ (3, 7

2 ). By a simple calculation, one has F(t, u) = et|u| 7
2 and

lim|u|→∞ et |u| 7
2

|u| 13
4

→ ∞. Therefore, assumption (F2) holds.

In addition, lim|u|→0
7
2 et |u|4
|u|3 = 0 implies that assumption (F3) holds.

Finally, it is easy to see that (F4) and (F5) hold. Consequently, BVP (4.1) has infinitely
many small energy solutions by Theorem 1.1.

Example 4.2 Consider the following nonlinear fractional impulsive boundary value prob-
lem:

⎧
⎪⎪⎨

⎪⎪⎩

D0.8
T–� 5

2
(cD0.8

0+ u(t)) + |u(t)| 1
2 u(t) = 5|u|4 ln(|u| + 1) + |u|5

|u|+1 , t ∈ [0, T], t �= t1,
�(D–0.2

T– � 5
2

(cD0.8
0+ u))(t1) = u3(t1),

u(0) = u(T) = 0.

(4.2)

First, choose p = 5
2 , α = 0.8 ∈ ( 2

5 , 1], and I1(u) = u3(t1). From this one can see that as-
sumption (H1) holds. Taking b1 = 2, μ = 5 > 5

2 , and γ1 = 3 ∈ ( 3
2 , 4) means that assumption

(H3) holds.
Next, a simple calculation shows that

F(t, u) = |u|5 ln
(|u| + 1

)
, –5F(t, u) + uf (t, u) =

|u|5
|u| + 1

≥ 0.

Hence, assumption (F7) holds.
Finally, it is easy to show that (F4)–(F6) hold. Consequently, BVP (4.2) has infinitely many

high energy solutions by Theorem 1.2.
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