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Abstract
In this paper, we consider the quasilinear elliptic equation with singularity and critical
exponents

⎧
⎪⎨

⎪⎩

–�pu –μ |u|p–2u
|x|p = Q(x) |u|

p∗ (t)–2u
|x|t + λu–s, in �,

u > 0, in �,

u = 0, on ∂�,

where �p = div(|∇u|p–2∇u) is a p-Laplace operator with 1 < p < N. p∗(t) := p(N–t)
N–p is a

critical Sobolev–Hardy exponent. We deal with the existence of multiple solutions for
the above problem by means of variational and perturbation methods.

Keywords: Quasilinear; Singularity; Critical; Sobolev–Hardy exponent

1 Introduction and preliminaries
The main goal of this paper is to consider the following singular boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

–�pu – μ
|u|p–2u

|x|p = Q(x) |u|p∗(t)–2u
|x|t + λu–s, in �,

u > 0, in �,

u = 0, on ∂�,

(1.1)

where � is a bounded domain in R
N , �p = div(|∇u|p–2∇u) is a p-Laplace operator with

1 < p < N . λ > 0, 0 < s < 1, 0 ≤ t < p, and 0 ≤ μ < μ̄ := ( N–p
p )p. p∗(t) := p(N–t)

N–p is a critical
Sobolev–Hardy exponent, Q(x) ∈ C(�) and Q(x) is positive on �.

In recent years, the elliptic boundary value problems with critical exponents and sin-
gular potentials have been extensively studied [2, 6, 7, 10–23, 25, 26, 28, 30–34]. In [19],
Han considered the following quasilinear elliptic problem with Hardy term and critical
exponent:

⎧
⎨

⎩

–�pu – μ
|u|p–2u

|x|p = Q(x)|u|p∗–2u + λ|u|p–2u, in �,

u = 0, on ∂�,
(1.2)
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where 1 < p < N . The existence of multiple positive solutions for (1.2) was established.
Furthermore, Hsu [21] studied the following quasilinear equation:

⎧
⎨

⎩

–�pu – μ
|u|p–2u

|x|p = Q(x)|u|p∗–2u + λf (x)|u|q–2u, in �,

u = 0, on ∂�,
(1.3)

where 1 < q < p < N . We should point out that the authors of [19, 21] both investigated
the effect of Q(x). If p = 2, μ = 0, and t = 0, Liao et al. [27] proved the existence of two
solutions for problem (1.1) by the constrained minimizer and perturbation methods.

Compared with [2, 4, 8, 12, 19, 21, 22, 29], problem (1.1) contains the singular term
λu–s. Thus, the functional corresponding to (1.1) is not differentiable on W 1,p

0 (�). We will
remove the singularity by the perturbation method. Our idea comes from [24, 27].

Definition 1.1 A function u ∈ W 1,p
0 (�) is a weak solution of problem (1.1) if, for every

ϕ ∈ W 1,p
0 (�), there holds

∫

�

(

|∇u|p–2∇u∇ϕ – μ
|u|p–2uϕ

|x|p
)

dx =
∫

�

(
Q(x)(u+)p∗(t)–1ϕ

|x|t + λ
(
u+)–s

ϕ

)

dx.

The energy functional corresponding to (1.1) is defined by

Iλ,μ(u) =
1
p

∫

�

(

|∇u|p – μ
|u|p
|x|p

)

dx –
1

p∗(t)

∫

�

Q(x)
(u+)p∗(t)

|x|t dx –
λ

1 – s

∫

�

(
u+)1–s dx.

Throughout this paper, Q satisfies
(Q1) Q(0) = QM = maxx∈� Q(x) and there exists β ≥ p(b(μ) – N–p

p ) such that

Q(x) – Q(0) = o
(|x|β)

, as x → 0,

where b(μ) is given in Sect. 1.

In this paper, we use the following notations:
(i) ‖u‖p =

∫

�
(|∇u|p – μ

|u|p
|x|p ) dx is the norm in W 1,p

0 (�), and the norm in Lp(�) is
denoted by | · |p;

(ii) C, C1, C2, C3, . . . denote various positive constants;
(iii) u+

n(x) = max{un, 0}, u–
n(x) = max{0, –un};

(iv) We define

∂Br =
{

u ∈ W 1,p
0 (�) : ‖u‖ = r

}
, Br =

{
u ∈ W 1,p

0 (�) : ‖u‖ ≤ r
}

.

Let S be the best Sobolev–Hardy constant

S := inf
u∈W 1,p

0 (�)\{0}

∫

�
(|∇u|p – μ

|u|p
|x|p ) dx

(
∫

�

|u|p∗(t)

|x|t dx)
p

p∗(t)
. (1.4)

Our main result is the following theorem.
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Theorem 1.1 Suppose that (Q1) is satisfied. Then there exists � > 0 such that, for every
λ ∈ (0,�), problem (1.1) has at least two positive solutions.

The following well-known Brézis–Lieb lemma and maximum principle will play funda-
mental roles in the proof of our main result.

Proposition 1.1 ([3]) Suppose that un is a bounded sequence in Lp(�) (1 ≤ p < ∞), and
un(x) → u(x) a.e. x ∈ �, where � ⊂R

N is an open set. Then

lim
n→∞

(∫

�

|un|p dx –
∫

�

|un – u|p dx
)

=
∫

�

|u|p dx.

Proposition 1.2 ([23]) Assume that � ⊂R
N is a bounded domain with smooth boundary,

0 ∈ �, u ∈ C1(�\{0}), u ≥ 0, u �≡ 0, and

–�pu ≥ 0 in �.

Then u > 0 in �.

By [22, 23], we assume that 1 < p < N , 0 ≤ t < p, and 0 ≤ μ < μ. Then the limiting prob-
lem

⎧
⎨

⎩

–�pu – μ up–1

|x|p = up∗(t)–1

|x|t , in R
N\{0},

u > 0, in R
N\{0}, u ∈ D1,p(RN )

has positive radial ground states

Vε(x) = ε
p–N

p Up,μ

(
x
ε

)

= ε
p–N

p Up,μ

( |x|
ε

)

∀ε > 0

that satisfy

∫

�

(
∣
∣∇Vε(x)

∣
∣p – μ

|Vε(x)|p
|x|p

)

dx =
∫

�

( |Vε(x)|p∗(t)

|x|t
)

dx = S
N–t
p–t ,

where the function Up,μ(x) = Up,μ(|x|) is the unique radial solution of the above limiting
problem with

Up,μ(1) =
(

(N – t)(μ – μ)
N – p

) 1
p∗(t)–p

,

and

lim
r→0+

ra(μ)Up,μ(r) = c1 > 0, lim
r→0+

ra(μ)+1∣∣U ′
p,μ(r)

∣
∣ = c1a(μ) ≥ 0,

lim
r→+∞ rb(μ)Up,μ(r) = c2 > 0, lim

r→+∞ rb(μ)+1∣∣U ′
p,μ(r)

∣
∣ = c2b(μ) ≥ 0,

c3 ≤ Up,μ(r)
(
r

a(μ)
ν + r

b(μ)
ν

)ν ≤ c4, ν :=
N – p

p
,
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where ci (i = 1, 2, 3, 4) are positive constants depending on N , μ, and p, and a(μ) and b(μ)
are the zeros of the function

h(t) = (p – 1)tp – (N – p)tp–1 + μ, t ≥ 0,

satisfying 0 ≤ a(μ) < ν < b(μ) ≤ N–p
p–1 .

Take ρ > 0 small enough such that B(0,ρ) ⊂ �, and define the function

uε(x) = η(x)Vε(x) = ε
p–N

p η(x)Up,μ

( |x|
ε

)

,

where η ∈ C∞
0 (�) is a cutoff function

η(x) =

⎧
⎨

⎩

1, |x| ≤ ρ

2 ,

0, |x| > ρ.

The following estimates hold when ε −→ 0:

‖uε‖p = S
N–t
p–t + O

(
εb(μ)p+p–N)

,
∫

�

|uε |p∗(t)

|x|t dx = S
N–t
p–t + O

(
εb(μ)p∗(t)–N+t).

2 Existence of the first solution of problem (1.1)
In this section, we will get the first solution which is a local minimizer in W 1,p

0 (�) for (1.1).

Lemma 2.1 There exist λ0 > 0, R,ρ > 0 such that, for every λ ∈ (0,λ0), we have

Iλ,μ(u)|u∈∂BR ≥ ρ, inf
u∈BR

Iλ,μ(u) < 0.

Proof We can deduce from Hölder’s inequality that

Iλ,μ(u) ≥ 1
p
‖u‖p –

1
p∗(t)

QMS– p∗(t)
p ‖u‖p∗(t) –

λ

1 – s
C0‖u‖1–s

= ‖u‖1–s
(

1
p
‖u‖–1+s+p –

1
p∗(t)

QMS– p∗(t)
p ‖u‖–1+s+p∗(t) –

λ

1 – s
C0

)

,

where C0 is a positive constant. Put f (x) = 1
p x–1+s+p – 1

p∗(t) QMS– p∗(t)
p x–1+s+p∗(t), we find that

there is a constant R = [ p∗(t)S
p∗(t)

p (–1+s+p)
pQM(–1+s+p∗(t)) ]

1
p∗(t)–p > 0 such that f (R) = maxx>0 f (x) > 0. Letting

λ0 = (1–s)f (R)
C0

, we have that there is a constant ρ > 0 such that Iλ,μ(u)|u∈∂BR ≥ ρ for every
λ ∈ (0,λ0).

For given R, choosing u ∈ BR with u+ �= 0, we have

lim
r→0

Iλ,μ(ru)
r1–s = lim

r→0

1
p rp‖u‖p – λr1–s

1–s
∫

�
(u+)1–s dx – rp∗(t)

p∗(t)
∫

�
Q(x) (u+)p∗(t)

|x|t dx
r1–s

= –
λ

1 – s

∫

�

(
u+)1–s dx < 0,
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since p∗(t) > p > 1 > s > 0 for 0 ≤ t < p. For all u+ �= 0 such that Iλ,μ(ru) < 0 as r → 0, that is,
‖u‖ sufficiently small, we have


 = inf
u∈BR

Iλ,μ(u) < 0. (2.1)

The proof of Lemma 2.1 is completed. �

Theorem 2.2 Problem (1.1) has a positive solution u1 ∈ W 1.p
0 (�) with Iλ,μ(u1) < 0 for λ ∈

(0,λ0), where λ0 is defined in Lemma 2.1.

Proof By Lemma 2.1, we have

1
p
‖u‖p –

1
p∗(t)

∫

�

Q(x)
(u+)p∗(t)

|x|t dx ≥ ρ, ∀u ∈ ∂BR,

1
p
‖u‖p –

1
p∗(t)

∫

�

Q(x)
(u+)p∗(t)

|x|t dx ≥ 0, ∀u ∈ BR.

(2.2)

From (2.1) we guarantee that there exists a minimizing sequence {un} ⊂ BR such that
limn→∞ Iλ,μ(un) = 
 < 0. Obviously, the minimizing sequence is a closed convex set in BR.
Going if necessary to a sequence still called {un}, there exists u1 ∈ W 1,p

0 (�) such that

⎧
⎪⎪⎨

⎪⎪⎩

un ⇀ u1, in W 1.p
0 (�),

un −→ u1, in Lp′ (�, |x|–t),

un(x) −→ u1(x), a.e. in �,

1 ≤ p′ < p∗(t), (2.3)

and
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∇un(x) −→ ∇u1(x), a.e. in �,
|un|p–2un

|x|p–1 ⇀
|u1|p–2u1

|x|p–1 , in L
p

p–1 (�),
∫

�

|un|p∗(t)–2un
|x|t v dx −→ ∫

�

|u1|p∗(t)–2u1
|x|t v dx, ∀v ∈ W 1,p

0 (�).

For s ∈ (0, 1), applying Hölder’s inequality, we obtain that

∫

�

(
u+

n
)1–s dx –

∫

�

(
u+

1
)1–s dx ≤

∫

�

∣
∣
(
u+

n
)1–s –

(
u+

1
)1–s∣∣dx

≤
∫

�

∣
∣u+

n – u+
1
∣
∣1–s dx

≤ ∣
∣u+

n – u+
1
∣
∣1–s
p |�| 1+s

p ,

thus,
∫

�

(
u+

n
)1–s dx =

∫

�

(
u+

1
)1–s dx + o(1). (2.4)

Let ωn = un – u1, by the Brézis–Lieb lemma, one has

∫

�

|∇un|p dx =
∫

�

|∇ωn|p dx +
∫

�

|∇u1|p dx + o(1), (2.5)
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∫

�

Q(x)
(u+

n)p∗(t)

|x|t dx =
∫

�

Q(x)
(ω+

n )p∗(t)

|x|t dx +
∫

�

Q(x)
(u+

1 )p∗(t)

|x|t dx + o(1). (2.6)

Noting that ‖u1‖p = |∇u1|pp – μ|u1/x|pp, we have that

lim
n→∞

(‖un‖p – ‖ωn‖p) = ‖u1‖p.

If u1 = 0, then ωn = un, it follows that ωn ∈ BR. If u1 �= 0, from (2.2), we derive that

1
p
‖ωn‖p –

1
p ∗ (t)

∫

�

Q(x)
(ω+

n )p∗(t)

|x|t dx ≥ 0. (2.7)

By (2.3)–(2.7), we have


 = Iλ,μ(un) + o(1)

=
1
p
‖un‖p –

1
p∗(t)

∫

�

Q(x)
(u+

n)p∗(t)

|x|t dx –
λ

1 – s

∫

�

(
u+

n
)1–s dx + o(1)

= Iλ,μ(u1) +
1
p
‖ωn‖p –

1
p∗(t)

∫

�

Q(x)
(ω+

n )p∗(t)

|x|t dx –
λ

1 – s

∫

�

(
ω+

n
)1–s dx + o(1)

≥ Iλ,μ(u1) + o(1).

Consequently, 
 ≥ Iλ,μ(u1) as n → ∞. Since BR is convex and closed, so u1 ∈ BR. We get
that Iλ,μ(u1) = 
 < 0 from (2.1) and u1 �≡ 0. It means that u1 is a local minimizer of Iλ,μ.

Now, we claim that u1 is a solution of (1.1) and u1 > 0. Letting r > 0 small enough, and
for every ϕ ∈ W 1.p

0 (�), ϕ ≥ 0 such that (u1 + rϕ) ∈ BR, one has

0 < Iλ,μ(u1 + rϕ) – Iλ,μ(u1)

=
1
p
‖u1 + rϕ‖p –

1
p∗(t)

∫

�

Q(x)
((u1 + rϕ)+)p∗(t)

|x|t dx –
λ

1 – s

∫

�

(
(u1 + rϕ)+)1–s dx

–
1
p
‖u1‖p +

1
p∗(t)

∫

�

Q(x)
(u+

1 )p∗(t)

|x|t dx +
λ

1 – s

∫

�

(
u+

1
)1–s dx

≤ 1
p
‖u1 + rϕ‖p –

1
p
‖u1‖p. (2.8)

Next we prove that u1 is a solution of (1.1). According to (2.8), we have

λ

1 – s

∫

�

[(
(u1 + rϕ)+)1–s –

(
u+

1
)1–s]dx

≤ 1
p
[‖u1 + rϕ‖p – ‖u1‖p] –

1
p∗(t)

∫

�

Q(x)
[((u1 + rϕ)+)p∗(t) – (u+

1 )p∗(t)]
|x|t dx.

Dividing by r > 0 and taking limit as r → 0+, we have

λ

1 – s
lim inf

r→0+

∫

�

((u1 + rϕ)+)1–s – (u+
1 )1–s

t
dx

≤
∫

�

(

|∇u1|p–2∇u1∇ϕ – μ
|u1|p–2u1ϕ

|x|p
)

dx

–
∫

�

Q(x)
(u+

1 )p∗(t)–1ϕ

|x|t dx. (2.9)
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However,

λ

1 – s
((u1 + rϕ)+)1–s – (u+

1 )1–s

t
= λ

∫

�

(
(u1 + ξrϕ)+)–s

ϕ dx,

where ξ −→ 0+ and limr→0+ ((u1 + ξrϕ)+)–sϕ = (u+
1 )–sϕ (ξ → 0+) a.e. x ∈ �. Since ((u1 +

ξrϕ)+)–sϕ ≥ 0. By Fatou’s lemma, we obtain that

λ

∫

�

(
u+

1
)–s

ϕ dx ≤ λ

1 – s
lim inf

r→0+

∫

�

((u1 + rϕ)+)1–s – (u+
1 )1–s

t
dx.

Hence, from (2.9), we obtain that

∫

�

(

|∇u1|p–2∇u1∇ϕ – μ
|u1|p–2u1ϕ

|x|p
)

dx – λ

∫

�

(
u+

1
)–s

ϕ dx

–
∫

�

Q(x)
(u+

1 )p∗(t)–1ϕ

|x|t dx ≥ 0 (2.10)

for ϕ ≥ 0. Since Iλ,μ(u1) < 0, combining with Lemma 2.1, we can derive that u1 /∈ ∂BR, thus
‖u1‖ < R. There exists δ1 ∈ (0, 1) such that (1 + θ )u1 ∈ BR (|θ | ≤ δ1). Let h(θ ) = Iλ,μ((1 +
θ )u1). Apparently, h(θ ) attains its minimum at θ = 0. Note that

h′(θ ) =
d

dθ

(
Iλ,μ(1 + θ )u1

)

= (1 + θ )p–1‖u1‖p – (1 + θ )p∗(t)–1
∫

�

Q(x)
(u+

1 )p∗(t)

|x|t dx – λ(1 + θ )–s
∫

�

(
u+

1
)1–s dx.

Furthermore,

h′(θ )|θ=0 = ‖u1‖p –
∫

�

Q(x)
(u+

1 )p∗(t)

|x|t dx – λ

∫

�

(
u+

1
)1–s dx = 0. (2.11)

Define � ∈ W 1,p
0 (�) by

� =
(
u+

1 + εψ
)+, for every ψ ∈ W 1,p

0 (�) and ε > 0,

where (u+
1 + tψ)+ = max{u+

1 + tψ , 0}. We deduce from (2.10) and (2.11) that

0 ≤
∫

�

(

|∇u1|p–2∇u1∇� – μ
|u1|p–2u1�

|x|p
)

dx –
∫

�

Q(x)
(u+

1 )p∗(t)–1�

|x|t dx

– λ

∫

�

(
u+

1
)–s

� dx

=
∫

{x|u+
1 +εψ>0}

[

|∇u1|p–2∇u1∇
(
u+

1 + εψ
)

– μ
|u1|p–2u1(u+

1 + εψ)
|x|p

– Q(x)
(u+

1 )p∗(t)–1(u+
1 + εψ)

|x|t – λ
(
u+

1
)–s(u+

1 + εψ
)
]

dx

=
(∫

�

–
∫

{x|u+
1 +εψ≤0}

)[

|∇u1|p–2∇u1∇
(
u+

1 + εψ
)

– μ
|u1|p–2u1(u+

1 + εψ)
|x|p dx
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– Q(x)
(u+

1 )p∗(t)–1(u+
1 + εψ)

|x|t – λ
(
u+

1
)–s(u+

1 + εψ
)
]

dx

≤ ‖u1‖p –
∫

�

Q(x)
(u+

1 )p∗(t)

|x|t dx – λ

∫

�

(
u+

1
)1–s dx + ε

∫

�

[

|∇u1|p–2∇u1∇ψ

– μ
|u1|p–2u1ψ

|x|p – Q(x)
(u+

1 )p∗(t)–1ψ

|x|t – λ
(
u+

1
)–s

ψ

]

dx

–
∫

{x|u+
1 +εψ≤0}

[

|∇u1|p–2∇u1∇
(
u+

1 + εψ
)

– μ
|u1|p–2u1(u+

1 + εψ)
|x|p

]

dx

+
∫

{x|u+
1 +εψ≤0}

[

Q(x)
(u+

1 )p∗(t)–1(u+
1 + εψ)

|x|t + λ
(
u+

1
)–s(u+

1 + εψ
)
]

dx

≤ ε

∫

�

[

|∇u1|p–2∇u1∇ψ – μ
|u1|p–2u1ψ

|x|p – Q(x)
(u+

1 )p∗(t)–1ψ

|x|t – λ
(
u+

1
)–s

ψ

]

dx

– ε

∫

{x|u+
1 +εψ≤0}

[

|∇u1|p–2∇u1∇ψ – μ
|u1|p–1u1ψ

|x|p
]

dx. (2.12)

Since the measure of {x | u+
1 + εψ ≤ 0} → 0 as ε → 0, we have

lim
ε→0

∫

{x|u+
1 +εψ≤0}

[

|∇u1|p–2∇u1∇ψ – μ
|u1|p–2u1ψ

|x|p
]

dx = 0.

Dividing by ε and letting ε → 0+ in (2.12), we deduce that

∫

�

[

|∇u1|p–2∇u1∇ψ – μ
|u1|p–2u1ψ

|x|p – Q(x)
(u+

1 )p∗(t)–1

|x|t ψ – λ
(
u+

1
)–s

ψ

]

dx ≥ 0.

Since ψ ∈ W 1.p
0 (�) is arbitrary, replacing ψ with –ψ , we have

∫

�

[

|∇u1|p–2∇u1∇ψ – μ
|u1|p–2u1ψ

|x|p

– Q(x)
(u+

1 )p∗(t)–1ψ

|x|t – λ
(
u+

1
)–s

ψ

]

dx = 0, ∀ψ ∈ W 1.p
0 (�), (2.13)

which implies that u1 is a weak solution of problem (1.1). Putting the test function ψ = u–
1

in (2.13), we obtain that u1 ≥ 0. Noting that Iλ,μ(u1) = 
 < 0, then u1 �≡ 0. In terms of the
maximum principle, we have that u1 > 0, a.e. x ∈ �.

The proof of Theorem 2.2 is completed. �

3 Existence of a solution of the perturbation problem
In order to find another solution, we consider the following problem:

⎧
⎨

⎩

–�pu – μ
|u|p–2u

|x|p = Q(x) (u+)p∗(t)–1

|x|t + λ(u+ + γ )–s, in �,

u = 0, on ∂�,
(3.1)
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where γ > 0 is small. The solution of (3.1) is equivalent to the critical point of the following
C1-functional on W 1,p

0 (�):

Iγ (u) =
1
p
‖u‖p –

1
p∗(t)

∫

�

Q(x)
(u+)p∗(t)

|x|t dx –
λ

1 – s

∫

�

[(
u+ + γ

)1–s – γ 1–s]dx.

For every ϕ ∈ W 1,p
0 (�), the definition of weak solution u ∈ W 1,p

0 (�) gives that

∫

�

(

|∇u|p–2∇u∇ϕ – μ
|u|p–2uϕ

|x|p
)

– λ

∫

�

(
u+ + γ

)–s
ϕ –

∫

�

Q(x)
(u+)p∗(t)–1ϕ

|x|t = 0. (3.2)

Lemma 3.1 For R,ρ > 0, suppose that λ < λ0, then Iγ satisfies the following properties:
(i) Iγ (u) ≥ ρ > 0 for u ∈ ∂BR;

(ii) There exists u2 ∈ W 1,p
0 (�) such that ‖u2‖ > R and Iγ (u2) < ρ ,

where R, ρ , and λ0 are given in Lemma 2.1.

Proof (i) By the subadditivity of t1–s, we have

(
u+ + γ

)1–s – γ 1–s ≤ (
u+)1–s, ∀u ∈ W 1,p

0 (�), (3.3)

which leads to

Iγ (u) ≥ Iλ,μ(u), ∀u ∈ W 1,p
0 (�).

Hence, if λ < λ0 for ρ,λ0 > 0, we can obtain the conclusion from Lemma 2.1.
(ii) ∀u+ ∈ W 1.p

0 (�), u+ �= 0 and r > 0, which yields

Iγ (ru) =
rp

p
‖u‖p – rp∗(t)

∫

�

Q(x)
(u+)p∗(t)

|x|t dx –
λ

1 – s

∫

�

[(
ru+ + γ

)1–s – γ 1–s]dx

≤ rp

p
‖u‖p – rp∗(t)

∫

�

Q(x)
(u+)p∗(t)

|x|t dx

→ –∞ (r → +∞).

Therefore, there exists u2 such that ‖u2‖ > R and Iγ (u2) < ρ .
This completes the proof of Lemma 3.1. �

Lemma 3.2 Assume that 0 < γ < 1. Then Iγ satisfies the (PS)c condition with c <
(p–t)

p(N–t)
S

N–t
p–t

Q
N–p
p–t

M

– Dλ
p

p+s–1 , where

D =
p + s – 1

p

{(
1

1 – s
+

N – p
p(N – t)

)

C2

[
p

(N – t)(1 – s)

] s–1
p

} p
p+s–1

.

Proof Choose {τn} ⊂ W 1,p
0 (�) satisfying

Iγ (τn) → c, and I ′
γ (τn) → 0 (n → ∞). (3.4)
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We assert that {τn} is bounded in W 1,p
0 (�). Otherwise, we assume that limn→∞ ‖τn‖ → ∞.

By (3.4), we have

c = Iγ (τn) –
1

p∗(t)
〈
I ′
γ (τn), τn

〉
+ o(1)

=
1
p
‖τn‖p –

1
p∗(t)

∫

�

Q(x)
(τ+

n )p∗(t)

|x|t dx –
λ

1 – s

∫

�

[(
τ+

n + γ
)1–s – γ 1–s]dx

–
1

p∗(t)
‖τn‖p +

1
p∗(t)

∫

�

Q(x)
(τ+

n )p∗(t)–1τn

|x|t dx +
λ

p∗(t)

∫

�

(
τ+

n + γ
)–s

τn dx + o(1)

=
(

1
p

–
1

p∗(t)

)

‖τn‖p –
λ

1 – s

∫

�

[(
τ+

n + γ
)1–s – γ –s]dx

+
λ

p∗(t)

∫

�

(
τ+

n + γ
)–s

τn dx + o(1)

≥ p – t
p(N – t)

‖τn‖p – λ

(
1

1 – s
+

1
p∗(t)

)∫

�

|τn|1–s dx + o(1)

≥ p – t
p(N – t)

‖τn‖p – λ

(
1

1 – s
+

1
p∗(t)

)

C1‖τn‖1–s + o(1).

The last inequality is absurd thanks to 0 < 1 – s < 1. That is, {τn} is bounded in W 1,p
0 (�).

Hence, up to a sequence, there exists a subsequence, still called {τn}. We assume that there
exists {τ1} ∈ W 1,p

0 (�) such that

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

τn ⇀ τ1, in W 1,p
0 (�),

τn −→ τ1, in Lp(�, |x|–t),

τn(x) −→ τ1(x), a.e. in �,

|τn(x)| ≤ h(x), a.e. in � for all n with h(x) ∈ L1(�).

1 ≤ p < p∗(t),

Since

∣
∣(τn – τ1)

(
τ+

n + γ
)–s∣∣ ≤ γ –s(h + |τ1|

)
,

it follows from the dominated convergence theorem that

lim
n→∞

∫

�

(τn – τ1)
(
τ+

n + γ
)–s dx = 0.

Furthermore, by |τ1|(τ+
n + γ )–s ≤ |τ1|γ –s, and applying the dominated convergence theo-

rem again, we have

lim
n→∞

∫

�

(
τ+

n + γ
)–s

τ1 dx =
∫

�

(
τ+

1 + γ
)–s

τ1 dx.

Thus, we deduce that

lim
n→∞

∫

�

(
τ+

n + γ
)–s

τn dx =
∫

�

(
τ+

1 + γ
)–s

τ1 dx.
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Now we prove that τn → τ1 strongly in W 1,p
0 (�). Set ωn = τn – τ1. Since I ′

λ,μ(τn) → 0 in
(W 1,p

0 (�))∗, we have

‖τn‖p –
∫

�

Q(x)
(τ+

n )p∗(t)–1τn

|x|t dx – λ

∫

�

(
τ+

n + γ
)–s

τn dx = o(1).

According to the Brézis–Lieb lemma, together with (3.4), we have

‖ωn‖p + ‖τ1‖p –
∫

�

Q(x)
(ω+

n )p∗(t)–1ωn

|x|t dx –
∫

�

Q(x)
(τ+

1 )p∗(t)–1τ1

|x|t dx

– λ

∫

�

(
τ+

1 + γ
)–s

τ1 dx = o(1),

and

lim
n→∞

〈
I ′
γ (τn), τ1

〉
= ‖τ1‖p –

∫

�

Q(x)
(τ+

1 )p∗(t)–1τ1

|x|t dx – λ

∫

�

(
τ+

1 + γ
)–s

τ1 dx = 0.

Thus

lim
n→∞‖ωn‖p = lim

n→∞

∫

�

Q(x)
(ω+

n )p∗(t)–1ωn

|x|t dx = l,

∫

�

|ωn|p∗(t)

|x|t dx ≥
∫

�

Q(x)
QM

|ωn|p∗(t)

|x|t dx ≥
∫

�

Q(x)
QM

(ω+
n )p∗(t)–1ωn

|x|t dx.

Sobolev’s inequality implies that

‖ωn‖p ≥ S
(∫

�

|ωn|p∗(t)

|x|t dx
) p

p∗(t)
.

Consequently, l ≥ S( l
QM

)
p

p∗(t) . We guarantee that l = 0. Otherwise, we suppose that

l ≥ S
N–t
p–t

Q
N–p
p–t

M

.

It follows that

c = Iγ (τn) –
1

p∗(t)
〈
I ′
γ (τn), τn

〉
+ o(1)

=
(p – t)

p(N – t)
‖τn‖p –

λ

1 – s

∫

�

[(
τ+

n + γ
)1–s – γ –s]dx +

λ

p∗(t)

∫

�

(
τ+

n + γ
)–s

τn dx + o(1)

≥ (p – t)
p(N – t)

S
N–t
p–t

Q
N–p
p–t

M

+
p – t

p(N – t)
‖τ1‖p – λ

(
1

1 – s
+

1
p∗(t)

)∫

�

|τn|1–s dx + o(1)

≥ (p – t)
p(N – t)

S
N–t
p–t

Q
N–p
p–t

M

+
p – t

p(N – t)
‖τ1‖p – λ

(
1

1 – s
+

1
p∗(t)

)

C2‖τ1‖1–s + o(1)
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≥ (p – t)
p(N – t)

S
N–t
p–t

Q
N–p
p–t

M

– Dλ
p

p+s–1 ,

which contradicts the condition of Lemma 3.2. Hence l = 0. Therefore τn → τ1.
This proof of Lemma 3.2 is finished. �

Lemma 3.3 For 0 < s < 1 and λ > 0 small enough, there exists u2 ∈ W 1,p
0 (�) such that

sup
t≥0

Iλ,μ(tu2) ≤ (p – t)
p(N – t)

S
N–t
p–t

Q
N–p
p–t

M

– Dλ
p

p–1+s , (3.5)

where D is defined in Lemma 3.2.

Proof For every r ≥ 0, we have

Iγ (ruε) =
rp

p
‖uε‖p –

rp∗(t)

p∗(t)

∫

�

Q(x)
(u+

ε )p∗(t)

|x|t dx –
λ

1 – s

∫

�

[(
ru+

ε + γ
)1–s – γ 1–s]dx,

which implies that there exists a positive constant ε0 such that

lim
r→0

Iγ (ruε) = 0, ∀ε ∈ (0, ε0),

and

lim
r→+∞ Iγ (ruε) = –∞, ∀ε ∈ (0, ε0),

where uε is defined in Sect. 1. Let

Aε(r) =
rp

p
‖uε‖p –

rp∗(t)

p∗(t)

∫

�

Q(x)
(u+

ε )p∗(t)

|x|t dx;

Bε(r) = –
1

1 – s

∫

�

[(
ru+

ε + γ
)1–s – γ 1–s]dx,

because of limr→∞ Aε(r) = –∞, Aε(0) = 0, and limr→0+ Aε(r) > 0, so Aε(r) attains its maxi-
mum at some positive number. In fact, we let

A′
ε(r) = rp–1‖uε‖p – rp∗(t)–1

∫

�

Q(x)
(u+

ε )p∗(t)

|x|t dx = 0,

therefore

r =
( ‖uε‖p

∫

�
Q(x) (u+

ε )p∗(t)

|x|t dx

) 1
p∗(t)–p

:= Tε .

Noting that A′
ε(r) > 0 for every 0 < r < Tε and A′

ε(r) < 0 for every r > Tε , our claim is proved.
Thus, the properties of Iγ (ruε) at r = 0 and r = +∞ tell us that supr≥0 Iγ (ruε) is attained for
some rε > 0.
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From condition (Q1), we have

∣
∣
∣
∣

∫

�

Q(x)
up∗(t)

ε

|x|t dx –
∫

�

QM
up∗(t)

ε

|x|t dx
∣
∣
∣
∣ ≤

∫

�

∣
∣Q(x) – Q(0)

∣
∣up∗(t)

ε

|x|t dx = O
(
εβ

)
.

It follows that

∫

�

Q(x)
up∗(t)

ε

|x|t dx = Q(0)S
N–t
p–t + O

(
εb(μ)p∗(t)–N+t) + O

(
εβ

)
. (3.6)

By (3.6), we deduce that

Aε(Tε) =
1
p

[ ‖uε‖p

∫

�
Q(x) up∗(t)

ε

|x|t dx

] p
p∗(t)–p ‖uε‖p

–
1

p∗(t)

[ ‖uε‖p

∫

�
Q(x) up∗(t)

ε

|x|t dx

] p∗(t)
p∗(t)–p

∫

�

Q(x)
up∗(t)

ε

|x|t dx

=
p – t

p(N – t)

[ ‖uε‖p

∫

�
Q(x) up∗(t)

ε

|x|t dx

] p
p∗(t)–p ‖uε‖p

≤ p – t
p(N – t)

S
N–t
p–t

(Q(0))
N–p
p–t

+ O
(
εb(μ)p+p–N)

+ O
(
εβ

)
. (3.7)

Next, we will estimate Bε . Here, we use the following inequality from [24, 27]:

x1–s – (x + y)1–s ≤ –(1 – s)y
1–s

4 x
3(1–s)

4 , 0 < x < y. (3.8)

Observe from (3.8) that

Bε(rε) ≤ 1
1 – s

∫

{x||x|≤ε
1–s
2p }

[
γ 1–s – (rεuε + γ )1–s]dx

≤ –C3

∫

{x||x|≤ε
1–s
2p }

(rεuε)
1–s

4 dx

≤ –C3

∫

{x||x|≤ε
1–s
2p }∩{η(x)=1}

[

rεε
– N–p

p Up,μ

( |x|
ε

)] 1–s
4

dx

≤ –C4

∫ ε

1–s–2p
2p

0

[
ε

– N–p
p Up,μ(y)

] 1–s
4 yN–1εN dy

≤ –C5ε
– (N–p)(1–s)

4p +N
∫ ε

1–s–2p
2p

0
y–b(μ)p+N–1 dy

≤ –C5

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
– (N–p)(1–s)

4p +N , b(μ) > N
p ,

ε
– (N–p)(1–s)

4p +N | ln ε|, b(μ) = N
p ,

ε
– (N–p)(1–s)

4p +N+ (1–s–2p)(–b(μ)p+N)
2p , b(μ) < N

p .

(3.9)
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From (3.7) and (3.9), we find that there exists a positive constant λ̃0 such that, for every
λ ∈ (0, λ̃0), one has

Iγ (rεuε) = Aε(rε) + λBε(rε)

≤ p – t
p(N – p)

S
N–t
p–t

Q
N–p
p–t

M

+ O
(
εb(μ)p–N+p) + O

(
εβ

)

– C5

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ε
– (N–p)(1–s)

4p +N , b(μ) > N
p ,

ε
– (N–p)(1–s)

4p +N | ln ε|, b(μ) = N
p ,

ε
– (N–p)(1–s)

4p +N+ (1–s–2p)(–b(μ)p+N)
2p , b(μ) < N

p ,

<
p – t

p(N – p)
S

N–t
p–t

Q
N–p
p–t

M

– Dλ
p

p+s–1 .

This completes the proof of Lemma 3.3. �

Theorem 3.4 For 0 < γ < 1, there is λ∗ > 0 such that λ ∈ (0,λ∗), problem (3.1) admits a
positive solution τγ ∈ W 1,p

0 (�) satisfying Iγ (τγ ) > ρ , where ρ is given in Lemma 2.1.

Proof Let λ∗ = min{λ0, λ̃0}, then Lemmas 3.1–3.3 hold for 0 < λ < λ∗. Based on Lemma 3.1,
we know that Iγ satisfies the geometry of the mountain pass lemma [1]. Therefore, there
is a sequence {τn} ⊂ W 1,p

0 (�) such that

Iγ (τn) → cγ > ρ > 0, I ′
γ (τn) → 0, (3.10)

where

cγ = inf
φ∈�

max
r∈[0,1]

Iγ
(
φ(r)

)
,

� =
{
φ ∈ C

(
[0, 1], W 1,p

0 (�)
)

: φ(0) = 0,φ(1) = u2
}

.

So, according to Lemmas 3.1 and 3.3, one has

0 < ρ < cγ ≤ max
r∈[0,1]

Iγ (ru2) ≤ sup
r≥0

Iγ (ru2)

<
p – t

p(N – p)
S

N–t
p–t

Q
N–p
p–t

M

– Dλ
p

p+s–1 . (3.11)

From Lemma 3.2, note that {τn} has a convergent subsequence, still denoted by {τn} ({τn} ⊂
W 1,p

0 (�)). Assume that limn→∞ τn = τγ in W 1,p
0 (�). Hence, combining (3.10) and (3.11), we

have

Iγ (τγ ) = lim
n→∞ Iγ (τn) = cγ > ρ > 0,

which implies that τγ �≡ 0. By the continuity of I ′
γ , we know that τγ is a solution of (3.1).

Furthermore, τγ ≥ 0. Hence, applying the strong maximum principle, we obtain that τγ is
a positive solution of (3.1). �
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4 Existence of the second solution of problem (1.1)
Theorem 4.1 For λ ∈ (0,λ∗), problem (1.1) possesses a positive solution τ1 satisfying
Iλ,μ(τ1) > 0, where λ∗ is given in Theorem 3.4.

Proof Let {τγ } be a family of positive solutions of (1.1), we will show that {τγ } has a uniform
lower bound. Indeed, we denote

d(r) = rp∗(t)–1 +
λ

(r + p – 1)s ;

case (i) 0 < r < 1, d(r) ≥ λ

(1 + p – 1)s =
λ

ps ;

case (ii) r ≥ 1, d(r) ≥ 1.

Therefore, for every γ ∈ (0, 1), r ≥ 0, we get

rp∗(t)–1 +
λ

(r + γ )s ≥ rp∗(t)–1 +
λ

(r + p – 1)s ≥ min

{

1,
λ

ps

}

.

Recall that e is a weak solution of the following problem:

⎧
⎨

⎩

–�pu – μ
|u|p–2u

|x|p = 1, in �,

u = 0, on ∂�,

so e(x) > 0 in �. According to the comparison principle, we have

τγ ≥ min{1, Qm}min

{

1,
λ

ps

}

e > 0, (4.1)

where Qm = minx∈Q Q(x) > 0. Since {τγ } are solutions of problem (3.1), one has

‖τγ ‖p –
∫

�

Q(x)
τ

p∗(t)
γ

|x|t dx – λ

∫

�

(τγ + γ )–sτγ dx = 0. (4.2)

Combining with (3.3), (4.2), and Theorem 3.4, we have

p – t
p(N – p)

S
N–t
p–t

Q
N–p
p–t

M

– Dλ
p

p+s–1

> Iγ (τγ ) –
1

p∗(t)
〈
I ′
γ (τγ ), τγ

〉

=
p – t

p(N – t)
‖τγ ‖p +

λ

p∗(t)

∫

�

(τγ + γ )–sτγ dx –
λ

1 – s

∫

�

[
(τγ + γ )1–s – γ 1–s]dx

≥ p – t
p(N – t)

‖τγ ‖p –
λ

1 – s

∫

�

[
(τγ + γ )1–s – γ 1–s]dx

=
p – t

p(N – t)
‖τγ ‖p –

λC6

1 – s
‖τγ ‖1–s,
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since s ∈ (0, 1), so {τγ } is bounded in W 1,p
0 (�). Going if necessary to a subsequence, also

called {τγ }, there exists τ1 ∈ W 1,p
0 (�) such that

⎧
⎪⎪⎨

⎪⎪⎩

τγ ⇀ τ1, in W 1.p
0 (�),

τγ −→ τ1, in Lp′ (�, |x|–t),

τγ (x) −→ τ1(x), a.e. in �.

1 ≤ p′ < p∗(t), (4.3)

Now, we show that τγ → τ1 in W 1.p
0 (�) as γ → 0. Set wγ = τγ – τ1, then ‖wγ ‖ → 0 as γ →

0; otherwise, there exists a subsequence (still denoted by wγ ) such that limγ→0 ‖wγ ‖ = l >
0. Since 0 ≤ τγ

(τγ +γ )s ≤ τ 1–s
γ , applying Hölder’s inequality and (4.3), we have

∫

�

τγ (τγ + γ )–s dx ≤
∫

�

τ 1–s
γ dx ≤

∫

�

|wγ |1–s dx +
∫

�

|τ1|1–s dx

= |wγ |1–s
p |�| 1+s

p +
∫

�

|τ1|1–s dx

≤
∫

�

|τ1|1–s dx + o(1).

Similarly,

∫

�

|τ1|1–s dx ≤
∫

�

τγ (τγ + γ )–s dx + o(1).

Therefore

lim
γ→0

∫

�

τγ (τγ + γ )–s dx =
∫

�

τ 1–s
1 dx.

It follows from 〈I ′
γ (τγ ), τγ 〉 = 0 and the Brézis–Lieb lemma that

‖wγ ‖p + ‖τ1‖p –
∫

�

Q(x)
wp∗(t)

γ

|x|t dx –
∫

�

Q(x)
τ

p∗(t)
1
|x|t dx – λ

∫

�

τ 1–s
1 dx = o(1). (4.4)

Note that τγ ⇀ τ1 as γ → 0+. Choose the test function ϕ = φ ∈ W 1,p
0 (�) ∩ C0(�) in (3.2).

Letting γ → 0+ and using (4.1), we deduce that τ1 ≥ min{1, Qm}min{1, λ
ps }e > 0, and

∫

�

(

|∇τ1|p–2∇τ1∇φ – μ
|τ1|p–2τ1φ

|x|p
)

dx =
∫

�

Q(x)
τ

p∗(t)–1
1
|x|t φ dx + λ

∫

�

τ–s
1 φ dx. (4.5)

We show that (4.5) holds for every φ ∈ W 1,p
0 (�). In fact, since W 1,p

0 (�) ∩ C0(�) is dense in
W 1,p

0 (�), then for every φ ∈ W 1,p
0 (�), there exists a sequence {φn} ⊂ W 1,p

0 (�)∩C0(�) such
that limn→∞ φn = φ. For m, n ∈ N

+ large enough, replacing φ with φn – φm in (4.5) yields

∫

�

(

|∇τ1|p–2∇τ1∇(φn – φm) – μ
|τ1|p–2τ1|φn – φm|

|x|p
)

dx

=
∫

�

Q(x)
τ

p∗(t)
1
|x|t |φn – φm|dx + λ

∫

�

τ–s
1 |φn – φm|dx. (4.6)
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On the one hand, using φn → φ and (4.6), we have that { φn
τ1

} is a Cauchy sequence in Lp(�),
hence there exists ν ∈ Lp(�) such that limn→∞ φn

τ s
0

= ν , which implies that limn→∞ φn
τ s

0
= ν

in measure. By Riesz’s theorem, without loss of generality, choose a subsequence of { φn
τ s

0
},

still denoted by { φn
τ s

0
}, such that

lim
n→∞

φn

τ s
0

= ν(x), a.e. x ∈ �. (4.7)

On the other hand, from (4.7), we have that ν = φ

τ s
0

, which leads to

lim
n→∞

∫

�

φn(x)
τ s

0
dx =

∫

�

φ(x)
τ s

0
dx.

Therefore, we deduce that (4.5) holds for φ ∈ W 1,p
0 (�). Setting φ = τ1 in (4.5), we have

‖τ1‖p –
∫

�

Q(x)
τ

p∗(t)
1
|x|t dx – λ

∫

�

τ 1–s
1 dx = 0. (4.8)

Together with (4.4), we obtain that

‖wγ ‖p –
∫

�

Q(x)
wp∗(t)

γ

|x|t dx = o(1). (4.9)

Hence

lim
γ→0+

‖wγ ‖p = lim
γ→0+

∫

�

Q(x)
wp∗(t)

γ

|x|t dx = l > 0.

Since

∫

�

|wγ |p∗(t)

|x|t dx ≥
∫

�

Q(x)
QM

|wγ |p∗(t)

|x|t dx ≥
∫

�

Q(x)
QM

(w+
γ )p∗(t)

|x|t dx.

Then l ≥ S
N–t
p–t

Q
N–p
p–t

M

. By (4.8), we have

Iλ,μ(τ1) =
1
p
‖τ1‖p –

1
p∗(t)

∫

�

Q(x)
τ

p∗(t)
1
|x|t dx –

λ

1 – s

∫

�

τ 1–s
1 dx

=
p – t

p(N – t)
‖τ1‖p – λ

(
1

1 – s
–

1
p∗(t)

)∫

�

τ 1–s
1 dx

≥ p – t
p(N – t)

‖τ1‖p – λ

(
1

1 – s
+

1
p∗(t)

)

C2‖τ1‖1–s

> –Dλ
p

p+s–1 . (4.10)

At the same time, it follows from (4.4) and (4.9) that

Iλ,μ(τ1) = Iγ (τγ ) –
p – t

p(N – t)
‖wγ ‖p + o(1)
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<
p – t

p(N – t)

(
S

N–t
p–t

Q
N–p
p–t

M

– l
)

– Dλ
p

p–1+s

≤ –Dλ
p

p–1+s ,

which contradicts (4.10). Therefore, we deduce that

Iλ,μ(τ1) = lim
γ→0

Iγ (τγ ) > ρ > 0.

Consequently, problem (1.1) has two different solutions u1 and τ1. Furthermore, τ1 �≡ 0,
together with the maximum principle, we conclude that τ1 > 0 a.e. x ∈ �. That is, τ1 is a
positive solution of problem (1.1).

The proof of Theorem 4.1 is completed. �

Remark 4.1 In order to apply the Brézis–Lieb lemma, we need to establish the conver-
gence results for the sequences with gradient terms [5, 9]. Furthermore, the strong maxi-
mum principle for a p-Laplace operator is also used.
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