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1 Introduction
Over the past 40 years, an increasing number of mathematical models describing tumor
growth have been developed and studied, and many theoretical and numerical results have
been established; see the review papers [1–6], the recent papers [7–15], and the references
therein.

In this paper, we study a mathematical model of tumor growth under the action of an-
giogenesis and inhibitor. Angiogenesis is an essential process in wound healing and new
birth. Tumor-induced angiogenesis is a process that tumor cells secrete cytokines that
stimulate the vascular system to grow toward the tumor. As a result of angiogenesis, the
tumor possesses its own vasculature. Then the nutrient and the inhibitor may be supplied
to tumor via the capillary network. Assume that the nutrient and the inhibitor are sin-
gle species consumed by tumor cell through its own vasculature and diffusion from the
boundary. We denote the concentration of nutrient and inhibitor by σ and β , respectively.
Using non-dimensional scales (see [16–18]), the problem we considered can be written as
follows:

�σ = σ , x ∈ �, (1.1)

�β = λβ , x ∈ �, (1.2)

–�p = μ(σ – σ̃ ) – νβ , x ∈ �, (1.3)

∂σ

∂n
+ α(σ – σ̄ ) = 0, x ∈ ∂�, (1.4)
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∂β

∂n
+ τ (β – β̄) = 0, x ∈ ∂�, (1.5)

p = γ κ , x ∈ ∂�, (1.6)

∂p
∂n

= 0, x ∈ ∂�, (1.7)

where � is the region occupied by the tumor, which is a bounded domain in R
3 with

boundary ∂� and may vary with the time t; p is the pressure within the tumor resulting
from the proliferation of the tumor cells; the right term of (1.3) denotes the cell prolifera-
tion rate within the tumor; μ is a measure of mitosis; σ̃ is the threshold value of nutrient
concentration for apoptosis at which tumor cells’ birth and death meet the balance; ν is a
positive constant reflecting the negative functions of inhibitor on tumor-cell proliferation;
n is the unit outward normal; σ̄ , β̄ are the external concentrations of the nutrient and in-
hibitor, respectively; α, τ are positive constants denoting the rates of nutrient supply and
inhibitor supply through a developed network of capillary vessels to the tumor, respec-
tively; γ is the surface tension coefficient; κ is the mean curvature of the tumor surface.
The parameters σ̄ , σ̃ , β̄ , ν , α, μ are assumed to satisfy μ( α

α+1 σ̄ – σ̃ ) – νβ̄ > 0.
Before we turn to the point of most interest, we recall some relevant works. If the in-

hibitor is absent (β = 0) and the boundary condition (1.4) is replaced by σ = σ̄ (which is
formally the case α = ∞), it was proved in [19, 20] that under the assumption σ̃ < σ̄ , there
exists a unique radially symmetric stationary solution σs(r) with radius Rs, and for each
γm(Rs) (m ≥ 2), a branch of symmetry-breaking stationary solutions bifurcates from the
above radially symmetric stationary solution with free boundary

r = Rs + εYm,n(θ ,ϕ) + O
(
ε2),

where Ym,n is the spherical harmonic of order (m, n). For the two-dimensional case, we
refer the reader to [21]. The asymptotic stability of stationary solutions was studied in
[22–24]. Later, for problem (1.1)–(1.7) in the absence of inhibitors (β = 0), Friedman and
Lam [8] proved that, for any α > 0, 0 < σ̃ < σ̄ , there exists a unique radially symmetric
solution σ∗(r) with radius R∗; furthermore, Hu et al. [10] showed that for each μm (m ≥ 2),
there exist symmetry-breaking solutions bifurcating from the radially symmetric solution.
While, if the inhibitor is present (β �= 0) and the boundary conditions (1.4) and (1.5) are
replaced by the boundary conditions σ = σ̄ , β = β̄ (which is formally the case α = ∞,
τ = ∞), the existence and asymptotic stability of radially symmetric solutions were studied
in [17, 25, 26]. In the sequel, for each μm (m > m∗∗), Wang [11] established the existence
of a sequence of symmetry-breaking solutions bifurcating from the radially symmetric
solution.

Motivated by the above works, in this paper, we work with the boundary conditions
(1.4) and (1.5) stemming from angiogenesis. The appearance of inhibitor and the Robin
boundary conditions (1.4)–(1.5) bring some difficulties to the analysis of the radially sym-
metric solution and the corresponding linearized problem. By using the properties of the
modified Bessel functions and the spherical harmonic functions, we first establish the ex-
istence of radially symmetric solution of problem (1.1)–(1.7) for all γ > 0, and then prove
that there exist a positive integer m∗∗ and a sequence {γm} such that, for each γm (m > m∗∗),
there exists a branch of symmetry-breaking solutions bifurcating from the above radially
symmetric solution.
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The rest of this paper is arranged as follows. In Sect. 2, we establish the existence of
radially symmetric solutions to problem (1.1)–(1.7); in Sect. 3, we study the linearized
problem of (1.1)–(1.7) at the radially symmetric solution, and then we obtain the exis-
tence of symmetry-breaking solutions by the bifurcation theorem in Sect. 4. We give our
conclusion in Sect. 5.

2 Radially symmetric solutions
In this section, we study the radially symmetric solutions of problem (1.1)–(1.7). We call
(σ (x),β(x), p(x)) a radially symmetric solution of (1.1)–(1.7) in some domain BR if σ (x),
β(x), p(x) ∈ C2(BR) ∩ C1(BR) are radially symmetric and satisfy (1.1)–(1.7). Let r = |x|.
Then in the radial case, (1.1)–(1.7) reduces to the following system:

σ ′′(r) +
2
r
σ ′(r) = σ (r) for 0 < r < R, (2.1)

β ′′(r) +
2
r
β ′(r) = λβ(r) for 0 < r < R, (2.2)

p′′(r) +
2
r

p′(r) = –μ
(
σ (r) – σ̃

)
+ νβ(r) for 0 < r < R, (2.3)

σ ′(0) = 0, β ′(0) = 0, p′(0) = 0, (2.4)

σ ′(R) + α
(
σ (R) – σ̄

)
= 0, β ′(R) + τ

(
β(R) – β̄

)
= 0, p(R) =

γ

R
, (2.5)

p′(R) = 0. (2.6)

For any fixed Rs > 0, solving problem (2.1)–(2.5), we obtain

σs(r) =
ασ̄

α + coth Rs – 1
Rs

Rs sinh r
r sinh Rs

for 0 < r < Rs, (2.7)

βs(r) =
τ β̄

τ +
√

λ(coth(
√

λRs) – 1√
λRs

)
Rs sinh(

√
λr)

r sinh(
√

λRs)
for 0 < r < Rs, (2.8)

ps(r) =
1
6
μσ̃ r2 – μσs(r) +

ν

λ
βs(r) + Cp for 0 < r < Rs, (2.9)

where

Cp =
γ

Rs
–

1
6
μσ̃R2

s +
μασ̄

α + coth Rs – 1
Rs

–
ν

λ

τ β̄

τ +
√

λ(coth(
√

λRs) – 1√
λRs

)
.

Then (σs,βs, ps) given by (2.7)–(2.9) is a radially symmetric solution of system (1.1)–(1.7)
provided that Rs is a positive solution of p′

s(R) = 0, i.e.,

1
3
μσ̃Rs – μσ ′

s (Rs) +
ν

λ
β ′

s(Rs) = 0. (2.10)

The next theorem shows that (σs(r),βs(r), ps(r)) given by (2.7)–(2.9) is indeed a radially
symmetric solution of system (1.1)–(1.7).

Theorem 2.1 For any given positive constants λ, σ̄ , β̄ , σ̃ , μ, ν , α, τ , γ , satisfying μ(σ̄ –
σ̃ ) – νβ̄ > 0, there exists at least one radially symmetric solution to system (1.1)–(1.7).
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Proof Obviously, we only need to show the existence of solutions to problem (2.1)–(2.6).
It is seen that (σs,βs, ps) given by (2.7)–(2.9) satisfies problem (2.1)–(2.5). Thus it suffices
to prove that equation (2.10) has at least one positive solution.

Define

g(s) = coth s –
1
s

.

Then it follows from [8] that for s > 0, g ′(s) > 0, (g(s)/s)′ < 0, and g(s) satisfy

lim
s→0+

g(s) = 0, lim
s→+∞ g(s) = 1,

lim
s→0+

g(s)
s

=
1
3

, lim
s→+∞

g(s)
s

= 0.
(2.11)

Moreover, σs(r) and βs(r) can be rewritten as

σs(r) =
ασ̄

α + g(Rs)
Rs sinh r
r sinh Rs

,

βs(r) =
τ β̄

τ +
√

λg(
√

λRs)
Rs sinh(

√
λr)

r sinh(
√

λRs)
.

A direct computation shows that

σ ′
s (Rs) = –α

(
σs(Rs) – σ̄

)
= –α

(
ασ̄

α + g(Rs)
– σ̄

)
, (2.12)

β ′
s(Rs) = –τ

(
βs(Rs) – β̄

)
= –τ

(
τ β̄

τ +
√

λg(
√

λRs)
– β̄

)
. (2.13)

Substituting (2.12) and (2.13) into (2.10) yields

1
3
μσ̃Rs + μα

(
ασ̄

α + g(Rs)
– σ̄

)
–

ν

λ
τ

(
τ β̄

τ +
√

λg(
√

λRs)
– β̄

)
= 0,

which is equivalent to the following:

μασ̄
g(Rs)

Rs

(
τ +

√
λg(

√
λRs)

)

– ντ β̄
g(

√
λRs)√
λRs

(
α + g(Rs)

)
–

1
3
μσ̃

(
α + g(Rs)

)(
τ +

√
λg(

√
λRs)

)
= 0.

Let

T(s) = μασ̄
g(s)

s
(
τ +

√
λg(

√
λs)

)
– ντ β̄

g(
√

λs)√
λs

(
α + g(s)

)

–
1
3
μσ̃

(
α + g(s)

)(
τ +

√
λg(

√
λs)

)
.

Then from (2.11) we see that

lim
s→0+

T(s) =
1
3
μασ̄τ –

1
3
νβ̄ατ –

1
3
μσ̃ατ =

ατ

3
(μσ̄ – μσ̃ – νβ̄)
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and

lim
s→+∞ T(s) = –

1
3
μσ̃ (α + 1)(τ +

√
λ).

Since μ(σ̄ – σ̃ ) – νβ̄ > 0, α > 0, σ̃ > 0, τ > 0, μ > 0, λ > 0, we conclude that T(s) = 0 has at
least one positive root on (0,∞) by using the continuity of T(s) and the intermediate value
theorem. The proof is complete. �

3 Linearized problem
In this section, we consider the linearization of problem (1.1)–(1.7) at a radially symmet-
ric solution (σs,βs, ps) with radius Rs, and solve it by employing spherical harmonics and
modified Bessel functions.

Let (σ ,β , p) be the solution of problem (1.1)–(1.7) on the domains with boundaries ∂�ε :
r = Rs + R̃, where R̃ = εS(θ ,ϕ). For simplicity, we denote Rs by R. Assume that (σ ,β , p) has
the expansion as follows:

σ = σs + εσ1 + O
(
ε2), (3.1)

β = βs + εβ1 + O
(
ε2), (3.2)

p = ps + εp1 + O
(
ε2), (3.3)

where σ1, β1, p1 are the functions to be determined.
Substituting (3.1)–(3.3) into (1.1)–(1.6), using (2.1)–(2.6) and collecting all ε-order

terms (see [24]), we obtain the linearized problem satisfied by σ1, β1, p1:

�σ1 = σ1 in BR, (3.4)

∂σ1

∂r
+ ασ1 = –

(
σ ′′

s + ασ ′
s
)
S(θ ,ϕ) on ∂BR, (3.5)

�β1 = λβ1 in BR, (3.6)

∂β1

∂r
+ τβ1 = –

(
β ′′

s + τβ ′
s
)
S(θ ,ϕ) on ∂BR, (3.7)

�p1 = –μσ1 + νβ1 in BR, (3.8)

p1 = –
γ

R2

(
S(θ ,ϕ) +

1
2
�ωS(θ ,ϕ)

)
on ∂BR, (3.9)

where we employed the relation (see [24, 27])

κ
(
R + εS(θ ,ϕ)

)
=

1
R

–
ε

R2

[
S(θ ,ϕ) +

1
2
�ωS(θ ,ϕ)

]
+ O

(
ε2).

Here and below, �ω is the Laplace operator on the unit sphere �:

�ω =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin2 θ

∂2

∂ϕ2 .

Before solving problem (3.4)–(3.9), we recall some properties of the spherical harmonic
functions and the modified Bessel functions.
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Let Ym,l(θ ,ϕ) denote the spherical harmonic functions. Then the family {Ym,l} forms a
normalized complete orthonormal basis for L2(�) (see [28]), and

�ωYm,l = –m(m + 1)Ym,l. (3.10)

For m > 0, ξ > 0, let Im(ξ ) be the modified Bessel function (see [10, 11, 20, 22, 23]):

Im(ξ ) =
(

ξ

2

)m ∞∑

k=0

1
k!�(m + k + 1)

(
ξ

2

)2k

. (3.11)

It satisfies the ordinary differential equation

I ′′
m(ξ ) +

1
ξ

I ′
m(ξ ) –

(
1 +

m2

ξ 2

)
Im(ξ ) = 0, (3.12)

and the following:

I ′
m(ξ ) +

m
ξ

Im(ξ ) = Im–1(ξ ) for m ≥ 1, (3.13)

I ′
m(ξ ) –

m
ξ

Im(ξ ) = Im+1(ξ ) for m ≥ 0, (3.14)

Im(ξ ) =
√

1
2mπ

(
eξ
2m

)m(
1 + O

(
1
m

))
as m → ∞. (3.15)

Computations of σ1, β1, p1. Set S(θ ,ϕ) = Ym,l(θ ,ϕ) in (3.4)–(3.9). Using separation of
variables, we seek a solution of the form:

σ1(r, θ ,ϕ) = σ̂1(r)Ym,l(θ ,ϕ),

β1(r, θ ,ϕ) = β̂1(r)Ym,l(θ ,ϕ),

p1(r, θ ,ϕ) = p̂1(r)Ym,l(θ ,ϕ).

It is seen from (3.4)–(3.5) and (3.10) that σ̂1(r) satisfies

σ̂ ′′
1 (r) +

2
r
σ̂ ′

1(r) –
m(m + 1)

r2 σ̂1(r) = σ̂1(r) for 0 < r < R,

σ̂ ′
1(R) + ασ̂1(R) = –λ1,

with

λ1 = σ ′′
s (R) + ασ ′

s (R) =
ασ̄

α + g(R)

[
1 + αg(R) –

2
R

g(R)
]

.

Solving the above problem, from the formulae of modified Bessel functions (3.11)–(3.14),
we derive

σ̂1(r) =
–λ1R 1

2

mR–1Im+ 1
2

(R) + Im+ 3
2

(R) + αIm+ 1
2

(R)

Im+ 1
2

(r)

r 1
2

. (3.16)
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Hence, the solution of problem (3.4)–(3.5) is given by

σ1(r, θ ,ϕ) =
–λ1R 1

2

mR–1Im+ 1
2

(R) + Im+ 3
2

(R) + αIm+ 1
2

(R)

Im+ 1
2

(r)

r 1
2

Ym,l(θ ,ϕ).

Similarly, β̂1(r) satisfies

β̂ ′′
1 (r) +

2
r
β̂ ′

1(r) –
m(m + 1)

r2 β̂1(r) = λβ̂1(r) for 0 < r < R,

β̂ ′
1(R) + τ β̂1(R) = –λ2,

where

λ2 =
τ β̄

τ +
√

λg(
√

λR)

√
λ

(√
λ –

2
R

I 3
2

(
√

λR)

I 1
2

(
√

λR)
+ τ

I 3
2

(
√

λR)

I 1
2

(
√

λR)

)
.

The solution of the above problem is given explicitly by

β̂1(r) =
–λ2R 1

2

mR–1Im+ 1
2

(
√

λR) +
√

λIm+ 3
2

(
√

λR) + τ Im+ 1
2

(
√

λR)

Im+ 1
2

(
√

λr)

r 1
2

. (3.17)

Correspondingly, the solution of problem (3.6)–(3.7) is as follows:

β1(r, θ ,ϕ) =
–λ2R 1

2

m
R Im+ 1

2
(
√

λR) +
√

λIm+ 3
2

(
√

λR) + τ Im+ 1
2

(
√

λR)

Im+ 1
2

(
√

λr)

r 1
2

Ym,l(θ ,ϕ).

It remains to solve p1. On the boundary, from (3.9), (3.10), we get

p̂1(R) = –
γ

R2

(
1 –

m(m + 1)
2

)
.

Let η̂ = p̂1 + μσ̂1 – ν
λ
β̂1; then η̂(r) satisfies the following problem:

η̂′′ +
2
r
η̂′ –

m(m + 1)
r2 η̂ = 0 for 0 < r < R,

η̂(R) = p̂1(R) + μσ̂1(R) –
ν

λ
β̂1(R).

By the modified Bessel functions and (3.16), (3.17), it admits a solution of the form

η̂(r) = C̃1rm

with

C̃1 =
1

Rm

[
–

γ

R2

(
1 –

m(m + 1)
2

)
–

μλ1

hm(R) + α
+

ν

λ

λ2√
λhm(

√
λR) + τ

]
,
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where

hm(R) =
m
R

+
Im+ 3

2
(R)

Im+ 1
2

(R)
.

Therefore, the solution of problem (3.8) and (3.9) is given by

p1(r, θ ,ϕ)

=
[

–
γ

R2

(
1 –

m(m + 1)
2

)
–

μλ1

hm(R) + α
+

ν

λ

λ2√
λhm(

√
λR) + τ

](
r
R

)m

Ym,l(θ ,ϕ)

– μσ1(r, θ ,ϕ) +
ν

λ
β1(r, θ ,ϕ).

Rigorous justification. For S ∈ Ck+ζ (
∑

), k ≥ 3, we set �ε = {r < R+εS}. Note that (σ ,β , p)
is defined only on �ε , while (σs,βs, ps) is defined on whole R

3, and (σ1,β1, p1) is defined
on BR. We need to transform all these functions to the same domain �ε by the Hanzawa
transformation, which is a diffeomorphism defined by

(r, θ ,ϕ) = Hε

(
r′, θ ′,ϕ′) =

(
r′ + χ

(
R – r′)εS

(
θ ′,ϕ′), θ ′,ϕ′),

where

χ ∈ C∞, χ (z) =

⎧
⎨

⎩
0, if |z| ≥ 3δ0/4,

1, if |z| < δ0/4,

∣∣
∣∣
dkχ

dzk

∣∣
∣∣ ≤ C2

δk
0

.

Observe that Hε maps BR onto �ε , while keeping the ball {r < R–(3δ0/4)} fixed. The inverse
Hanzawa transformation H–1

ε maps �ε onto BR. Set

σ̃1(r, θ ,ϕ) = σ1
(
H–1

ε (r, θ ,ϕ)
)

in �ε .

Then σ , σs, and σ̃1 are all defined on the same domain �ε .
The Schauder estimates yield the following results (see Lemma 3.2 of [24]):

‖σ – σs – εσ̃1‖C3+ζ (�ε ) ≤ C|ε|2‖S‖C3+ζ (
∑

),

‖β – βs – εβ̃1‖C3+ζ (�ε) ≤ C|ε|2‖S‖C3+ζ (
∑

),

‖p – ps – εp̃1‖C1+ζ (�ε ) ≤ C|ε|2‖S‖C3+ζ (
∑

),

where C is independent of ε and S. This indicates that the expansions in (3.1)–(3.3) are
rigorous. We shall prove that it also satisfies the boundary condition (1.7).

4 Symmetry-breaking solutions
In this section, we reduce problem (1.1)–(1.7) to a bifurcation problem by taking the
aggressive parameter γ as a bifurcation parameter, then we obtain the existence of
symmetry-breaking solutions by using the following Crandall–Rabinowitz bifurcation
theorem (see Theorem 1.7 in [29]).
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Theorem 4.1 (Crandall–Rabinowitz theorem) Let X, Y be real Banach spaces and F(x,γ )
be a Cp map, p ≥ 3, of a neighborhood (0,γ0) in X ×R into Y . Suppose

(i) F(0,γ ) = 0 for all γ in a neighborhood of γ0;
(ii) There exists x0 ∈ X such that Ker[Fx(0,γ0)] is a one-dimensional space spanned by

x0;
(iii) Im[Fx(0,γ0)] = Y1 has codimension 1;
(iv) [Fγ x](0,γ0)x0 /∈ Y1.

Then (0,γ0) is a bifurcation point of the equation F(x,γ ) = 0 in the following sense: In a
neighborhood of (0,γ0) the set of solutions of F(x,γ ) = 0 consists of two Cp–2 smooth curves
�1 and �2 which intersect only at the point (0,γ0); �1 is the curve (0,γ ) and �2 can be
parameterized as follows:

�2 :
(
x(ε),γ (ε)

)
, |ε| small ,

(
x(0),γ (0)

)
= (0,γ0), x′(0) = x0.

For each R̃(θ ,ϕ), γ , define a function F by

F(R̃,γ ) =
∂p
∂n

∣∣
∣∣
∂�ε

. (4.1)

Then (σ ,β , p) given by (3.1)–(3.3) is a solution of problem (1.1)–(1.7) if and only if
F(R̃,γ ) = 0 for some R̃ and γ . In order to apply the Crandall–Rabinowitz theorem, we
need to compute the Fréchet derivative of F(R̃,γ ). An easy computation gives that

[
∂F
∂R̃

(0,γ )
]

S(θ ,ϕ) =
∂2ps(R)

∂r2 S(θ ,ϕ) +
∂p1

∂r
(R, θ ,ϕ).

Setting S(θ ,ϕ) = Ym,l(θ ,ϕ) as that in the last section, we compute the two terms on the
right-hand side of the above equality:

∂2ps(R)
∂r2 = –μ

(
ασ̄

α + g(R)
– σ̃

)
+ ν

τ β̄

τ +
√

λg(
√

λR)
,

∂p1

∂r
(R, θ ,ϕ) = –μ

∂σ1

∂r
(R, θ ,ϕ) +

ν

λ

∂β1

∂r
(R, θ ,ϕ) +

m
R

[(
m(m + 1)

2
– 1

)
γ

R2

–
μλ1

hm(R) + α
+

ν

λ

λ2√
λhm(

√
λR) + τ

]
Ym,l(θ ,ϕ),

where

∂σ1(R, θ ,ϕ)
∂r

= –ασ1(R, θ ,ϕ) – λ1Ym,l(θ ,ϕ) =
–λ1hm(R)
hm(R) + α

Ym,l(θ ,ϕ),

∂β1(R, θ ,ϕ)
∂r

= –τβ1(R, θ ,ϕ) – λ2Ym,l(θ ,ϕ)

=
–λ2(mR–1 +

√
λ

Im+ 3
2

(
√

λR)

Im+ 1
2

(
√

λR)
)

mR–1 +
√

λ
Im+ 3

2
(
√

λR)

Im+ 1
2

(
√

λR)
+ τ

Ym,l(θ ,ϕ)

=
–λ2

√
λhm(

√
λR)√

λhm(
√

λR) + τ
Ym,l(θ ,ϕ).
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Therefore, we have

∂p1(R, θ ,ϕ)
∂r

=
[

mγ

R3

(
m(m + 1)

2
– 1

)
+

μλ1

hm(R) + α

Im+ 3
2

(R)

Im+ 1
2

(R)

–
ν

λ

λ2√
λhm(

√
λR) + τ

√
λ

Im+ 3
2

(
√

λR)

Im+ 1
2

(
√

λR)

]
Ym,l(θ ,ϕ).

The equation

[
∂F
∂R̃

(0,γ )
]

Ym,l(θ ,ϕ) = 0

is then reduced to γ Am – Bm = 0, where

Am =
m
R3

(
m(m + 1)

2
– 1

)
=

m(m – 1)(m + 2)
2R3 ,

Bm = μ

(
ασ̄

α + g(R)
– σ̃

)
– ν

τ β̄

τ +
√

λg(
√

λR)
–

μλ1

hm(R) + α

Im+ 3
2

(R)

Im+ 1
2

(R)

+
ν√
λ

λ2√
λhm(

√
λR) + τ

Im+ 3
2

(
√

λR)

Im+ 1
2

(
√

λR)
.

Denote

γm =
Bm

Am
. (4.2)

We now proceed to establishing our main lemma.

Lemma 4.1 If μ( α
α+1 σ̄ – σ̃ ) – νβ̄ > 0, then there exists m∗ ∈ N such that γm is positive for

m > m∗ and decreases with respect to m for m > m∗; moreover, limm→∞ γm = 0.

Proof From the property of modified Bessel functions (3.15), we get

Im+ 3
2

(r)

Im+ 1
2

(r)
=

(2m + 1)m+1

(2m + 3)m+2

[
1 + O

(
1
m

)]
er

=
r

2m
+ O

(
1

m2

)
.

Denote

qm(R) = –
μλ1

hm(R) + α

Im+ 3
2

(R)

Im+ 1
2

(R)
+

ν√
λ

λ2√
λhm(

√
λR) + τ

Im+ 3
2

(
√

λR)

Im+ 1
2

(
√

λR)
.

Then

qm(R) ∼
[

–
μλ1

m
R + R

2m + α
+ ν

λ2
m
R + λR

2m + τ

]
R

2m
+ O

(
1

m2

)
as m → ∞. (4.3)
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In view of (4.2), we can rewrite γm as

γm =
Bm(R)
Am(R)

=
[
μ

(
ασ̄

α + g(R)
– σ̃

)
– ν

τ β̄

τ +
√

λg(
√

λR)
+ qm(R)

]
· 2R3

m(m – 1)(m + 2)
. (4.4)

Since μ( α
α+1 σ̄ – σ̃ ) – νβ̄ > 0 and 0 < g(R) < 1 imply that μ( α

α+g(R) σ̄ – σ̃ ) – νβ̄ τ

τ+
√

λg(
√

λR)
> 0,

the lemma follows from (4.3) and (4.4). �

Moreover, it is seen from (4.4) that the following lemma holds.

Lemma 4.2 γm decreases with respect to β̄ .

In the following, we show that (0,γm) is the bifurcation point of the equation F(R̃,γ ) = 0
for sufficiently large m.

For m∗ given in Lemma 4.1, define m∗∗ as follows: if min{γ2,γ3, . . . ,γm∗} ≤ 0, then m∗∗ =
m∗ + 1; otherwise,

m∗∗ = inf
{

m ∈N
+ : γm < min{γ2,γ3, . . . ,γm∗}}.

Let us introduce the Banach spaces:

Xn+ζ =
{

R̃ ∈ Cn+ζ (�), R̃ is π-periodic in θ , 2π-periodic in ϕ
}

,

Xn+ζ
2 =

{
closure of the linear space spanned by {Yj,0, j = 0, 2, 4, . . . } in Xn+ζ

}
.

Then F(R̃,γ ) maps X3+ζ to Xζ . We choose X = X3+ζ
2 (

∑
), Y = Xζ

2 (
∑

).
We have proved in Lemma 4.1 that γm are all distinct for even integer m ≥ m∗∗, so

Ker
[
FR̃(0,γm)

]
= span{Ym,0}.

On the other hand, FR̃(0,γm)Yk,0 = (γmAk – Bk)Yk,0, where γmAk – Bk �= 0 for k �= m. This
suggests that

Im
[
FR̃(0,γm)

]
+ Ker

[
FR̃(0,γm)

]
= Y .

Note that

[
Fγ R̃(0,γm)

]
Ym,0 = AmYm,0 /∈ Im

[
FR̃(0,γm)

]
.

By the Crandall–Rabinowitz theorem and Lemma 4.1, for even integer m ≥ m∗∗, (0,γm)
is a bifurcation point of the equation F(R̃,γ ) = 0. From the definition of F(R̃,γ ) given in
(4.1), we have shown the existence of symmetry-breaking solutions to system (1.1)–(1.7).

Now, we conclude our main result as follows.

Theorem 4.2 If μ( α
α+1 σ̄ – σ̃ ) – νβ̄ > 0, then there is a positive integer m∗∗ such that, for

every even m > m∗∗, (0,γm) is a bifurcation point of the equation F(R̃,γ ) = 0, then γm is a
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bifurcation point of problem (1.1)–(1.7), and the corresponding branch of solutions has the
expressions:

σε = σs + εσ̂1Ym,0(θ ,ϕ) + O
(
ε2),

βε = βs + εβ̂1Ym,0(θ ,ϕ) + O
(
ε2),

pε = ps + εp̂1Ym,0(θ ,ϕ) + O
(
ε2),

with its free boundaries of the form r = Rs + εYm,0(θ ,ϕ) + O(ε2).

Remark 4.1 Since μ( α
α+g(R) σ̄ – σ̃ ) – νβ̄ τ

τ+
√

λg(
√

λR)
> 0 if 0 < λ ≤ 1, combining Theorem 2.1,

we see that Theorem 4.2 is also valid for μ(σ̄ – σ̃ ) – νβ̄ > 0 and 0 < λ ≤ 1.

5 Conclusion
Our results indicate that a tumor with an angiogenesis and inhibitor is associated with
the growth of protrusions. In our model, these protrusions are expressed by the shape
r = Rs + εYm,0(θ ,ϕ) + O(ε2) of the free boundary. The aggressiveness of a tumor could be
measured by the surface tension coefficient γ . The smaller γ is the easier it is for the tumor
to migrate. And Lemma 4.2 implies that for the same branch protrusion, more supply of
inhibitors would require a smaller tumor aggressiveness parameter to develop the same
protrusions. Namely, the inhibitor could reduce the tendency of the tumor’s evolution into
an invasive state.
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