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Abstract
In this paper, we are concerned with the parabolic–elliptic Keller–Segel system with a
positive source term in a bounded domain in R

N (N = 2, 3), under homogeneous
Dirichlet boundary condition, with time-dependent coefficients. Lower bounds for
the blow-up time if the solutions blow up in finite time are derived under appropriate
assumptions on data. Moreover, the exponential decay of the associated energies is
also studied.
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1 Introduction
Let us consider the following parabolic–elliptic Keller–Segel system:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = �u – k1(t)∇ · (um∇v) + f (u), x ∈ �, t > 0,

0 = �v – k2(t)v + k3(t)u, x ∈ �, t > 0,

u|∂� = 0, v|∂� = 0, t > 0,

u(x, 0) = u0(x), x ∈ �,

(1.1)

where � is a bounded convex domain in R
N (N = 2, 3) with smooth boundary, ki(t)

(i = 1, 2, 3) are positive and regular functions of t, u0(x) is a nonnegative function in �.
Moreover, in the first equation, we assume that f (u) is a nonnegative function and m is a
positive constant.

The classical Keller–Segel system

⎧
⎨

⎩

Ut = –∇(–μ∇U + χU∇V ), x ∈ �, t > 0,

Vt = ∇(D∇V ) + gU – kV , x ∈ �, t > 0,
(1.2)

was originally introduced in 1970 by Keller and Segel in [11], and it represents a funda-
mental model, which has great interest in biology, where �, denoting the capacity, is an
open domain in R

N (N ≥ 1), ∇ is the gradient operator , U(x, t) denotes the cell density,
and V (x, t) represents the chemo-attractant. μ > 0 is the amoeboid motility, χ > 0 is the

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13661-018-1013-z
http://crossmark.crossref.org/dialog/?doi=10.1186/s13661-018-1013-z&domain=pdf
mailto:jsjyj@xbmu.edu.cn


Jiao and Zeng Boundary Value Problems  (2018) 2018:95 Page 2 of 10

chemotactic sensitivity, D > 0 is the diffusion rate of cAMP, g > 0 is the rate of cAMP secre-
tion per unit density of amoebae, k > 0 is the rate of degradation of cAMP in environment.
The cross-diffusion term in the first equation reflects the assumption that individual cells
partially adapt their motion so as to migrate toward increasing chemo-attractant.

In the last three decades, much attention has been devoted to studying the type of model
(1.2) and its variations. See, for example, for system (1.2) with � = R

N , μ = χ = D = 1,
k = 0. Kozono, Sugiyama, and Takada in [12] considered the problem whether there ex-
ists a finite-time self-similar solution of the backward type for the case of N ≥ 2, and
Sugiyama and Yahagi in [22] investigated the uniqueness and continuity of weak solutions
with respect to the initial data for the Keller–Segel system of degenerate type. For more
contribution along this line, we can see [3–6, 19–21], and the references therein.

In view of the biologically meaningful question whether or not cell populations spon-
taneously form aggregates, some studies focused on the issue whether solutions remain
bounded or blow up (see [7–10, 16–18, 23, 26]).

Because practical experiences show how the specific parameters modeling chemotaxis
phenomena are a general chemotaxis system, especially those influenced by logistic-type
source (see [1, 2, 13–15, 25, 27]). In particular, Marras, Vernier-Piro, and Viglialoro in [15]
considered the system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut = �u – k1(t)∇ · (um∇v) + f (u), x ∈ �, t > 0,

vt = k2(t)�v – k3(t)v + k4(t)u, x ∈ �, t > 0,
∂u
∂n + h(t)u = 0, ∂v

∂n = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ �,

(1.3)

where ki(t) (i = 1, 2, 3, 4) are positive and regular functions of t, f (u) is a nonnegative func-
tion satisfying f (u) ≤ cu2, c > 0, and m is a positive constant. They showed that the lower
bounds for blow-up time t∗ to system (1.3) are obtained in both cases, the Neumann
boundary condition (i.e., h(t) = 0) and the Robin boundary condition (i.e., h(t) > 0) for
the three-dimensional case and provided 2

3 < m < 1 or for the two-dimensional case and
provided 1 ≤ m < 2, respectively.

Homogeneous Dirichlet boundary condition for the chemotaxis system is prescribed by
the disappearance of cell and chemo-attractant near the boundary.

Our aim in this paper is to investigate the lower bound for the blow-up time and decay
criteria of associated energies to the parabolic–elliptic Keller–Segel system (1.1) under
Dirichlet boundary conditions for the three-dimensional case and provided 2

3 < m < 1 or
for the two-dimensional case and provided 1 ≤ m < 2, respectively. Let us point out that
although the idea was used before for other problems, the adaptation of the procedure
to our problem is not trivial at all. Due to the parabolic–elliptic Keller–Segel system (1.1)
under Dirichlet boundary condition, we need more delicate estimates.

From biological point of view, solutions to system (1.1), representing the density and the
chemo-attractant, must satisfy

u ≥ 0, v ≥ 0.

Thus it is reasonable to require throughout that the initial datum u0 ∈ C0(�) be nonneg-
ative.
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2 Lower bound for blow-up time
In this section, we give lower bounds for blow-up time to system (1.1) in the three-
dimensional case and provided 2

3 < m < 1, and in the two-dimensional case and provided
1 ≤ m < 2, respectively.

2.1 Lower bound with � ⊂ R
3, 2

3 < m < 1
In this subsection, in order to obtain a lower bound for the blow-up time t∗ of the solution
(u, v) to system (1.1) with N = 3, we define the following auxiliary function:

�(t) = α(t)
∫

�

u2 dx (2.1)

with �0 = �(0) = α(0)
∫

�
u2

0 dx > 0, and α is a suitable time-dependent positive function.

Definition 2.1 We say that (u, v) blows up in �-measure at time t∗ if

lim
t→t∗

�(t) = ∞. (2.2)

The main result in this subsection is given in the following theorem.

Theorem 2.1 Let � ⊂ R
3 be a bounded convex domain with the origin inside. Suppose

that f (u) is a nonnegative function and satisfies

f (u) ≤ cu2, c > 0. (2.3)

Moreover, let (u, v) be a classical solution to system (1.1), and (u, v) becomes unbounded in
the �-measure at time t = t∗, with � defined in (2.1), then t∗ satisfies the lower bound

t∗ ≥
∫ +∞

�(0)

dξ

A0ξ + A1ξ
m+2

2 + A2ξ
4–m

4–3m + A3ξ
3
2 + A4ξ 3

, (2.4)

where

A0 =
α′

α
, A1 = c12

3
2 m–1p

3
2 m
1 α– m+2

2 ,

A2 = c12
3
2 m–1 p

3
2 m
2

ε
3m

4–3m
0

· 4 – 3m
4

α
m–4

4–3m , A3 = a1α
– 3

2 , A4 =
a2

ε2
1
α–3,

c1 =
2αk1k3

m + 1
, a1 = αc(2p1)

3
2 , a2 = 2– 1

2 αcp
3
2
2 ,

p1 =
3

2ρ0
, p2 =

d
ρ0

+ 1, ρ0 = min
∂�

x · ν > 0, d = max
�

|x|.

(2.5)

Among that ε0, ε1 present positive constants, ν denotes the unit normal vector directed
outward on ∂�.

Proof By using Hölder’s inequality and the arithmetic inequality

arbs ≤ ra + sb, a > 0, b > 0, s + r = 1, (2.6)
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we obtain

∫

�

um+2 dx ≤
(∫

�

u2 dx
)1–m(∫

�

u3 dx
)m

. (2.7)

Next, we estimate the term
∫

�
u3 dx appearing in (2.7) by means of the following inequality

(see Lemma A2 in [17]):

(∫

�

|u|3 dx
)m

≤
[

p1

∫

�

u2 dx + p2

(∫

�

u2 dx
) 1

2
(∫

�

|∇u|2 dx
) 1

2
] 3

2 m

(2.8)

with p1 = 3
2ρ0

, p2 = d
ρ0

+ 1, where ρ0 = min∂� x · ν > 0, d = max� |x|, ν denotes the unit
normal vector directed outward on ∂�.

From (2.8) and the inequality

(a + b)s ≤ 2s–1(as + bs), a > 0, b > 0, s ≥ 1, (2.9)

we achieve

(∫

�

|u|3 dx
)m

≤ 2
3
2 m–1

[

p
3
2 m
1

(∫

�

u2 dx
) 3

2 m

+ p
3
2 m
2

(∫

�

u2 dx
) 3

4 m(∫

�

|∇u|2 dx
) 3

4 m]

. (2.10)

Inserting this estimate (2.10) into (2.7), we have

∫

�

um+2 dx ≤ 2
3
2 m–1p

3
2 m
1

(∫

�

u2 dx
) m+2

2
+ 2

3
2 m–1 p

3
2 m
2

ε
3m

4–3m
0

· 4 – 3m
4

(∫

�

u2 dx
) 4–m

4–3m

+ 2
3
2 m–1p

3
2 m
2 · 3

4
mε0

∫

�

|∇u|2 dx, (2.11)

where ε0 is a positive constant.
Then, differentiating �(t) and using the fact u|∂� = 0, we have

�′(t) = 2α

∫

�

uut dx + α′
∫

�

u2 dx

= 2α

∫

�

u
(�u – k1(t)∇ · (um∇v

)
+ f (u)

)
dx + α′

∫

�

u2 dx

= 2α

∫

�

u�u dx – 2αk1

∫

�

u∇ · (um∇v
)

dx + 2α

∫

�

uf (u) dx + α′
∫

�

u2 dx

= –2α

∫

�

|∇u|2 dx –
2αk1

m + 1

∫

�

um+1�v dx + 2α

∫

�

uf (u) dx + α′
∫

�

u2 dx

= –2α

∫

�

|∇u|2 dx –
2αk1k2

m + 1

∫

�

um+1v dx +
2αk1k3

m + 1

∫

�

um+2 dx

+ 2α

∫

�

uf (u) dx + α′
∫

�

u2 dx. (2.12)
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In the forth term (2.12), we use (2.3), (2.8), and (2.9), which leads to

2α

∫

�

uf (u) dx ≤ 2αc
∫

�

u3 dx

≤ a1

(∫

�

u3 dx
) 3

2
+

a2

ε2
1

(∫

�

u3 dx
)3

+ 3a2ε1

∫

�

|∇u|2 dx (2.13)

with

a1 = αc(2p1)
3
2 , a2 = 2– 1

2 αcp
3
2
2 .

Here, we also used Hölder’s inequality and Young’s inequality with ε1 > 0.
Inserting (2.11) and (2.13) into (2.12), we obtain

�′(t) ≤ –2α

∫

�

|∇u|2 dx + c12
3
2 m–1p

3
2 m
1

(∫

�

u2 dx
) m+2

2

+ c12
3
2 m–1 p

3
2 m
2

ε
3m

4–3m
0

· 4 – 3m
4

(∫

�

u2 dx
) 4–m

4–3m
+ c12

3
2 m–1p

3
2 m
2 · 3

4
mε0

∫

�

|∇u|2 dx

+ a1

(∫

�

u3 dx
) 3

2
+

a2

ε2
1

(∫

�

u3 dx
)3

+ 3a2ε1

∫

�

|∇u|2 dx + α′
∫

�

u2 dx

=
(

3a2ε1 + c12
3
2 m–1p

3
2 m
2 · 3

4
mε0 – 2α

)∫

�

|∇u|2 dx

+ c12
3
2 m–1p

3
2 m
1 α– m+2

2

(

α

∫

�

u2 dx
) m+2

2

+ c12
3
2 m–1 p

3
2 m
2

ε
3m

4–3m
0

· 4 – 3m
4

α
m–4

4–3m

(

α

∫

�

u2 dx
) 4–m

4–3m
+

α′

α

(

α

∫

�

u2 dx
)

+ a1α
– 3

2

(

α

∫

�

u3 dx
) 3

2
+

a2

ε2
1
α–3

(

α

∫

�

u3 dx
)3

(2.14)

with c1 = 2αk1k3
m+1 .

To simplify the right-hand side of (2.14), we choose appropriate constants ε0 and ε1 such
that

3a2ε1 + c12
3
2 m–1p

3
2 m
2 · 3

4
mε0 – 2α = 0.

Hence, we can estimate (2.14) as

�′(t) ≤ A0� + A1�
m+2

2 + A2�
4–m

4–3m + A3�
3
2 + A4�

3, (2.15)

where

A0 =
α′

α
, A1 = c12

3
2 m–1p

3
2 m
1 α– m+2

2 , A2 = c12
3
2 m–1 p

3
2 m
2

ε
3m

4–3m
0

· 4 – 3m
4

α
m–4

4–3m ,
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A3 = a1α
– 3

2 , A4 =
a2

ε2
1
α–3.

Now, integrating (2.15) over (0, t), we have

t ≥
∫ �(t)

�(0)

dξ

A0ξ + A1ξ
m+2

2 + A2ξ
4–m

4–3m + A3ξ
3
2 + A4ξ 3

.

Thus the proof of Theorem 2.1 is completed. �

2.2 Lower bound with � ⊂ R
2, 1 ≤ m < 2

In this subsection, we consider system (1.1) in the case � ⊂ R
2, we have the following

main result.

Theorem 2.2 Let (u, v) be a classical solution of system (1.1) in a convex region � ⊂ R
2

with smooth boundary and 1 ≤ m < 2. Suppose that f (u) is a nonnegative function and
satisfies (2.3). If (u, v) blows up in the �-measure at time t∗, with � defined in (2.1), then
t∗ satisfies the lower bound

t∗ ≥
∫ +∞

�(0)

dξ

A0ξ + A1ξ
m+2

2 + A2ξ
2

2–m + A3ξ
3
2 + A4ξ 3

, (2.16)

where

A0 =
α′

α
, A1 = c1

2 3m
2 –1pm

1
3m α– m+2

2 , A2 = c12
m
2 –1pm

2
2 – m

2
ε

m
m–2
2 α

m
m–2 ,

A3 = a1α
– 3

2 , A4 =
a2

ε2
1
α–3

with c1, a1, a2, p1, p2, ρ0, d defined in (2.5). Among that, ε1, ε2 present positive constants,
ν denotes the unit normal vector directed outward on ∂�.

Proof By using Hölder’s inequality, we obtain

∫

�

um+2 dx ≤
(∫

�

u2 dx
)1– m

2
(∫

�

u4 dx
) m

2
. (2.17)

In order to estimate the term
∫

�
u4 dx, we use the following inequality (see (3.2) and (3.4)

in [17]):

(∫

�

|u|4 dx
) 1

2 ≤
√

2
2

[
1
ρ0

∫

�

u2 dx +
(

1 +
d
ρ0

)(∫

�

u2 dx
∫

�

|∇u|2 dx
) 1

2
]

(2.18)

with ρ0, d defined in (2.5).
Inserting (2.18) into (2.17), we obtain

∫

�

um+2 dx ≤ 2– m
2

(∫

�

u2 dx
)1– m

2

×
[

1
ρ0

∫

�

u2 dx +
(

1 +
d
ρ0

)(∫

�

u2 dx
∫

�

|∇u|2 dx
) 1

2
]m
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≤ 2
m
2 –1 1

ρm
0

(∫

�

u2 dx
)1+ m

2
+ 2

m
2 –1

(

1 +
d
ρ0

)m(∫

�

u2 dx
∫

�

|∇u|2 dx
) m

2

≤ 2 3m
2 –1pm

1
3m

(∫

�

u2 dx
)1+ m

2
+ 2

m
2 –1pm

2
m
2

ε2

∫

�

|∇u|2 dx

+ 2
m
2 –1pm

2
2 – m

2
ε

m
m–2
2

(∫

�

u2 dx
) 2

2–m
. (2.19)

Starting from (2.12), if we apply (2.13) and (2.19), we obtain

�′(t) ≤
(

3a2ε1 + c12
m
2 –1pm

2 · m
2

ε2 – 2α

)∫

�

|∇u|2 dx + c1
2 3m

2 –1pm
1

3m

(∫

�

u2 dx
)1+ m

2

+ c12
m
2 –1pm

2
2 – m

2
ε

m
m–2
2

(∫

�

u2 dx
) 2

2–m
+

α′

α

(

α

∫

�

u2 dx
)

+ a1α
– 3

2

(

α

∫

�

u3 dx
) 3

2
+

a2

ε2
1
α–3

(

α

∫

�

u3 dx
)3

. (2.20)

Now, choosing appropriate constants ε1 and ε2 such that

3a2ε1 + c12
m
2 –1pm

2 · m
2

ε2 – 2α = 0,

we get

�′(t) ≤ A0� + A1�
m+2

2 + A2�
2

2–m + A3�
3
2 + A4�

3, (2.21)

where

A0 =
α′

α
, A1 = c1

2 3m
2 –1pm

1
3m α– m+2

2 , A2 = c12
m
2 –1pm

2
2 – m

2
ε

m
m–2
2 α

m
m–2 ,

A3 = a1α
– 3

2 , A4 =
a2

ε2
1
α–3.

Now, integrating (2.21) over (0, t), we have

t ≥
∫ �(t)

�(0)

dξ

A0ξ + A1ξ
m+2

2 + A2ξ
2

2–m + A3ξ
3
2 + A4ξ 3

.

Thus the proof of Theorem 2.2 is completed. �

3 Exponential decay for the associated energies
In this section, we focus on the exponential decay of the associated energies for system
(1.1). We only consider the case when � ⊂ R

3, the case when � ⊂ R
2 being completely

similar. In order to state our main result, we need the following condition:

–D1λ1 + D2λ
3
4
1 �(0)

1
2 + D3�(0)

1
2 + D4 < 0, (3.1)
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where

D1 = 2α, D2 = 2
1
2 (c1m + 2α)p

3
2
2 α– 3

4 , D3 = 2
1
2 (c1m + 2α)p

3
2
1 α– 3

42 ,

D4 =
c1(1 – m) + α′

α
, �(0) = α(0)

∫

�

u0(x)2 dx
(3.2)

and λ1 is the first eigenvalue for the boundary value problem as follows:

⎧
⎪⎪⎨

⎪⎪⎩

�ϕ + λϕ = 0, x ∈ �,

ϕ|∂� = 0,

ϕ > 0, x ∈ �.

Remark 3.1 Let us note that upon appropriate choices of D1, D2, D3, D4, and �(0), one
can obtain condition (3.1).

We are now ready to state our main result about the decay of energies for system (1.1).

Theorem 3.2 Assume that �(0) > 0, 2k2 > k3 and condition (3.1) is satisfied. Then the
solution decays exponentially to zero in L2(�).

Proof Let (u, v) be the unique solution of (1.1), we put

�(t) = α(t)
∫

�

u2 dx,(t) =
(2k2 – k3)α(t)

k3

∫

�

v2 dx.

Following the same idea as in the proof of Theorem 2.1, we have

�′(t) ≤
(∫

�

|∇u|2 dx
) 3

4
(

–D1

(∫

�

|∇u|2 dx
) 1

4
+ D2�(t)

3
4

)

+ D3�(t)
3
2 + D4�(t) (3.3)

with D1, D2, D3, D4 defined in (3.2).
Inserting the result

∫

�

|∇u|2 dx ≥ λ1

∫

�

u2 dx,

we obtain

�′(t) ≤
(∫

�

|∇u|2 dx
) 3

4 (
–D1λ

1
4
1 �(t)

1
4 + D2�(t)

3
4
)

+ D3�(t)
3
2 + D4�(t). (3.4)

We claim, by an argument similar to that of Wang, Wang, and Zhou in [24], that

�′(t) < 0 (3.5)

and

�′(t) ≤ �(t)
(
–D1λ

1
4
1 �(t)

1
4 + D2�(t)

3
4
)

+ D3�(t)
3
2 + D4�(t). (3.6)
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By (3.5) and (3.6), there exists a positive constant γ such that

D2�(t)
3
4 + D3�(t)

3
2 < D2�(0)

3
4 + D3�(0)

3
2 < D1λ1 – D4 – γ .

Thus, one has

�′(t) ≤ –γ�(t),

which yields

�(t) ≤ �(0) exp(–γ t). (3.7)

This proves that u decays exponentially to zero in L2(�).
Next, we study the decay behavior of (t). Multiplying both sides of the second equation

in (1.1) by v and then integrating over �, we obtain

∫

�

v�v dx = k2

∫

�

v2 dx – k3

∫

�

uv dx.

Namely,

–
∫

�

|∇v|2 dx = k2

∫

�

v2 dx – k3

∫

�

uv dx.

By Hölder’s inequality and the arithmetic inequality (2.6), we have

k2

∫

�

v2 dx +
∫

�

|∇v|2 dx = k3

∫

�

uv dx ≤ k3

2

∫

�

u2 dx +
k3

2

∫

�

v2 dx.

Thus,
(

k2 –
k3

2

)∫

�

v2 dx ≤ k3

2

∫

�

u2 dx,

which together with (3.7) yields

(t) =
(2k2 – k3)α(t)

k3

∫

�

v2 dx ≤ α(t)
∫

�

u2 dx = �(t) ≤ �(0) exp(–γ t),

as desired. This completes the proof. �
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