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Abstract
In this paper, we study the following critical system with fractional Laplacian:

⎧
⎪⎨

⎪⎩

(–�)su + λ1u =μ1|u|2∗–2u + αγ
2∗ |u|α–2u|v|β in �,

(–�)sv + λ2v =μ2|v|2∗–2v + βγ
2∗ |u|α|v|β–2v in �,

u = v = 0 in R
N \ �,

where (–�)s is the fractional Laplacian, 0 < s < 1, μ1,μ2 > 0, 2∗ = 2N
N–2s is a fractional

critical Sobolev exponent, N > 2s, 1 < α, β < 2, α + β = 2∗, � is an open bounded set
of RN with Lipschitz boundary and λ1,λ2 > –λ1,s(�), λ1,s(�) is the first eigenvalue of
the non-local operator (–�)s with homogeneous Dirichlet boundary datum. By using
the Nehari manifold, we prove the existence of a positive ground state solution of the
system for all γ > 0. Via a perturbation argument and using the topological degree
and a pseudo-gradient vector field, we show that this system has a positive higher
energy solution. Then the asymptotic behaviors of the positive ground state solutions
are analyzed when γ → 0.
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1 Introduction
The fractional Laplacian operator and fractional Sobolev space arise in a quite natural way
in many different contexts, such as the thin obstacle problem, finance, phase transitions,
anomalous diffusion, flame propagation and many others (see [1–4] and the references
therein). In recent years, the corresponding non-local equation or systems involving frac-
tional Laplacian with nonlinear terms have attracted the attention of many researchers,
both for their interesting theoretical structure and their concrete applications (see [5–11]
and the references therein).

There have been a lot of studies that consider a Laplacian equation or a Laplacian sys-
tem (see [12–16] and the references therein). Compared to the Laplacian problem, the
fractional Laplacian problem is non-local and more difficult to handle. For the following
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fractional Laplacian equation:

⎧
⎨

⎩

(–�)su = f (x, u) in �,

u = 0 on R
N \ �.

(1)

Servadei and Valdinoci [17] showed that (1) has mountain pass type solution which is not
identically zero. When f (x, u) = λuq + u2∗–1, Barrios, Colorado, Servadei and Soria [18]
obtained the existence and multiplicity solutions for system (1) under different conditions
of λ.

For the following fractional Laplacian equation:

⎧
⎨

⎩

(–�)su = f (x, u) in �,

u = 0 on ∂�.
(2)

Caffarelli and Silvestre [19] studied an extension problem related to the fractional Lapla-
cian in R

n, which can transform the non-local problem into a local problem in R
n+1
+ . This

method can be extended to bounded regions and is extensively used in recent articles. For
example, when f (x, u) = λuq + u n+s

n–s , Barrios, Colorado, de Pablo and Sánchez [5] proved
the existence and multiplicity of solutions for equation (2) under suitable conditions of s
and q. When f (x, u) = |u|2∗–2u + f (x) Colorado, de Pablo and Sánchez [6] proved the ex-
istence and the multiplicity of solutions for equation (2) under appropriate conditions on
the size of f .

The following Brézis–Nirenberg problem for the fractional Laplacian:

⎧
⎨

⎩

(–�)su + λiu = |u|2∗–2u in �,

u = 0 in R
N \ �,

has been investigated by Servadei and Valdinoci [20, 21] and obtained a non-trivial solu-
tions.

It is also natural to study the coupled system of equations. Li and Yang [22] considered
the following subcritical case fractional Laplacian system:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su = λ|u|q–2u + 2α
α+β

|u|α–2u|v|β in �,

(–�)sv = μ|v|q–2v + 2β

α+β
|u|α|v|β–2v in �,

u = 0, v = 0 on R
N \ �,

by using the Nehari manifold, fibering maps and the Lusternik–Schnirelmann category,
they prove that the problem has at least cat(�) + 1 distinct positive solutions, where cat(�)
denotes the Lusternik–Schnirelmann category of � in itself. When the boundary condi-
tions are replaced by u = 0, v = 0 on ∂�, X. He, Squassina and Zou [23] using variational
methods and a Nehari manifold decomposition proved that the system admits at least two
positive solutions when the pair of parameters (λ,μ) belong to certain subset of R2.
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We address the following critical system involving a fractional Laplacian:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su + λ1u = μ1|u|2∗–2u + αγ

2∗ |u|α–2u|v|β in �,

(–�)sv + λ2v = μ2|v|2∗–2v + βγ

2∗ |u|α|v|β–2v in �,

u = v = 0 in R
N \ �,

(3)

where (–�)s is the fractional Laplacian, 0 < s < 1, μ1,μ2 > 0, 2∗ = 2N
N–2s is a fractional critical

Sobolev exponent, N > 2s, 1 < α, β < 2, α + β = 2∗, � is an open bounded set of RN with
Lipschitz boundary and λ1,λ2 > –λ1,s(�), λ1,s(�) is the first eigenvalue of the non-local
operator (–�)s with homogeneous Dirichlet boundary datum.

The fractional Laplacian (–�)s is defined by

–(–�)su(x) =
C(N , s)

2

∫

RN

u(x + y) + u(x – y) – 2u(x)
|y|N+2s dy, x ∈R

N ,

with

C(N , s) =
(∫

RN

1 – cos(ς1)
|ς |N+2s dς

)–1

= 22sπ– N
2

�( N+2s
2 )

�(2 – s)
s(1 – s).

Guo, Luo and Zou [11], showed that when λ1,λ2 ∈ (–λ1,s(�), 0), (3) has a positive ground
state solution for all γ > 0. For more recent advances on this topic, see [24–26] and the
references therein.

In [27], we have consider the following critical system:

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su = μ1|u|2∗–2u + αγ

2∗ |u|α–2u|v|β in R
n,

(–�)sv = μ2|v|2∗–2v + βγ

2∗ |u|α|v|β–2v in R
n,

u, v ∈ Ds(Rn).

By using the Nehari manifold, under proper conditions, we establish the existence and
nonexistence of a positive least energy solution of the above system.

In this paper, we study system (3) from another aspect to obtain the ground state so-
lutions, higher energy solution and an analysis the asymptotic behaviors of the positive
ground state solutions.

Let Ds(�) be Hilbert space as the completion of C∞
c (�) equipped with the norm

‖u‖2
Ds(�) =

C(N , s)
2

∫

RN

∫

RN

|u(x) – u(y)|2
|y – x|N+2s dx dy.

Let

Ss = inf
u∈Ds(RN )\{0}

‖u‖2
Ds(RN )

(
∫

RN |u|2∗ dx)
2

2∗
(4)

be the sharp embedding constant of Ds(RN ) ↪→ L2∗ (RN ) and Ss is attained (see [28]) in R
N

by ũε,y = κ(ε2 + |x – y|)– N–2s
2 , where κ �= 0 ∈R, ε > 0 and y ∈R

N . That is,

Ss =
‖̃uε,y‖2

Ds(RN )

(
∫

RN |̃uε,y|2∗ dx)
2

2∗
.
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The energy functional associated with (3) is given by

Eγ (u, v) =
1
2
∥
∥(u, v)

∥
∥2
Ds(�) +

1
2

∫

�

(
λ1u2 + λ2v2)dx

–
1
2∗

∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx,

where Ds(�) := Ds(�) × Ds(�) is endowed with norm ‖(u, v)‖2
Ds(�) = ‖u‖2

Ds(�) + ‖v‖2
Ds(�).

Define the Nehari manifold

M =
{

(u, v) ∈Ds(�)\{(0, 0)
}

:
∥
∥(u, v)

∥
∥2
Ds(�) +

∫

�

(
λ1u2 + λ2v2)dx

=
∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx
}

,

Aγ := inf
(u,v)∈M

Eγ (u, v) = inf
(u,v)∈M

s
N

(
∥
∥(u, v)

∥
∥2
Ds(�) +

∫

�

(
λ1u2 + λ2v2)dx

)

= inf
(u,v)∈M

s
N

∫

�

(
μ1|u|2∗ + μ2|v|2∗ + γ |u|α|v|β)

dx.

We say that (u, v) is a non-trivial solution of (3) if u �= 0, v �= 0 and (u, v) solves (3). Any
non-trivial solution of (3) is in M. Due to the fact that if we take ϕ,ψ ∈ C∞

0 (�) with ϕ,ψ �≡
0 and supp(ϕ) ∩ supp(ψ) = ∅, then there exist t1, t2 > 0 such that (t1ϕ, t2ψ) ∈M, so M �= ∅.

Our main results are as follows.

Theorem 1.1
(i) Assume –λ1,s(�) < min{λ1,λ2} < 0 and N > 4s. Then system (3) has a positive ground

state solution (uγ , vγ ) ∈Ds(�) with Eγ (uγ , vγ ) = Aγ for all γ > 0.
(ii) Assume –λ1,s(�) < min{λ1,λ2} < 0, N > 4s and let γn be a sequence with γn → 0 as

n → +∞. Then, passing to a subsequence, (uγn , vγn ) → (u, v) strongly in
Ds(�) × Ds(�) as n → +∞, and one of the following conclusions holds:
(1) (u, 0) is a positive ground state solution of

⎧
⎨

⎩

(–�)su + λ1u = μ1|u|2∗–2u in �;

u = 0 on R
N \ �.

(2) (0, v) is a positive ground state solution of

⎧
⎨

⎩

(–�)sv + λ2v = μ2|v|2∗–2v in �,

v = 0 on R
N \ �.

If

(
μ1

μ2

)– N–2s
2s

<
mλ2

mλ1
implies that mλ1,μ1 < mλ2,μ2 ,

then (1) holds.
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If

(
μ1

μ2

)– N–2s
2s

>
mλ2

mλ1
implies that mλ1,μ1 > mλ2,μ2 ,

then (2) holds, where mλi and mλi ,μi see Lemma 2.1 and Remark 2.1 in the next
section.

Theorem 1.2 Assume –λ1,s(�) < min{λ1,λ2} < 0 and N > 4s, then there exists a γ0 > 0
such that, for |γ | < γ0, system (3) has a positive higher energy solution (̂uγ , v̂γ ) with
Eγ (̂uγ , v̂γ ) > Aγ .

Remark 1.1 Although the method in this paper to obtain the ground state solution is dif-
ferent from Z. Guo, S. Luo and W. Zou [11], we get similar result as Theorem 1.2 in [11].

Remark 1.2 In the proof of Theorem 1.1, we should point out that 1 < α,β < 2 is an essen-
tial condition.

Remark 1.3 In the proof of Theorem 1.1, we need N > 4s, due to 1 < α,β < 2 and 2 < α+β =
2∗ < 4. For 2s < N < 4s, the method in this paper does not work and it should be interesting
to get a ground state solution.

Remark 1.4 It is easy to see that, for γ > 0 sufficiently small, the higher energy solutions in
Theorem 1.2 are different from the ground state solutions in Theorem 1.1. That is system
(3) has at least two positive solutions for λ1,λ2 < 0 and γ > 0 sufficiently small.

In order to prove Theorem 1.1, we use the classical mountain pass theorem, due to
each equation in this system is critical exponent, so the embedding for Ds(�) ↪→ L2∗ (�)
is not compact embedding. Thus, we need estimate Aγ such that Aγ is strict less than

min{μ– N–2s
2s

1
s
N S

N
2s
s ,μ– N–2s

2s
2

s
N S

N
2s
s } (see Lemma 2.4). The main idea to prove Theorem 1.2 is to

regard system (3) as a perturbation of system (24) by αγ

2∗ |u|α–2u|v|β and βγ

2∗ |u|α|v|β–2v, then
use the topological degree and the pseudo-gradient vector field to show some lemmas that
will be used to get another positive solution. The idea is originally from [29].

The paper is organized as follows. In Sect. 2, we introduce some preliminaries that will
be used to prove theorems. In Sect. 3, we prove Theorem 1.1 and Theorem 1.2 will be
proved in Sect. 4.

2 Some preliminaries
For the following fractional Brézis–Nirenberg problem:

⎧
⎨

⎩

(–�)su + λiu = μi|u|2∗–2u in �,

u = 0 on R
N \ �,

(5)

we define

Jλi ,μi (u) =
1
2
‖u‖2

Ds(�) +
1
2

∫

�

λiu2 dx –
1
2∗

∫

�

μi|u|2∗
dx



Zhen et al. Boundary Value Problems  (2018) 2018:96 Page 6 of 25

and

mλi ,μi = inf
u∈Mi

Jλi ,μi (u),

where

Mi =
{

u ∈ Ds(�)\{0} : ‖u‖2
Ds(�) +

∫

�

λiu2 dx =
∫

�

μi|u|2∗
dx

}

.

Lemma 2.1 (See [20]) When μi = 1 and assume –λ1,s(�) < min{λ1,λ2} < 0 and N > 4s,
then (5) has a non-trivial ground state solution such that

Ji(uλi ) = mλi <
s
N

S
N
2s
s , i = 1, 2. (6)

Remark 2.1 By Lemma 2.1, it is easy to see, when μi = 1, if uλi is a non-trivial ground

state solution of (5), then uλi ,μi = μ
– 1

2∗–2
i uλi is a non-trivial ground state solution of (5) for

0 < μi �= 1 and the energy of (5) satisfies

Jλi ,μi (uλi ,μi ) = mλi ,μi < μ
– N–2s

2s
i

s
N

S
N
2s
s . (7)

In order to prove Theorem 1.1, we give the following lemmas.

Lemma 2.2 Define Âγ := infσ∈� maxt∈[0,1] Eγ (σ (t)), then there exist a sequence {(un, vn)} ⊂
Ds(�) such that

Eγ (un, vn) → Âγ and E′
γ (un, vn) → 0 as n → +∞, (8)

where

� =
{
σ ∈ C

(
[0, 1],Ds(�)

)
: σ (0) = (0, 0),σ (1) = (u0, v0)

}
.

Proof We first claim that Eγ possesses a mountain pass geometry around (0, 0);
(1) there exist α,ρ > 0, such that Eγ (u, v) > α for all ‖(u, v)‖Ds(�) = ρ ;
(2) there exist (u0, v0) ∈Ds(�) such that ‖(u0, v0)‖Ds(�) > ρ and Eγ (u0, v0) < 0.
Since λ1,λ2 > –λ1,s(�) and the Sobolev embedding theorem Ds(�) ↪→ L2(�), it is easy

to see ‖ · ‖λi , i = 1, 2, are equivalent to ‖ · ‖Ds(�), where ‖u‖λi = (‖u‖2
Ds(�) +

∫

�
λiu2 dx) 1

2 . On
the one hand, by the Hölder inequality and the Young inequality, we have

∫

�

|u|α|v|β dx ≤ α

2∗

∫

�

|u|2∗
dx +

β

2∗

∫

�

|v|2∗
dx.

Hence

Eγ (u, v) =
1
2
∥
∥(u, v)

∥
∥2
Ds(�) +

1
2

∫

�

(
λ1u2 + λ2v2)dx

–
1
2∗

∫

�

(
μ1|u|2∗ + μ2|v|2∗ + γ |u|α|v|β)

dx
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≥ 1
2
∥
∥(u, v)

∥
∥2
Ds(�) +

1
2

∫

�

(
λ1u2 + λ2v2)dx

–
1
2∗

∫

�

(
(μ1 + αγ )|u|2∗ + (μ2 + βγ )|v|2∗)

dx

≥ C1
∥
∥(u, v)

∥
∥2
Ds(�) – C2

∥
∥(u, v)

∥
∥2∗
Ds(�).

Choose ρ > 0 sufficiently small, if ‖(u, v)‖2
Ds(�) = ρ , then

Eγ (u, v) ≥ C1
∥
∥(u, v)

∥
∥2
Ds(�) – C2

∥
∥(u, v)

∥
∥2∗
Ds(�) >

1
4

C1ρ
2 > 0.

On the other hand, we can choose ϕ,ψ ∈ C∞
0 (�) with ϕ,ψ �≡ 0 and suup(ϕ) ∩ suup(ψ) = ∅,

then there exists t0 > 0 such that Eγ (t0ϕ, t0ψ) < 0 and ‖(t0ϕ, t0ψ)‖2
Ds(�) > ρ . Then we can

take (u0, v0) = (t0ϕ, t0ψ).
By the mountain pass theorem, for the constant 0 < Âγ := infσ∈� maxt∈[0,1] Eγ (σ (t)), there

exists a (PS)Âγ
sequence {(un, vn)} ⊂Ds(�), that is,

Eγ (un, vn) → Âγ and E′
γ (un, vn) → 0 as n → +∞,

where

� =
{
σ ∈ C

(
[0, 1],Ds(�)

)
: σ (0) = (0, 0),σ (1) = (u0, v0)

}
. �

Lemma 2.3 Âγ = infDs(�)\{(0,0)} maxt>0 Eγ (tu, tv) = Aγ .

Proof For any (u, v) ∈Ds(�) with (u, v) �= (0, 0), there exists a unique tγ ,u,v > 0 such that

max
t>0

Eγ (tu, tv) = Eγ (tγ ,u,vu, tγ ,u,vv)

=
s
N

t2
γ ,u,v

(
∥
∥(u, v)

∥
∥2
Ds(�) +

∫

�

(
λ1u2 + λ2v2)dx

)

=
s
N

t2∗
γ ,u,v

∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx,

where tγ ,u,v > 0 satisfies

t2∗–2
γ ,u,v =

‖(u, v)‖2
Ds(�) +

∫

�
(λ1u2 + λ2v2) dx

∫

�
(μ1|u|2∗ + μ2|v|2∗ + γ |u|α|v|β ) dx

, (9)

which implies that (tγ ,u,vu, tγ ,u,vv) ∈ M. Combining this with maxt>0 Eγ (tu, tv) = Eγ (tγ ,u,vu,
tγ ,u,vv), by the definition of Aγ and Âγ , we can deduce that

Âγ = inf
Ds(�)\{(0,0)}

max
t>0

Eγ (tu, tv) = Aγ . �

Lemma 2.4 Aγ < min{mλ1,μ1 , mλ2,μ2} < min{μ– N–2s
2s

1
s
N S

N
2s
s ,μ– N–2s

2s
2

s
N S

N
2s
s }.

Proof By Remark 2.1, we obtain min{mλ1,μ1 , mλ2,μ2} < min{μ– N–2s
2s

1
s
N S

N
2s
s ,μ– N–2s

2s
2

s
N S

N
2s
s }.

Next we prove that Aγ < mλ1,μ1 and Aγ < mλ2,μ2 .
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Define a function H : R2 →R by

H(t, τ ) = �(tuλ1,μ1 , tτvλ2,μ2 ),

where

�(u, v) =
∥
∥(u, v)

∥
∥2
Ds(�) +

∫

�

(
λ1u2 + λ2v2)dx –

∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx.

Since H(1, 0) = 0 and Ht(1, 0) �= 0, by the implicit function theorem, there exist δ > 0 and a
function t(τ ) ∈ C1(–δ, δ) such that

t(0) = 1, t′(τ ) = –
Hτ (t, τ )
Ht(t, τ )

and H
(
t(τ ), τ

)
= 0, ∀τ ∈ (–δ, δ),

which implies that

(
t(τ )uλ1,μ1 , t(τ )τvλ2,μ2

) ∈M, ∀τ ∈ (–δ, δ).

Since 1 < β < 2, by direct calculation, we have

lim
τ→0

t′(τ )
|τ |β–2τ

=
–βγ

∫

�
uλ1,μ1 vλ2,μ2 dx

(2∗ – 2)
∫

�
μ1|uλ1,μ1 |2∗ dx

< 0.

That is,

t′(τ ) =
–βγ

∫

�
uλ1,μ1 vλ2,μ2 dx

(2∗ – 2)
∫

�
|uλ1,μ1 |2∗ dx

|τ |β–2τ
(
1 + o(1)

)
as τ → 0.

So

t(τ ) = 1 –
γ

∫

�
uλ1,μ1 vλ2,μ2 dx

(2∗ – 2)
∫

�
μ1|uλ1,μ1 |2∗ dx

|τ |β(
1 + o(1)

)
as τ → 0.

Consequently, we have

t2∗
(τ ) = 1 –

2∗γ
∫

�
uλ1,μ1 vλ2,μ2 dx

(2∗ – 2)
∫

�
μ1|uλ1,μ1 |2∗ dx

|τ |β(
1 + o(1)

)
as τ → 0.

Thus

Aγ ≤ Eγ

(
t(τ )uλ1,μ1 , t(τ )τvλ2,μ2

)
–

1
2
�(tuλ1,μ1 , tτvλ2,μ2 )

≤ s
N

t2∗
(τ )

∫

�

(
μ1|uλ1,μ1 |2

∗
+ τ 2∗

μ2|vλ2,μ2 |2
∗

+ γ τβ |uλ1,μ1 |α|vλ2,μ2 |β
)

dx

≤ s
N

∫

�

μ1|uλ1,μ1 |2
∗

dx – |τ |β βγ

2∗

∫

�

|uλ1,μ1 |α|vλ2,μ2 |β dx + o
(|τ |β)

<
s
N

∫

�

μ1|uλ1,μ1 |2
∗

dx = mλ1,μ1 , as |τ | > 0 small enough.

Hence Aγ < mλ1,μ1 . Similarly, by the same arguments, we have Aγ < mλ2,μ2 .
This completes the proof of Lemma 2.4. �
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3 Proof of Theorem 1.1
In this section, we prove the first part of Theorem 1.1 by two steps. We prove the existence
of ground state solutions for system (3) in step one, then we claim there exist a positive
ground state solutions. Finally, we prove the second part of Theorem 1.1.

Proof Proof of the first part of Theorem 1.1.
Step one. Prove the existence of ground state solutions for system (3).
By (8) and Lemma 2.3, there exists {(un, vn)} ⊂Ds(�) such that

lim
n→+∞ Eγ (un, vn) = Aγ , lim

n→+∞ E′
γ (un, vn) = 0.

Next, we claim {(un, vn)} is bounded in Ds(�).
Let zn = {(un, vn)}, assuming by contradiction that ‖zn‖ := ‖zn‖Ds(�) → +∞ as n → +∞.

Put

z̃n = (ũn, ṽn) =
zn

‖zn‖ =
(

un

‖zn‖ ,
vn

‖zn‖
)

.

Since {zn} is a (PS)Aγ sequence for Eγ and ‖zn‖ → +∞ as n → +∞, we have

‖zn‖2

2
∥
∥(ũn, ṽn)

∥
∥2
Ds(�) +

‖zn‖2

2

∫

�

(
λ1|ũn|2 + λ2|ṽn|2

)
dx

–
‖zn‖2∗

2∗

∫

�

(
μ1|ũn|2∗

+ μ2|ṽn|2∗
+ γ |ũn|α|ṽn|β

)
dx = Aγ + on(1), (10)

‖zn‖2∥∥(ũn, ṽn)
∥
∥2
Ds(�) + ‖zn‖2

∫

�

(
λ1|ũn|2 + λ2|ṽn|2

)
dx

– ‖zn‖2∗
∫

�

(
μ1|ũn|2∗

+ μ2|ṽn|2∗
+ γ |ũn|α|ṽn|β

)
dx = on(1). (11)

Combining (10) with (11), we obtain

s
N

‖zn‖2∗–2
∫

�

(
μ1|ũn|2∗

+ μ2|ṽn|2∗
+ γ |ũn|α|ṽn|β

)
dx = on(1),

as n → +∞, we have a contradiction. Consequently, {(un, vn)} is bounded in Ds(�). Thus,
by the Sobolev embedding theorem, there exist (u, v) ∈Ds(�) such that

⎧
⎪⎪⎨

⎪⎪⎩

(un, vn) ⇀ (u, v), weakly in Ds(�),

(un, vn) → (u, v), strongly in Lp(�) × Lp(�), for 2 ≤ p < 2∗,

(un, vn) → (u, v), a.e. �.

(12)

Consequently, we have E′
γ (u, v) = 0. Set wn = un – u and σn = vn – v. Then, by the Brézis–

Lieb lemma [30],

‖un‖2∗
2∗ = ‖u‖2∗

2∗ + ‖wn‖2∗
2∗ + on(1),

‖vn‖2∗
2∗ = ‖v‖2∗

2∗ + ‖σn‖2∗
2∗ + on(1).

(13)
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By Lemma 2.1 in [31], we also have

∫

�

|wn|α|σn|β dx =
∫

�

|un|α|vn|β dx –
∫

�

|u|α|v|β dx + on(1). (14)

We have

‖wn‖2
Ds(�) = ‖un‖2

Ds(�) – ‖u‖2
Ds(�) + on(1),

‖σn‖2
Ds(�) = ‖vn‖2

Ds(�) – ‖v‖2
Ds(�) + on(1),

(15)

and E′
γ (un, vn) → 0 as n → +∞. Combining this with (13), (14) and (15), we obtain

∥
∥(wn,σn)

∥
∥2

Ds(�) =
∫

�

(
μ1|wn|2∗ + μ2|σn|2∗ + γ |wn|α|σn|β

)
dx + on(1) (16)

and

Eγ (un, vn) = Eγ (u, v) +
1
2
∥
∥(wn,σn)

∥
∥2
Ds(�)

–
1
2∗

∫

�

(
μ1|wn|2∗

+ μ2|σn|2∗
+ γ |wn|α|σn|β

)
dx + on(1). (17)

By (16) and (17), we have

Eγ (un, vn) = Eγ (u, v) +
s
N

∥
∥(wn,σn)

∥
∥2
Ds(�) + on(1). (18)

Next, we prove that (un, vn) → (u, v) strongly in Ds(�). Let

lim
n→+∞

∥
∥(wn, 0)

∥
∥2
Ds(�) = l1, lim

n→+∞
∥
∥(0,σn)

∥
∥2
Ds(�) = l2, lim

n→+∞
∥
∥(wn,σn)

∥
∥2
Ds(�) = l,

if l = 0, then we have proved (un, vn) → (u, v) strongly in Ds(�), if l > 0 then

lim
n→+∞

∥
∥(wn,σn)

∥
∥2
Ds(�) = l1 + l2 ≥ max{l1, l2}.

Case one l1 = 0 or l2 = 0.
If l2 = 0, then (16) turns to

‖wn‖2
Ds(�) =

∫

�

μ1|wn|2∗
dx + on(1). (19)

By the Sobolev embedding Ds(�) ↪→ L2∗ (�), we have ‖wn‖2
Ds(�) ≥ Ss(

∫

�
|wn|2∗ dx)

2
2∗ ,

hence ‖wn‖2
Ds(�) ≥ μ

– 2
2∗

1 Ss(
∫

�
μ1|wn|2∗ dx)

2
2∗ combining this with (19), we can deduce that

l1 ≥ μ
– N–2s

2s
1 S

N
2s
s .

Similarly, if l1 = 0, we have

l2 ≥ μ
– N–2s

2s
2 S

N
2s
s .
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Since Eγ (u, v) ≥ 0, let n → +∞ in (18), we obtain

Aγ ≥ max

{

μ
– N–2s

2s
1

s
N

S
N
2s
s ,μ– N–2s

2s
2

s
N

S
N
2s
s

}

.

This contradicts Lemma 2.4. Thus Eγ (u, v) = Aγ and E′
γ (u, v) = 0. That is (u, v) is a non-

trivial solution of system (3).
Case two l1 �= 0, l2 �= 0 and l > 0, we prove system (3) has a ground state solution.
For case two, in order to obtain a ground state solution for (3), we borrow some ideas

from [11]. First we give the following lemma.

Lemma 3.1 (A result in [11]) Define

S̃s = inf
(u,v)∈Ds(RN )\{(0,0)}

‖(u, v)‖2
Ds(�)

(
∫

RN (μ1|u|2∗ + μ2|v|2∗ + γ |u|α|v|β ) dx)
2

2∗
,

S̃s,λ1,λ2 := inf
(u,v)∈Ds(�)\{(0,0)}

‖(u, v)‖2
Ds(�) +

∫

�
(λ1u2 + λ2v2) dx

(
∫

�
(μ1|u|2∗ + μ2|v|2∗ + γ |u|α|v|β ) dx)

2
2∗

.

Then

S̃s,λ1,λ2 < S̃s.

Let {(un, un)} be a minimizing sequence for Ss,λ1,λ2 normalized by

∫

�

(
μ1|un|2∗

+ μ2|vn|2∗
+ γ |un|α|vn|β

)
dx = 1, (20)

that is,

∥
∥(un, vn)

∥
∥2
Ds(�) +

∫

�

(
λ1u2

n + λ2v2
n
)

dx = S̃s,λ1,λ2 + on(1). (21)

Since {un} and {vn} are bounded in Ds(�), (12) holds and

∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx ≤ 1.

By (21), we have

S̃s,λ1,λ2 –
∫

�

(
λ1u2

n + λ2v2
n
)

dx + on(1) ≥ ∥
∥(un, vn)

∥
∥2
Ds(�) ≥ S̃s.

By (12) and Lemma 3.1, we have

–
∫

�

(
λ1u2 + λ2v2)dx ≥ S̃s – S̃s,λ1,λ2 > 0,

which implies that (u, v) �≡ (0, 0). By (15) and (21), we obtain

S̃s,λ1,λ2 =
∥
∥(wn,σn)

∥
∥2

Ds(�) +
∥
∥(u, v)

∥
∥2

Ds(�) +
∫

�

(
λ1u2 + λ2v2)dx + on(1). (22)
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Combining (13), (14) with (20), we have

1 =
∫

�

(
μ1|u|2∗ + μ2|v|2∗ + γ |u|α|v|β)

dx

+
∫

�

(
μ1|wn|2∗

+ μ2|σn|2∗
+ γ |wn|α|σn|β

)
dx + on(1).

Since

∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx ≤ 1

and

∫

�

(
μ1|wn|2∗

+ μ2|σn|2∗
+ γ |wn|α|σn|β

)
dx ≤ 1,

we have

1 ≤
(∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx
) 2

2∗

+
(∫

�

(
μ1|wn|2∗ + μ2|σn|2∗ + γ |wn|α|σn|β

)
dx

) 2
2∗

≤
(∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx
) 2

2∗

+
1
S̃s

∥
∥(wn,σn)

∥
∥2
Ds(�) + on(1). (23)

Combining (23), (22), Lemma 3.1 with S̃s,λ1,λ2 > 0, we have

∥
∥(u, v)

∥
∥2

Ds(�) +
∫

�

(
λ1u2 + λ2v2)dx

≤ S̃s,λ1,λ2

(∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx
) 2

2∗

+
(

S̃s,λ1,λ2

S̃s
– 1

)
∥
∥(wn,σn)

∥
∥2
Ds(�) + on(1)

≤ S̃s,λ1,λ2

(∫

�

(
μ1|u|2∗

+ μ2|v|2∗
+ γ |u|α|v|β)

dx
) 2

2∗
+ on,

which implies that

‖(u, v)‖2
Ds(�) +

∫

�
(λ1u2 + λ2v2) dx

(
∫

�
(μ1|u|2∗ + μ2|v|2∗ + γ |u|α|v|β ) dx)

2
2∗

≤ S̃s,λ1,λ2 .

Therefore, S̃s,λ1,λ2 is attained by (u, v). Thus, system (3) has a ground state solution.
Combining case one with case two, we prove that system (3) has a ground state solution.
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Step two. We claim that there exists a positive ground state solution. Since

∫

RN

∫

RN

|u(x) – u(y)|2
|x – y|N+2s dx dy –

∫

RN

∫

RN

||u(x)| – |u(y)||2
|x – y|N+2s dx dy

= 2
∫

RN

∫

RN

|u(x)||u(y)| – u(x)u(y)
|x – y|N+2s dx dy ≥ 0,

we have

|||u|||Ds(�) ≤ ‖u‖Ds(�).

Then, for the minimizing sequence (un, vn) ∈ M, we have

|||un|||2Ds(�) + |||vn|||2Ds(�) +
∫

�

(
λ1|un|2 + λ2|vn|2

)
dx

≤ ‖un‖2
Ds(�) + ‖vn‖2

Ds(�) +
∫

�

(
λ1u2

n + λ2v2
n
)

dx

=
∫

�

(
μ1|un|2∗

+ μ2|vn|2∗
+ γ |un|α|vn|β

)
dx,

this implies that there exists tn ∈ (0, 1] such that (tn|un|, tn|vn|) ∈M. Hence, we can choose
a minimizing sequence (un, vn) = (tn|un|, tn|vn|) and the weak limit (u, v) is nonnegative. By
the strong maximum principle for the fractional Laplacian (see Proposition 2.17 in [4]),
we have u and v are both positive.

Proof of the second part of Theorem 1.1
Let γn be a sequence with γn → 0 as n → +∞. {(uγn , vγn )} is bounded in Ds(�) × Ds(�),

then there exists a subsequence, still denoted by {(uγn , vγn )}, such that (uγn , vγn ) ⇀ (u, v)
weakly in Ds(�) × Ds(�). Then (u, v) satisfies

⎧
⎪⎪⎨

⎪⎪⎩

(–�)su + λ1u = μ1|u|2∗–2u in �,

(–�)sv + λ2v = μ2|v|2∗–2v in �,

u = v = 0 in R
N \ �.

(24)

Since E′
0(uγn , vγn ) → 0 and limn→+∞ E0(uγn , vγn ) = limn→+∞ Eγn (uγn , vγn ), we have

E′
0(u, v) = 0 and lim

n→+∞ E0(uγn , vγn ) = lim
n→+∞ Aγn > 0.

Next, we claim Aγ is strictly decreasing for all γ > 0.
Let γ2 > γ1 > 0, then, by (9), we have

t2∗–2
γ2,uγ1 ,vγ1

=
‖(uγ1 , vγ1 )‖2

Ds(�) +
∫

�
(λ1u2

γ1 + λ2v2
γ1 ) dx

∫

�
(μ1|uγ1 |2∗ + μ2|vγ1 |2∗ + γ2|uγ1 |α|vγ2 |β ) dx

<
‖(uγ1 , vγ1 )‖2

Ds(�) +
∫

�
(λ1u2

γ1 + λ2v2
γ1 ) dx

∫

�
(μ1|uγ1 |2∗ + μ2|vγ1 |2∗ + γ1|uγ1 |α|vγ2 |β ) dx

= 1.
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Consequently,

Aγ2 ≤ max
t>0

Eγ2 (tuγ1 , tvγ1 )

=
s
N

t2∗–2
γ2,uγ1 ,vγ1

(
∥
∥(uγ1 , vγ1 )

∥
∥2
Ds(�) +

∫

�

(
λ1u2

γ1 + λ2v2
γ1

)
dx

)

= t2∗–2
γ2,uγ1 ,vγ1

Aγ1 < Aγ1 .

Hence, Aγ is strictly decreasing for γ > 0. By Lemma 2.4 and the strictly decreasing for
Aγ , we have

0 < lim
n→+∞ Aγn ≤ A0 ≤ min{mλ1,μ1 , mλ2,μ2} < min

{

μ
– N–2s

2s
1

s
N

S
N
2s
s ,μ– N–2s

2s
2

s
N

S
N
2s
s

}

. (25)

By the same arguments as prove the first part of Theorem 1.1, we have

(uγn , vγn ) → (u, v) strongly in Ds(�) × Ds(�).

Combining this with (25), one of the following conclusions holds:
(1) (u, 0) is a positive ground state solution of

⎧
⎨

⎩

(–�)su + λ1u = μ1|u|2∗–2u in �;

u = 0 on R
N \ �.

(2) (0, v) is a positive ground state solution of

⎧
⎨

⎩

(–�)sv + λ2v = μ2|v|2∗–2v in �,

v = 0 on R
N \ �.

Since

mλ1,μ1 = μ
– N–2s

2s
1 mλ1 , mλ2,μ2 = μ

– N–2s
2s

2 mλ2

and

(
μ1

μ2

)– N–2s
2s

<
mλ2

mλ1
implies that mλ1,μ1 < mλ2,μ2 ,

by the definition of Aγ , we know that (1) holds.
Similarly, if

(
μ1

μ2

)– N–2s
2s

>
mλ2

mλ1
implies that mλ1,μ1 > mλ2,μ2 ,

then (2) occurs. This completes the proof of Theorem 1.1. �
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4 Proof of Theorem 1.2
Define

X = S1 × S2,

where

Si :=
{

u ∈ Ds(�) : J ′
λi ,μi

(u) = 0, Jλi ,μi (u) = mλi ,μi

}
, (26)

for i = 1, 2. Then we have following lemma.

Lemma 4.1 X is compact in Ds(�) and there exist constants C2 > C1 > 0 such that

C1 ≤ ‖u‖2
Ds(�) +

∫

�

λ1u2 dx, ‖v‖2
Ds(�) +

∫

�

λ2v2 dx ≤ C2, ∀(u, v) ∈ X.

Proof By Remark 2.1, we know Si is nonempty and (uλ1,μ1 , vλ2,μ2 ) ∈ X. Next, we claim Si

is compact in Ds(�). Suppose there exists a sequence {un} ⊂ S1, then {un} is a bounded
(PS)mλ1,μ1

sequence of Jλ1,μ1 and

‖un‖2
Ds(�) +

∫

�

λ1u2
n dx =

∫

�

μ1u2∗
n dx + on(1).

Thus, there exists a subsequence u∞ such that un ⇀ u∞ in Ds(�) and J ′
λ1,μ1

(u∞) = 0.

Since mλ1,μ1 ≤ μ
– N–2s

2s
1

s
N S

N
2s
s and Jλ1,μ1 satisfies the (PS)mλ1,μ1

condition, by the same ar-
guments as proving step one in Theorem 1.1, we can obtain un → u∞ strongly in Ds(�)
and u∞ ∈ S1. This proves that S1 is compact in Ds(�). Similarly, S2 is compact in Ds(�).

Since X = S1 × S2 and mλ1,μ1 > 0, mλ2,μ2 > 0, it is easy to see that X is compact and
Lemma 4.1 holds. �

By Lemma 2.3 and Remark 2.1, we have

Jλ1,μ1 (uλ1,μ1 ) = max
t>0

Jλ1,μ1 (tuλ1,μ1 ) = mλ1,μ1 ,

Jλ2,μ2 (vλ2,μ2 ) = max
s>0

Jλ2,μ2 (svλ2,μ2 ) = mλ2,μ2 .
(27)

Thus, there exist 0 < t0 < 1 < t1, 0 < s0 < 1 < s1 such that

Jλ1,μ1 (tuλ1,μ1 ) ≤ mλ1,μ1

4
for t ∈ (0, t0] ∪ [t1, +∞), (28)

Jλ2,μ2 (svλ2,μ2 ) ≤ mλ2,μ2

4
for s ∈ (0, s0] ∪ [s1, +∞). (29)

Define

σ̃1(t) := tuλ1,μ1 for 0 ≤ t ≤ t1, σ̃2(s) := svλ2,μ2 for 0 ≤ s ≤ s1,

and

σ̃ (t, s) :=
(
σ̃1(t), σ̃2(s)

)
.
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Then, there exists a constant C0 > 0 such that

max
(t,s)∈[0,t1]×[0,s1]

∥
∥σ̃ (t, s)

∥
∥
Ds(�) ≤ C0. (30)

For convenience we denote Q = [0, t1] × [0, s1]. For γ ≥ 0 and C2 as appearing in
Lemma 4.1, we define

ĉγ := inf
σ∈�̂

max
(t,s)∈Q

Eγ

(
σ (t, s)

)
, dγ = max

(t,s)∈Q
Eγ

(
σ̃ (t, s)

)
,

where

�̂ :=
{
σ ∈ C

(
Q,Ds(�)

)
: max

(t,s)∈Q

∥
∥σ (t, s)

∥
∥
Ds(�) ≤ C0 + 2C2

σ (t, s) = σ̃ (t, s), for (t, s) ∈ Q \ {
(t0, t1) × (s0, s1)

}}
. (31)

Since σ̃ (t, s) ∈ �̂, �̂ is nonempty.

Lemma 4.2 limγ→0 ĉγ = limγ→0 dγ = ĉ0 = mλ1,μ1 + mλ2,μ2 .

Proof On the one hand, since γ > 0, we have Eγ (̃σ (t, s)) ≤ E0(̃σ (t, s)). Consequently

dγ ≤ d0 = max
(t,s)∈Q

E0
(
σ̃ (t, s)

)
= max

t∈[0,t1]
Jλ1,μ1

(
σ̃1(t)

)
+ max

s∈[0,s1]
Jλ2,μ2

(
σ̃2(s)

)

= Jλ1,μ1

(
σ̃1(1)

)
+ Jλ2,μ2

(
σ̃2(1)

)
= Jλ1,μ1 (uλ1,μ1 ) + Jλ2,μ2 (vλ2,μ2 ) = mλ1,μ1 + mλ2,μ2 .

Since σ̃ ∈ �̂, we obtain ĉγ ≤ dγ , thus

lim sup
γ→0

ĉγ ≤ lim inf
γ→0

dγ ≤ lim sup
γ→0

dγ ≤ d0, ĉ0 ≤ d0. (32)

On the other hand, for any σ (t, s) = (σ1(t, s),σ2(t, s)) ∈ �̂, we define ϒ(σ ) : [t0, t1] ×
[s0, s1] →R

2 by

ϒ(σ ) :=
(
J5

(
σ1(t, s)

)
– J6

(
σ2(t, s)

)
, J5

(
σ1(t, s)

)
+ J6

(
σ2(t, s)

)
– 2

)
,

where J5, J6 : Ds(�) →R are defined by

J5(u) =

⎧
⎨

⎩

∫

� μ1|u|2∗
dx

‖u‖2
Ds(�)+

∫

� λ1|u|2 dx , if u �= 0,

0, if u = 0,
(33)

and

J6(u) =

⎧
⎨

⎩

∫

� μ2|u|2∗
dx

‖u‖2
Ds(�)+

∫

� λ2|u|2 dx , if u �= 0,

0, if u = 0.
(34)
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By the Sobolev embedding theorem Ds(�) ↪→ L2∗ (�), for any u ∈ Ds(�), we have

∫

�

μi|u|2∗
dx ≤ C

(

‖u‖2
Ds(�) +

∫

�

λi|u|2 dx
) 2∗

2
, i = 1, 2.

Consequently, we can deduce J5, J6 are continuous and

ϒ (̃σ )(t, s) =
( t2∗–2 ∫

�
μ1|uλ1,μ1 |2∗ dx

‖uλ1,μ1‖2
Ds(�) +

∫

�
λ1|uλ1,μ1 |2 dx

–
s2∗–2 ∫

�
μ2|vλ2,μ2 |2∗ dx

‖vλ2,μ2‖2
Ds(�) +

∫

�
λ2|vλ2,μ2 |2 dx

,

t2∗–2 ∫

�
μ1|uλ1,μ1 |2∗ dx

‖uλ1,μ1‖2
Ds(�) +

∫

�
λ1|uλ1,μ1 |2 dx

–
s2∗–2 ∫

�
μ2|vλ2,μ2 |2∗ dx

‖vλ2,μ2‖2
Ds(�) +

∫

�
λ2|vλ2,μ2 |2 dx

– 2
)

.

Since
∫

�

μ1|uλ1,μ1 |2
∗

dx = ‖uλ1,μ1‖2
Ds(�) +

∫

�

λ1|uλ1,μ1 |2 dx

and
∫

�

μ2|vλ2,μ2 |2
∗

dx = ‖vλ2,μ2‖2
Ds(�) +

∫

�

λ2|vλ2,μ2 |2 dx.

Thus, ϒ (̃σ )(1, 1) = (0, 0). By direct calculation, we have

deg
(
ϒ (̃σ ), [t0, t1] × [s0, s1], (0, 0)

)
= 1.

By (31), we know that, for any (t, s) ∈ ∂([t0, t1] × [s0, s1]), ϒ (̃σ )(t, s) = ϒ(σ )(t, s) �= (0, 0).
Therefore

deg
(
ϒ(σ ), [t0, t1] × [s0, s1], (0, 0)

)
= deg

(
ϒ (̃σ ), [t0, t1] × [s0, s1], (0, 0)

)
= 1.

Then there exist (t2, s2) ∈ [t0, t1] × [s0, s1] such that ϒ(σ )(t2, s2) = (0, 0), thus

J5
(
σ1(t2, s2)

)
= J6

(
σ2(t2, s2)

)
= 1.

This implies

σi(t2, s2) ∈Mi and σi(t2, s2) �= 0 for i = 1, 2.

By (7) and σi(t2, s2) ∈Mi, we have

max
(t,s)∈Q

E0
(
σ (t, s)

) ≥ E0
(
σ (t2, s2)

)

= Jλ1,μ1

(
σ1(t2, s2)

)
+ Jλ2,μ2

(
γ2(t2, s2)

)

≥ mλ1,μ1 + mλ2,μ2 = d0.

Therefore ĉ0 ≥ d0, combining this with (32), we obtain ĉ0 = d0.
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By the definition of ĉγ and dγ , we have

ĉγ ≤ dγ ≤ d0.

Next, we prove lim infγ→0 ĉγ ≥ d0. Assume by contradiction that lim infγ→0 ĉγ < d0. Then
there exist ε > 0, γn → 0 and σn = (σn,1,σn,2) ∈ �̂ such that

max
(t,s)∈Q

Eγn

(
σn(t, s)

) ≤ d0 – 2ε.

By the definition of �̂ in (31), there exists n0 large enough such that

max
(t,s)∈Q

1
2∗ γn

∣
∣
∣
∣

∫

�

∣
∣σn,1(t, s)

∣
∣α

∣
∣σn,2(t, s)

∣
∣β dx

∣
∣
∣
∣ ≤ Cγn ≤ ε, ∀n ≥ n0.

Thus, max(t,s)∈Q E0(σn(t, s)) ≤ max(t,s)∈Q Eγn (σn(t, s)) + ε ≤ d0 – ε, ∀n ≥ n0. Since ĉ0 ≤ d0,
this is a contradiction. Therefore lim infγ→0 ĉγ ≥ d0. Combining this again with (32), we
complete the proof. �

Define

Xδ :=
{

(u, v) ∈Ds(�) : dist
(
(u, v), X

) ≤ δ
}

, Ec
γ :=

{
(u, v) ∈Ds(�) : Eγ (u, v) ≤ c

}
.

Lemma 4.3 Let d > 0 be a fixed number and let {(un, vn)} ⊂ Xd be a sequence. Then up to
a subsequence, (un, vn) ⇀ (u0, v0) ∈ X2d .

Proof By Lemma 4.1 and the definition of Xd , there exists a sequence {(un, vn)} ⊂ X such
that

dist
(
(un, vn), X

)
= dist

(
(un, vn), (un, vn)

) ≤ d.

By Lemma 4.1, we also know that there exist (u, v) ∈ X such that (un, vn) → (u, v) strongly
in Ds(�). Consequently, when n is sufficiently large, we have

dist
(
(un, vn), (u, v)

) ≤ d.

Thus, {(un, vn)} is bounded and up to a subsequence, (un, vn) ⇀ (u0, v0) in Ds(�). Since
B2d(u, v) is weakly closed in Ds(�), we get (u0, v0) ∈ B2d(u, v) ⊂ X2d . �

Lemma 4.4 Let d1 := 1
2 ( Nmλ1,μ1

s ) 1
2 and d ∈ (0, d1). Suppose that there exist sequences {γj},

with γj > 0 and γj → 0, and {(uj, vj)} ⊂ Xd satisfying

lim
j→+∞ Eγj (uj, vj) ≤ ĉ0, lim

j→+∞ E′
γj

(uj, vj) = 0.

Then (uj, vj) converges strongly to an element (u, v) ∈ X.



Zhen et al. Boundary Value Problems  (2018) 2018:96 Page 19 of 25

Proof By the choice of d1 and Lemma 4.3 (uj, vj) ⇀ (u, v) ∈ X2d , we can deduce that u �≡ 0
and v �≡ 0. Since {(uj, vj)} is bounded and limj→+∞ E′

γj
(uj, vj) = 0, for all (ϕ,ψ) ∈Ds(�),

〈
E′

0(u, v), (ϕ,ψ)
〉

= 〈u,ϕ〉Ds(�) + 〈v,ψ〉Ds(�) +
∫

�

(λ1uϕ + λ2vψ) dx

–
∫

�

(
μ1|u|2∗–2uϕ + μ2|v|2∗–2vψ

)
dx

= lim
j→+∞

[
〈
E′

γj
(uj, vj), (ϕ,ψ)

〉
+

αγj

2∗

∫

�

|uj|α–2ujϕ|vj|β dx

+
βγj

2∗

∫

�

|uj|α|vj|β–2vjψ dx
]

= 0,

where

〈u,ϕ〉Ds(�) =
∫

RN

∫

RN

(u(x) – u(y))(ϕ(x) – ϕ(y))
|y – x|N+2s dx dy.

Hence, E′
0(u, v) = 0. Since (uj, vj) ∈ Xd for all j, we have

〈
E′

0(uj, vj), (ϕ,ψ)
〉

=
〈
E′

γj
(uj, vj), (ϕ,ψ)

〉
+

αγj

2∗

∫

�

|uj|α–2ujϕ|vj|β dx +
βγj

2∗

∫

�

|uj|α|vj|β–2vjψ dx

= O(1)
∥
∥(ϕ,ψ)

∥
∥
Ds(�).

We have

ĉ0 ≥ lim
j→+∞ Eγj (uj, vj)

= lim
j→+∞ E0(uj, vj) – lim

j→+∞
γj

2∗

∫

�

|uj|α|vj|β dx

= lim
j→+∞ E0(uj, vj) := m. (35)

So {(uj, vj)} is a (PS)m sequence of E0 with m := limj→+∞ E0(uj, vj). Thus, we have

E0(u, v) =
1
2
∥
∥(u, v)

∥
∥2
Ds(�) +

1
2

∫

�

(
λ1u2 + λ2v2)dx –

1
2∗

∫

�

(
μ1|u|2∗

+ μ2|v|2∗)
dx

=
s
N

[
∥
∥(u, v)

∥
∥2
Ds(�) +

∫

�

(
λ1u2 + λ2v2)dx

]

≤ s
N

lim inf
j→+∞

[
∥
∥(uj, vj)

∥
∥2
Ds(�) +

∫

�

(
λ1u2

j + λ2v2
j
)

dx
]

= lim inf
j→+∞

[

E0(uj, vj) –
1
2∗

〈
E′

0(uj, vj), (uj, vj)
〉
]

= m.

Then, by Lemma 4.2, we have m ≥ E0(u, v) ≥ ĉ0. Combining this with (35), we get m =
E0(u, v) = ĉ0. This implies (uj, vj) → (u, v) strongly in Ds(�) and (u, v) ∈ X. �
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Lemma 4.5 Let d1 be as in Lemma 4.4. For a small δ ∈ (0, d1), there exist constants 0 <
σ < 1 and γ1 > 0 such that ‖E′

γ (u, v)‖ ≥ σ for any (u, v) ∈ Edγ
γ ∩ (Xδ \ X δ

2 ) and γ ∈ (0,γ1).

Proof Assume by contradiction. Suppose there exist a number δ0 ∈ (0, d1), a positive se-
quence {γj} with limj→+∞ γj = 0 and a sequence {(uj, vj)} ∈ E

dγj
γj ∩ (Xδ0 \ X

δ0
2 ) such that

limj→+∞ E′
γj

(uj, vj) = 0. Then, by Lemma 4.2, we have

lim
j→+∞ Eγj (uj, vj) ≤ ĉ0,

{
(uj, vj)

} ⊂ Xδ0 , δ0 < d1,

and

lim
j→+∞ E′

γj
(uj, vj) = 0.

Then, by Lemma 4.4, we know there exist (u, v) ∈ X such that (uj, vj) → (u, v) strongly in
Ds(�). Hence, dist((uj, vj), X) → 0 as j → +∞. This contradicts (uj, vj) /∈ X

δ0
2 . �

In the next part of this paper, we let 0 < σ < 1, γ1 > 0 and δ ∈ (0, d1
2 ) such that the conclu-

sions in Lemma 4.5 hold.

Lemma 4.6 There exist γ2 ∈ (0,γ1) and ς > 0 such that, for any γ ∈ (0,γ2),

Eγ

(
σ̃ (t, s)

) ≥ ĉγ – ς implies that σ̃ (t, s) ∈ X
δ
2 . (36)

Proof Suppose by contradiction that there exist γn → 0, ςn → 0 and (tn, sn) ∈ Q such that

Eγn

(
σ̃ (tn, sn)

) ≥ ĉγn – ςn and σ̃ (tn, sn) /∈ X
δ
2 . (37)

We assume (tn, sn) → (t, s) ∈ Q. Since

E0
(
σ̃ (tn, sn)

) ≥ Eγn

(
σ̃ (tn, sn)

) ≥ ĉγn – ςn, (38)

we take the limit on both sides of (38), we have

E0
(
σ̃ (t, s)

) ≥ lim
n→+∞ ĉγn .

By Lemma 4.2, we have

E0
(
σ̃ (t, s)

) ≥ lim
n→+∞ ĉγn = mλ1,μ1 + mλ2,μ2 .

Combining this with (27) and (32), we can deduce that (t, s) = (1, 1). Hence,

lim
n→+∞

∥
∥σ̃ (tn, sn) – σ̃ (1, 1)

∥
∥ = 0.

However, σ̃ (1, 1) = (uλ1,μ1 , vλ2,μ2 ) ∈ X, which contradicts (37). �
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Next, we set

ς0 := min

{
ς

2
,

mλ1,μ1

4
,
δσ 2

8

}

, (39)

where δ, σ are given in Lemma 4.5, ς is from Lemma 4.6. By Lemma 4.2, we know that
there exists γ0 ∈ (0,γ2] such that

|̂cγ – dγ | < ς0,
∣
∣̂cγ – (mλ1,μ1 + mλ2,μ2 )

∣
∣ < ς0, ∀γ ∈ (0,γ0). (40)

Lemma 4.7 For fixed γ ∈ (0,γ0), there exist {(un, vn)}∞n=1 ⊂ Xδ ∩ Edγ
γ such that

E′
γ (un, vn) → 0 in Ds(�) as n → +∞.

Proof Assume by contradiction, for fixed γ ∈ (0,γ0), that there exists 0 < l(γ ) < 1 such that

∥
∥E′

γ (u, v)
∥
∥ ≥ l(γ ) on Xδ ∩ Edγ

γ .

Then there exists a pseudo-gradient vector field Tγ in Ds(�) which is defined on a neigh-
borhood Zγ of Xδ ∩ Edγ

γ such that, for any (u, v) ∈ Zγ ,

∥
∥Tγ (u, v)

∥
∥ ≤ 2 min

{
1,

∥
∥E′

γ (u, v)
∥
∥
}

,
〈
E′

γ (u, v), Tγ (u, v)
〉 ≥ min

{
1,

∥
∥E′

γ (u, v)
∥
∥
}∥
∥E′

γ (u, v)
∥
∥.

Let ηγ be a Lipschitz continuous function on Ds(�) such that

0 ≤ ηγ ≤ 1, ηγ = 1 on Xδ ∩ Edγ
γ and ηγ = 0 on Ds(�) \ Zγ .

Let ξγ be a Lipschitz continuous function on R such that

0 ≤ ξγ ≤ 1, ξγ (l) ≡ 1 if |l – ĉγ | ≤ ς

2
and ξγ (l) ≡ 0 if |l – ĉγ | ≥ ς .

Let

eγ (u, v) :=

⎧
⎨

⎩

–ηγ (u, v)ξγ (Eγ (u, v))Tγ (u, v), if (u, v) ∈ Zγ ,

0, if (u, v) ∈ H \ Zγ .
(41)

Then there exists a global solution ψγ : Ds(�) × [0, +∞) → Ds(�) for the initial value
problem

⎧
⎨

⎩

d
dθ

ψγ (u, v, θ ) = eγ (ψγ (u, v, θ )),

ψγ (u, v, 0) = (u, v).
(42)

Then we can deduce that ψγ has the following properties:
(1) ψγ (u, v, θ ) = (u, v) if θ = 0 or (u, v) ∈Ds(�) \ Zγ or |Eγ (u, v) – ĉγ | ≥ ς .
(2) ‖ d

dθ
ψγ (u, v, θ )‖ ≤ 2.

(3) d
dθ

Eγ (ψγ (u, v, θ )) = 〈E′
γ (ψγ (u, v, θ )), eγ (ψγ (u, v, θ ))〉 ≤ 0.
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In order to prove Lemma 4.7, we use the above properties, Lemma 4.5 and Lemma 4.6,
then divide two step to prove it.

Step one. We show that, for any (t, s) ∈ Q, there exists θt,s ∈ [0, +∞) such that ψγ (̃σ (t, s),
θt,s) ∈ Eĉγ –ς0

γ , where ς0 is seen in (39).
Suppose by contradiction that there exists (t, s) ∈ Q such that

Eγ (ψγ

(
σ̃ (t, s), θ

)
> ĉγ – ς0 for any θ ≥ 0.

Since ς0 < ς , by Lemma 4.6, we have σ̃ (t, s) ∈ X δ
2 . By (40), we get

Eγ

(
σ̃ (t, s)

) ≤ dγ < ĉγ + ς0.

By the property (3), we have

ĉγ – ς0 < Eγ (ψγ

(
σ̃ (t, s), θ

) ≤ dγ < ĉγ + ς0, ∀θ ≥ 0.

This implies ξγ (Eγ (ψγ (̃σ (t, s), θ ))) ≡ 1. If ψγ (̃σ (t, s), θ ) ∈ Xδ for all θ ≥ 0, then

ηγ

(
ψγ

(
σ̃ (t, s), θ

)) ≡ 1 and
∥
∥E′

γ

(
ψγ

(
σ̃ (t, s), θ

))∥
∥ ≥ l(γ ) for all θ > 0.

Consequently,

Eγ

(

ψγ

(

σ̃ (t, s),
ς

l2(γ )

))

≤ ĉγ +
ς

2
–

∫ ς

l2(γ )

0
l2(γ ) dt = ĉγ –

ς

2
,

which is a contradiction. Thus, there exists θt,s > 0 such that ψγ (̃σ (t, s), θt,s) /∈ Xδ .
Since σ̃ (t, s) ∈ X δ

2 , there exist 0 < θ1
t,s < θ2

t,s ≤ θt,s such that

ψγ

(
σ̃ (t, s), θ1

t,s
) ∈ ∂X

δ
2 , ψγ

(
σ̃ (t, s), θ2

t,s
) ∈ ∂Xδ

and

ψγ

(
σ̃ (t, s), θ

) ∈ Xδ \ X
δ
2 for all θ ∈ (

θ1
t,s, θ

2
t,s

)
.

Then, by Lemma 4.5, we have ‖E′
γ (ψγ (̃σ (t, s), θ ))‖ ≥ σ for all θ ∈ (θ1

t,s, θ2
t,s). Then, by the

property (2), we have

δ

2
≤ ∥

∥ψγ

(
σ̃ (t, s), θ2

t,s
)

– ψγ

(
σ̃ (t, s), θ1

t,s
)∥
∥ ≤ 2

∣
∣θ2

t,s – θ1
t,s

∣
∣,

thus, |θ2
t,s – θ1

t,s| ≥ δ
4 . Consequently,

Eγ

(
ψγ

(
σ̃ (t, s), θ2

t,s
)) ≤ Eγ

(
ψγ

(
σ̃ (t, s), θ1

t,s
))

+
∫ θ2

t,s

θ1
t,s

d
dθ

Eγ

(
ψγ (u, v, θ )

)
dθ

≤ ĉγ + ς0 – σ 2(θ2
t,s – θ1

t,s
) ≤ ĉγ + ς0 –

δσ 2

4

≤ ĉγ – ς0,

which is a contradiction.
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By step one we can define T(t, s) := inf{θ ≥ 0 : Eγ (ψγ (̃σ (t, s), θ )) ≤ ĉγ – ς0} and let
σ (t, s) := ψγ (̃σ (t, s), T(t, s)). Then Eγ (σ (t, s)) ≤ ĉγ – ς0 for all (t, s) ∈ Q.

Step two. We claim σ (t, s) ∈ �̂.
By (27)–(28) and (39), (40), for any (t, s) ∈ Q \ (t0, t1) × (s0, s1), we have

Eγ

(
σ̃ (t, s)

) ≤ E0
(
σ̃ (t, s)

)
= Jλ1,μ1

(
σ̃1(t)

)
+ Jλ2,μ2

(
σ̃2(s)

)

≤ mλ1,μ1

4
+ mλ2,μ2 ≤ mλ1,μ1 + mλ2,μ2 – 3ς0 < ĉγ – ς0,

which implies that T(t, s) = 0 and so σ (t, s) = σ̃ (t, s).
By the definition of �̂ in (31), we need to prove that ‖σ (t, s)‖Ds(�) ≤ 2C2 + C0 for all

(t, s) ∈ Q and T(t, s) is continuous with respect to (t, s).
For any (t, s) ∈ Q, if Eγ (̃σ (t, s)) ≤ ĉγ – ς0, we have T(t, s) = 0 and so σ (t, s) = σ̃ (t, s). By

(30), we have ‖σ (t, s)‖Ds(�) ≤ C0 < 2C2 + C0.
If Eγ (̃σ (t, s)) > ĉγ – ς0, then, by Lemma 4.6, we have σ̃ (t, s) ∈ X δ

2 and

ĉγ – ς0 < Eγ

(
ψγ

(
σ̃ (t, s), θ

) ≤ dγ < ĉγ + ς0, ∀θ ∈ [
0, T(t, s)

)
.

This implies ξγ (Eγ (ψγ (̃σ (t, s), θ ))) ≡ 1 for θ ∈ [0, T(t, s)). If ψγ (̃σ (t, s), T(t, s)) /∈ Xδ , then
there exist 0 < θ1

t,s < θ2
t,s < T(t, s) as above. Then we can prove that

Eγ (ψγ

(
σ̃ (t, s), θ2

t,s
) ≤ ĉγ – ς0,

which contradicts the definition of T(t, s). Therefore,

σ (t, s) = ψγ

(
σ̃ (t, s), T(t, s)

) ∈ Xδ .

Then there exist (u, v) ∈ X such that ‖σ (t, s) – (u, v)‖Ds(�) ≤ δ ≤ C0
2 . By Lemma 4.1, we have

∥
∥σ (t, s)

∥
∥
Ds(�) ≤ ∥

∥(u, v)
∥
∥
Ds(�) +

C0

2
≤ 2C2 + C0.

In order to prove the continuity of T(t, s), we fix any (̃t ,̃ s) ∈ Q. First, we assume that
Eγ (σ (̃t ,̃ s)) < ĉγ – ς0. Then, by the definition of T(t, s), we have T (̃t ,̃ s) = 0, that is,

Eγ

(
σ̃ (̃t ,̃ s)

)
< ĉγ – ς0.

By the continuity of σ̃ , there exists τ > 0 such that, for any (t, s) ∈ (̃t – τ ,̃ t + τ ) × (̃s – τ ,̃ s +
τ ) ∩ Q, we have Eγ (̃σ (t, s)) < ĉγ – ς0, that is, T(t, s) = 0 and T is continuous at (̃t ,̃ s). Now,
we assume that Eγ (σ (̃t ,̃ s)) = ĉγ – ς0. Then from the previous proof we have

σ (̃t ,̃ s) = ψγ

(
σ̃ (̃t ,̃ s), T (̃t ,̃ s)

) ∈ Xδ ,

and so

∥
∥E′

γ (ψγ

(
σ̃ (̃t ,̃ s), T (̃t ,̃ s)

)∥
∥ ≥ l(γ ) > 0.
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Then, for any ω > 0, we have

Eγ (ψγ

(
σ̃ (̃t ,̃ s), T (̃t ,̃ s) + ω

)
< ĉγ – ς0.

By the continuity of ψγ , there exists τ > 0 such that, for any (t, s) ∈ (̃t – τ ,̃ t + τ ) × (̃s – τ ,̃ s +
τ ) ∩ Q, we have Eγ (ψγ (̃σ (t, s)), T (̃t ,̃ s) + ω)) < ĉγ – ς0, so T(t, s) ≤ T (̃t ,̃ s) + ω. It follows that

0 < lim sup
(t,s)→(̃t,̃s)

T(t, s) ≤ T (̃t ,̃ s).

If T (̃t ,̃ s) = 0, we have

lim
(t,s)→(̃t,̃s)

T(t, s) = T (̃t ,̃ s).

If T (̃t ,̃ s) > 0, then, for any 0 < ω < T (̃t ,̃ s), by the same arguments, we have

Eγ (ψγ

(
σ̃ (̃t ,̃ s), T (̃t ,̃ s) – ω

)
> ĉγ – ς0.

By the continuity of ψγ again, we have

lim
(t,s)→(̃t,̃s)

T(t, s) = T (̃t ,̃ s).

So T is continuous at (̃t ,̃ s). This completes the proof of step two.
Now, we have proved that σ (t, s) ∈ �̂ and max(t,s)∈Q Eγ (σ (t, s)) ≤ ĉγ – ς0, which contra-

dicts the definition of ĉγ . This completes the proof. �

Proof of Theorem 1.2 Let us fix d1 := 1
2 ( Nmλ1,μ1

s ) 1
2 . By Lemma 4.7, there exists some γ0 > 0

such that, for any fixed γ ∈ (0,γ0), a Palais–Smale sequence {(uγ
n , vγ

n )} with (uγ
n , vγ

n ) ∈
Xδ exists. Since X is compact, we can deduce that {(uγ

n , vγ
n )} is bounded in Ds(�). By

Lemma 4.3, there exist (uγ , vγ ) ∈ Xd such that (uγ
n , vγ

n ) ⇀ (uγ , vγ ) weakly in Ds(�). There-
fore, E′

γ (uγ , vγ ) = 0. By the choice of d, we have uγ �= 0 and vγ �= 0. Hence, (uγ , vγ ) is the
desired solution to (3). �
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