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Abstract
The purpose of this paper is to present the Cattaneo–Christov heat flux model for
Maxwell fluid past a stretching surface where the presence of suction/injection is
taken into account. The governing system of equations is reduced to the ordinary
differential equations with the boundary conditions by similarity transformation.
These equations are then solved numerically by two approaches, Haar wavelet
quasilinearization method (HWQM) and Runge–Kutta–Gill method (RK Gill). The
behavior of various pertinent parameters on velocity and temperature distributions is
analyzed and discussed. Comparison of the obtained numerical results is made
between both methods and with the existing numerical solutions found in the
literature, and reasonable agreement is noted.
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1 Introduction
The phenomenon of heat transfer exists due to the difference in temperature between ob-
jects or between different parts of the same object. The well-known heat conduction law,
known as Fourier’s law, proposed by Fourier [1] provides an insight into the heat trans-
fer analysis. However, this law causes a parabolic energy equation, which means that any
initial disturbance is instantly felt through the medium under consideration. Due to this
obstacle, Cattaneo [2] revised this law by adding a relaxation time term. Later, Christov
[3] made some modification on the Cattaneo model by replacing the ordinary deriva-
tive with Oldroyd’s upper-convected derivative. This model is recognized as Cattaneo–
Christov heat flux model in the literature. Straughan [4] studied thermal convection in
a horizontal layer of incompressible Newtonian fluid by using the Cattaneo–Christov
model. Ciarletta and Straughan [5] proved the uniqueness and stability of solutions for
the Cattaneo–Christov equations. By using the Cattaneo–Christov model, Tibullo and
Zampoli [6] studied the uniqueness of solutions for incompressible fluid.

The Maxwell fluid model is one of the simplest viscoelastic models that can address
the influence of fluid relaxation time. Due to these reasons, this model has received re-
markable attention of researchers. Han et al. [7] employed the upper-convected Maxwell
(UCM) model and Cattaneo–Christov heat flux model to investigate the heat transfer and
boundary layer flow of viscoelastic fluid above a stretching plate with velocity slip bound-
ary by using homotopy analysis method (HAM). Mustafa [8] also used HAM to investigate
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the rotating flow of UCM fluid through the Cattaneo–Christov heat flux model. Khan et
al. [9] studied the boundary layer flow of UCM fluid induced by an exponentially stretch-
ing sheet using the Cattaneo–Christov model. Hayat et al. [10] discussed the impact of
Cattaneo–Christov heat flux in the flow over a stretching sheet with variable thickness.

Abbasi et al. [11] investigated the Cattaneo–Christov heat flux model for a two-
dimensional laminar boundary layer flow of incompressible Oldroyd-B fluid over a linearly
stretching sheet, where the dimensionless velocity and temperature profiles are obtained
through the optimal homotopy analysis method (OHAM). Mushtaq et al. [12] studied
the Sakiadis flow of Maxwell fluid along a moving plate in calm fluid by considering the
Cattaneo–Christov model. Abbasi and Shehzad [13] proposed a mathematical model to
study the Cattaneo–Christov heat flux model for the three-dimensional flow of Maxwell
fluid over a bi-directional stretching surface by employing the homotopic procedure.
Rubab and Mustafa [14] used HAM to investigate the magnetohydrodynamic (MHD)
three-dimensional flow of UCM fluid over a bi-directional stretching surface.

Related to this presence, Vajravelu [15] analyzed the convection flow and heat transfer of
viscous fluid near an infinite, porous, and vertical stretching surface by using variable size
finite difference method. Muthucumaraswamy [16] studied the effects of suction on heat
and mass transfer along a moving vertical surface in the presence of chemical reaction. El-
Arabawy [17] investigated the effects of suction/injection and chemical reaction on mass
transfer over a stretching surface. Elbashbeshy and Bazid [18] analyzed the effect of inter-
nal heat generation and suction or injection on the heat transfer in a porous medium over
a stretching surface. Sultana et al. [19] discussed the effects of internal heat generation, ra-
diation, and suction or injection on the heat transfer in a porous medium over a stretching
surface. Rajeswari et al. [20] studied the effect of chemical reaction, heat, and mass trans-
fer on a nonlinear MHD boundary layer flow through a vertical porous surface with heat
source in the presence of suction. Elbashbeshy et al. [21] used the Runge–Kutta technique
to study the effects of suction/injection and variable chemical reaction on mass transfer
characteristics over the unsteady stretching surface embedded in a porous medium.

In view of all the above mentioned literature and to the best of our knowledge, no at-
tempt has been made so far to study suction/injection on a Maxwell fluid flow past a
steady stretching surface. Motivated by this, our aim here is to analyze the effects of a
suction/injection parameter on Maxwell fluid by considering the Cattaneo–Christov heat
flux model. The governing system of partial differential equations is non-dimensionalized
[22–24] and transformed into the ordinary differential equations and solved numerically
by employing the HWQM and RK Gill method. Comparisons are made with the avail-
able results in a limiting manner. The effects of involved parameters on the velocity and
temperature fields are analyzed and discussed.

The rest this paper is organized as follows. Section 2 is devoted to the mathematical
formulation of the flow problem including the reduced ordinary differential equations. In
Sect. 3, the numerical solutions of HWQM and RK Gill are shown. Numerical results and
discussion are presented in Sect. 4. Finally, the conclusion is given in Sect. 5.

2 Mathematical formulation
Consider a laminar boundary layer two-dimensional flow of incompressible, upper-
convected Maxwell fluid past a stretching surface with the presence of suction/injection.
The heat transfer process is studied through the Cattaneo–Christov heat flux theory. In



Siri et al. Boundary Value Problems  (2018) 2018:126 Page 3 of 16

the absence of the gradient of pressure, the governing equations expressing conservation
of mass, momentum, and energy are given as follows:

∂u
∂x

+
∂v
∂y

= 0, (1)

u
∂u
∂x

+ v
∂u
∂y

+ λ1

(
u2 ∂2u

∂x2 + v2 ∂2u
∂y2 + 2uv

∂2u
∂x ∂y

)
= ν

∂2u
∂y2 , (2)

u
∂T
∂x

+ v
∂T
∂y

+ λ2

(
u

∂u
∂x

∂T
∂x

+ v
∂v
∂y

∂T
∂y

+ u
∂v
∂x

∂T
∂y

+ v
∂u
∂y

∂T
∂x

+ 2uv
∂2T
∂x ∂y

+ u2 ∂2T
∂x2 + v2 ∂2T

∂y2

)
= α

∂2T
∂y2 , (3)

where u and v denote the velocity components along the x- and y-directions, respectively.
ν is the kinematic viscosity, λ1 is the fluid relaxation time, λ2 is the thermal relaxation
time, T is the temperature of Maxwell fluid, and α = k/ρcp is thermal diffusivity, where k
is the thermal conductivity.

The boundary conditions in the present problem are

u = ax, v = v0, T = Tw at y = 0

u → 0, T → T∞ as y → ∞.
(4)

In the above equation, v0 represents the velocity of suction/injection at the wall, Tw is
the temperature at the wall, and T∞ is the ambient fluid temperature.

By using these transformations, we have

η =
√

a
ν

y, ψ =
√

νaxf (η), θ =
T – T∞
Tw – T∞

, (5)

in which ψ is the stream function, equations (2) and (3) can be reduced to a system of two
coupled ordinary differential equations as follows:

f ′′′ – f ′2 + ff ′′ + β
(
2ff ′f ′′ – f 2f ′′′) = 0 (6)

and

1
Pr

θ ′′ + f θ ′ – γ
(
ff ′θ ′ + f 2θ ′′) = 0, (7)

where the prime denotes the derivative with respect to η. The Prandtl number is given as
Pr = ν/α, where v is the velocity component along y-direction and α is thermal diffusivity.
β = λ1a is the Deborah number and γ = λ2a is the non-dimensional thermal relaxation
time, where a is a positive constant, λ1 is fluid relaxation time, and λ2 is thermal relaxation
time. The boundary conditions for equations (6) and (7) are

f = s, f ′ = 1, θ = 1 at η = 0,

f ′ → 0, θ → 0 as η → ∞,
(8)

where s = – v0√
cν is a suction parameter and c is a positive constant. Note that s > 0 corre-

sponds to suction, s < 0 corresponds to injection, and s = 0 is an impermeable surface.
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3 Numerical solutions
This section presents the numerical solutions of two approaches for solving two coupled
nonlinear ODEs (6) and (7), namely

(a) Haar wavelet quasilinearization method (HWQM) and
(b) Runge–Kutta–Gill method (RK Gill)

3.1 Haar wavelet quasilinearization method (HWQM)
This subsection presents the Haar wavelet and quasilinearization approach based scheme
for two coupled ordinary differential equations (6) and (7) with boundary conditions (8).
Wavelet methods are one of the relatively new techniques for obtaining approximate solu-
tions of differential equations. Commonly used wavelet schemes are Haar wavelets, Leg-
endre wavelets, and Chebyshev wavelets. Among them, we are more interested in Haar
wavelet because it is the simplest possible wavelet with a compact support, which means
that it vanishes outside of a finite interval. In numerical analysis, the discovery of com-
pactly supported wavelets has proven to be a useful tool for the approximation of func-
tions.

The Haar wavelet family for [0, τ ) is defined as [25]

hi(η) =

⎧⎪⎪⎨
⎪⎪⎩

1 kτ
2α ≤ η < (k+1/2)τ

2α ,

–1 (k+1/2)τ
2α ≤ η < (k+1)τ

2α ,

0 elsewhere in [0, τ ),

(9)

where i = 1, 2, . . . , m – 1 is the series index number and the resolution m = 2J is a positive
integer. α and k represent the integer decomposition of the index i, i.e., i = 2α + k, in which
α = 0, 1, . . . , J – 1 and k = 0, 1, . . . , 2α – 1.

In the Haar wavelet method, the following integrals are used:

pi,1(η) =
∫ η

0
hi

(
η′)dη′, pi,v+1(η) =

∫ η

0
hi,v

(
η′)dη′, v = 1, 2, 3, . . . . (10)

The generalized Haar wavelet and its integration are derived, which could cater the Haar
series expansion domain greater than one. This is because the boundary layer fluid flow
problem deals with a sufficiently large number of infinite intervals.

Any function f (η) square, which is integrable in the interval [0, τ ), can be expressed in
the following form of Haar wavelets:

f (η) =
m–1∑
i=0

cihi(η), (11)

where the Haar coefficients ci can be obtained from

ci =
2α

τ

∫ τ

0
f (η)hi(η) dη. (12)

The above series terminates at finite terms if f (η) is a piecewise constant or can be ap-
proximated as a piecewise constant during each subinterval.
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There are several possibilities for treating the nonlinearity in BVPs. However, here the
well-known technique quasilinearization [26] is used to tackle the nonlinearity in equa-
tions (6) and (7). A simple procedure for numerical calculations is introduced for easy
understanding [27, 28]. The nonlinear ODEs (6) and (7) followed by quasilinearization
lead to

α1,rf ′′′
r+1 + α2,rf ′′

r+1 + α3,rf ′
r+1 + α4,rfr+1 = R1, (13)

β1,rf ′
r+1 + β2,rfr+1 + β3,rθ

′′
r+1 + β4,rθ

′
r+1 = R2, (14)

where r is the number of iteration, and

α1,r = 1 – βf 2
r , α2,r = fr + 2βfrf ′

r , α3,r = –2f ′
r + 2βfrf ′′

r ,

α4,r =
1

1 – βf 2
r

(
–2βfrf ′2

r + f ′′
r + βf 2

r f ′′
r + 2βf ′

r f ′′
r + 2β2f 2

r f ′
r f ′′

r
)
,

β1,r = – Prγ frθ
′
r , β2,r =

Pr θ ′
r

1 – Prγ f 2
r

(
1 + Prγ f 2

r – γ f ′
r
)
,

β3,r = 1 – Prγ f 2
r , β4,r = Pr fr

(
1 – γ f ′

r
)
,

R1 = f ′
r
(
–f ′

r + 2βfrf ′′
r
)

+
βfr

1 – βf 2
r

(
–2frf ′2

r +
1
β

f ′′
r + f 2

r f ′′
r + 2f ′

r f ′′
r + 2βf 2

r f ′
r f ′′

r

)
,

R2 = – Prγ frf ′
r θ

′
r +

Pr θ ′
rfr

1 – Prγ f 2
r

(
1 + Prγ f 2

r – γ f ′
r – Prγ 2f 2

r f ′
r
)
.

The boundary conditions are

fr+1 = s, f ′
r+1 = 1, θr+1 = 1 at η = 0,

f ′
r+1 → 0, θr+1 → 0 as η → ∞.

(15)

Now, we apply the Haar wavelet method to (13) and (14), then approximate the higher
order derivative term by Haar wavelet series as follows [29, 30]:

f ′′′
r+1(η) =

m–1∑
i=0

aihi(η) (16)

and

θ ′′
r+1(η) =

m–1∑
i=0

bihi(η), (17)

respectively. The lower order derivatives are obtained by integrating (16) and (17) and
using the boundary conditions

f ′′
r+1(η) =

m–1∑
i=0

ai

(
pi,1(η) –

1
L

pi,2(L)
)

–
1
L

, (18)

f ′
r+1(η) =

m–1∑
i=0

ai

(
pi,2(η) –

η

L
pi,2(L)

)
–

η

L
+ 1, (19)
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fr+1(η) =
m–1∑
i=0

ai

(
pi,3(η) –

η2

2L
pi,2(L)

)
–

η2

2L
+ η + s, (20)

θ ′
r+1(η) =

m–1∑
i=0

bi

(
pi,1(η) –

1
L

pi,2(L)
)

–
1
L

, (21)

θr+1(η) =
m–1∑
i=0

bi

(
pi,2(η) –

η

L
pi,2(L)

)
–

η

L
+ 1, (22)

where L is a sufficiently large number. Substitute equations (18)–(22) and higher order
derivatives into equations (13) and (14). By applying discretization on equations (13) and
(14) and using the collocation points xc = (c+0.5)τ

m , c = 0, 1, . . . , m – 1, we obtain the following
systems:

m–1∑
i=0

aiK1 = L1, (23)

m–1∑
i=0

aiK2 +
m–1∑
i=0

biK3 = L2, (24)

where

K1 =
(
1 – βf 2

r
)
hi(η) – 2

(
f ′
r – βfrf ′′

r
)
pi,2(η) – fr

(
–1 – 2βf ′

r
)
pi,1(η)

–
2
L

(
–ηf ′

r + βηfrf ′′
r +

1
2

fr + βfrf ′
r

)
pi,2(L) –

1
1 – βf 2

r

×
[

2β

(
frf ′2

r –
1

2β
f ′′
r –

1
2

f 2
r f ′′

r – f ′
r f ′′

r – βf 2
r f ′

r f ′′
r

)
pi,3(η)

+
β

2L
η

(
–2ηfrf ′2

r +
1
β

ηf ′′
r + ηf 2

r f ′′
r + 2ηf ′

r f ′′
r + 2βηf 2

r f ′
r f ′′

r

)
pi,2(L)

]
,

K2 = Prγ frθ
′
r

(
–pi,2(η) +

1
L

ηpi,2(L)
)

+
1

1 – Prγ f 2
r

[
Pr

2L
η2θ ′

r
(
–1 – Prγ f 2

r

+ γ f ′
r + Prγ 2f 2

r f ′
r
)
pi,2(L) + Pr θ ′

r
(
1 + Prγ f 2

r – γ f ′
r – Prγ 2f 2

r f ′
r
)
pi,3(η)

]
,

K3 =
(
1 – Prγ f 2

r
)
hi(η) + Pr fr

(
1 – γ f ′

r
)
pi,1(η) +

Pr

L
fr
(
–1 + γ f ′

r
)
pi,2(L),

L1 =
2β

L

(
–

L
2β

f ′2
r + Lfrf ′

r f ′′
r –

1
β

ηf ′
r +

L
β

f ′
r + ηfrf ′′

r – Lfrf ′′
r +

1
2β

fr + frf ′
r

)

+
1

1 – βf 2
r

[
2β

(
–f 2

r f ′2
r +

1
2β

frf ′′
r +

1
2

f 3
r f ′′

r

+ frf ′
r f ′′

r + βf 3
r f ′

r f ′′
r + sfrf ′2

r –
1

2β
sf ′′

r – sf ′
r f ′′

r – βsf 2
r f ′

r f ′′
r –

1
2

sf 2
r f ′′

r

)

+
β

2L
η

(
–2ηfrf ′2

r + 4Lfrf ′2
r +

1
β

ηf ′′
r + ηf 2

r f ′′
r

– 2Lf 2
r f ′′

r + 2ηf ′
r f ′′

r – 4Lf ′
r f ′′

r + 2βηf 2
r f ′

r f ′′
r – 4βLf 2

r f ′
r f ′′

r –
2L
β

f ′′
r

)]
,
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L2 =
Prγ

L
fr

(
–Lf ′

r θ
′
r +

1
γ

– f ′
r – ηθ ′

r + Lθ ′
r

)

+
1

1 – Prγ f 2
r

[
Pr θ ′

r
(
Prγ f 3

r + fr – γ frf ′
r – Prγ 2f 3

r f ′
r – s

– Prγ sf 2
r + γ sf ′

r + Prγ 2sf 2
r f ′

r
)

+
Pr

2L
ηθ ′

r
(
η – 2L + Prγ ηf 2

r – 2L Prγ f 2
r – γ ηf ′

r + 2Lγ f ′
r

– Prγ 2ηf 2
r f ′

r + 2L Prγ 2f 2
r f ′

r
)]

.

Equations (23) and (24) can be solved simultaneously to obtain Haar coefficients ai and
bi. We choose the initial approximations which satisfy the boundary conditions (15) as
follows:

f0(η) = s +
(
1 – e–η

)
(25)

and

θ0(η) = e–η. (26)

Then we put the Haar coefficients in equations (20) and (22) to find the approximate
solutions.

As our work is based on the quasilinearization technique and Haar wavelet method, so
the convergence for both schemes can be seen in literature [31, 32].

3.2 Runge–Kutta–Gill method (RK Gill)
The nonlinear ordinary differential equations (6)–(7) subject to the boundary conditions
(8) are of the third order in f and of the second order in θ . These equations are numerically
solved by employing the fourth-order Runge–Kutta–Gill method integrated with shooting
technique and Newton–Raphson method. We define

f = Y1, f ′ = Y2, f ′′ = Y3, θ = Y4, θ ′ = Y5. (27)

We also define the following:

f ′ = F1, f ′′ = F2, f ′′′ = F3, θ ′ = F4, θ ′′ = F5. (28)

Substitute equations (27) and (28) into equations (6)–(7), these equations are reduced
to a system of nine simultaneous equations of the first order as follows:

F1 = Y2, (29)

F2 = Y3, (30)

F3 = Y 2
2 – Y1Y3 – β

(
2Y1Y2Y3 – Y 2

1 F3
)
, (31)

F4 = Y5, (32)

F5 = Pr
[
–Y1Y5 + γ

(
Y1Y2Y5 + Y 2

1 F5
)]

. (33)
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The boundary conditions given in (8) are replaced by

Y1(0) = s, Y2(0) = 1, Y4(0) = 1, (34)

Y2(η∞) = 0, Y4(η∞) = 0. (35)

Here, η∞ is selected to vary from 5 to 7, depending on the set of the physical parame-
ters. The unknown initial conditions are denoted by Y3(0) = ζ and Y5(0) = t. We use the
Newton–Raphson method to find ζ and t such that the solutions of equations (29)–(35)
satisfy the outer boundary condition (8). In this case, we start with the initial estimate
values (ζ (0), t(0)) by the shooting method. The Newton–Raphson algorithm is expanded to
include partial derivatives with respect to each variable’s dimension. This would yield the
derivative of F(F1, F2, . . . , F5) with respect to ζ and t as follows:

Fζ (F6, F7, . . . , F10), Ft(F11, F12, . . . , F15). (36)

Thus, we need to find Fζ = 0, Ft = 0, simultaneously. Following Cebeci and Keller [33],
this yields a system of algebraic equations which satisfy the boundary conditions when
η → ∞:

f ′
ζ ζ + f ′

t t + f ′ = 0, θζ ζ + θtt + θ = 0. (37)

Rearranging the system in equation (37) yields a matrix equation AX = B:

[
f ′
ζ f ′

t

θζ θt

][
ζ

t

]
=

[
–f ′

–θ

]
. (38)

This matrix equation can be solved by Cramer’s rule. The next approximation of ζ and
t can be computed by using the following formula:

ζ (new) = ζ (old) +
det(AB(I, J))

det(A)
, t(new) = t(old) +

det(AB(I, J))
det(A)

. (39)

Once the values of ζ and t are known, we use the fourth-order Runge–Kutta–Gill
method to solve the first order of ordinary differential equations F1, F2, . . . , F15. Following
Gill [34], the Runge–Kutta formula is

Yi+1 = Yi +
1
6

hk1 +
1
3

(
2 –

√
2

2

)
hk2 +

1
3

(
2 +

√
2

2

)
hk3 +

1
6

hk4,

k1 = F(Yi),

k2 = F(Yi + h/2k1),

k1 = F(Yi + (2 –
√

2/2k1 + (2 –
√

2/2k2),

k1 = F(Yi –
√

2/2hk2 + (2 +
√

2/2k3),

(40)

where h is denoted as the stepsize. In the present work, the stepsize of h = 0.01 is found
to be satisfactory in obtaining the numerical solutions. For convergence, the maximum
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Table 1 Comparison of local Nusselt number –θ ′(0) in the case of Newtonian fluid
(β = γ = b = fw = 0) for different values of Pr

Pr Wang [35] Gorla and Sidawi [36] Khan and Pop [37] Malik et al. [38] HWQM RK Gill

0.70 0.4539 0.5349 0.4539 0.45392 0.453930 0.453917
2.00 0.9114 0.9114 0.9113 0.91135 0.911345 0.911358
7.00 1.8954 1.8905 1.8954 1.89543 1.895489 1.895403
20.0 3.3539 3.3539 3.3539 3.35395 3.353905 3.353904

Table 2 The values of –θ ′(0) and –f ′′(0) when Pr = 1 and s = 0

γ –f ′′(0) –θ ′(0)
β = 0.1 β = 0.15 β = 0.2 β = 0.1 β = 0.15 β = 0.2

RK Gill HWQM RK Gill HWQM RK Gill HWQM RK Gill HWQM RK Gill HWQM RK Gill HWQM

0.1 1.02654 1.02653 1.03940 1.03939 1.05215 1.05214 0.58379 0.58379 0.57983 0.57983 0.57593 0.57593
0.4 0.61014 0.61014 0.60553 0.60554 0.60101 0.60101
0.5 0.61998 0.61998 0.61516 0.61516 0.61042 0.61042
0.6 0.63029 0.63029 0.62526 0.62526 0.62031 0.62031
0.8 0.65215 0.65215 0.64673 0.64673 0.64138 0.64138
1.0 0.67551 0.67551 0.66972 0.66972 0.66400 0.66400

absolute relative difference between two iterations is employed within a pre-assigned tol-
erance ε <= 10–5. If the difference meets the convergence criteria, the solution is assumed
to have converged and the iterative process is terminated.

4 Results and discussion
The transformed momentum equation (6) and energy equation (7) subjected to the
boundary conditions of equation (8) were numerically solved by means of HWQM and
RK Gill method. The computations for HWQM and RK Gill were performed by using
MATLAB.

The elasticity number is important for viscoelastic materials. If β < 1, it corresponds to
the fluids, thus a smaller elasticity number (β < 1) characterizes purely viscous behavior
of fluids. On the contrary, for β > 1, the fluid behaves like elastically solid material. Due to
this, the magnitude of velocity is larger in smaller β fluid. By using HWQM, the value of
f ′′(0) in the case of β = 1 is –1.24178, while θ ′(0) is –0.55244 at γ = 0.6.

Table 1 depicts the validation of the present results by comparing them with the pub-
lished results under some special and limited case where the elasticity number (β = 0) and
heat flux relaxation time (γ = 0) with different values Pr. A favorable agreement is found
between these results.

Table 2 shows the values of f ′′(0) and θ ′(0) for various values of heat flux relaxation
parameter γ and elasticity number β . The values computed through both methods are
found in favorable agreement. Table 2 indicates that the surface friction coefficient f ′′(0)
decreases with the increase in the values of elasticity number. At any value of γ , there is
no effect of changing in the value of heat flux relaxation because equation (6) does not
have a direct impact on γ . This table also shows that the value of the surface temperature
θ ′(0) decreases with the increase in heat flux relaxation, but it tends to increase with the
enhanced elasticity number, which is opposite to the effect on the surface friction coeffi-
cient.

Additionally, Table 3 is tabulated for examining the surface friction coefficient and sur-
face temperature gradient for different values of suction/injection parameter s and elastic-
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Table 3 The values of –f ′′(0) and –θ ′(0) for different values of β and s when Pr = 1 and γ = 0.5

s –f ′′(0) –θ ′(0)
β = 0.1 β = 0.15 β = 0.2 β = 0.1 β = 0.15 β = 0.2

RK Gill HWQM RK Gill HWQM RK Gill HWQM RK Gill HWQM RK Gill HWQM RK Gill HWQM

–1.0 0.59681 0.59764 – 0.58640 – 0.57485 0.14996 0.16047 – 0.16116 – 0.16186
–0.6 0.73250 0.73351 0.72619 0.72733 0.72004 0.72106 0.29747 0.29864 0.29721 0.29825 0.29673 0.29788
–0.3 0.86492 0.86440 0.86510 0.86508 0.86570 0.86568 0.43848 0.43362 0.43370 0.43161 0.42215 0.42964
0 1.02654 1.02653 1.03940 1.04003 1.05215 1.05271 0.61998 0.61998 0.61516 0.61516 0.61042 0.61061
0.2 1.15770 1.15770 1.18362 1.18361 1.21115 1.20962 0.79129 0.79129 0.78417 0.78417 0.77714 0.77715
0.3 1.23124 1.23064 1.26593 1.26542 1.30242 1.30056 0.89857 0.89891 0.88998 0.89024 0.88119 0.88164
0.6 1.48751 1.48644 1.56384 1.56195 – 1.64070 1.37559 1.37604 1.35999 1.36049 – 1.34471

Figure 1 The velocity profile for different values of
β when Pr = 1, γ = 0.5, and s = 0

Figure 2 The temperature profile for different
values of β when Pr = 1, γ = 0.5, and s = 0

ity number β . These tables clearly present that f ′′(0) and θ ′(0) are reduced as the parameter
of s increases.

Figures 1 and 2 show the effects of elasticity number β on the velocity and temperature
distributions. The elastic force disappears when β = 0 and the fluid becomes Newtonian
fluid. From Fig. 1, it is clear that with the increase of β , the velocity distribution shows
decreasing behavior. Physically, higher β indicates stronger viscous force which restricts
the fluid motion, and subsequently the velocity decreases. Characteristics of β on the tem-
perature distribution are displayed in Fig. 2. Temperature distribution increases for large
values of β . The increased parameter of β corresponds to larger relaxation time, which
provides resistance to the fluid motion, and as a result more heat is produced. Therefore,
temperature distribution increases.

The impact of non-dimensional heat flux relaxation time γ on temperature can be ex-
plained through Fig. 3. Temperature distribution is a decreasing function of thermal re-
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Figure 3 The temperature profile for different
values of γ when Pr = 1, β = 0.2, and s = 0

Figure 4 The temperature profile for different
values of Pr when β = 0.1, γ = 0.2, and s = 0

laxation parameter. It is also analyzed that thermal boundary layer thickness decreases.
This is due to the fact that as the thermal relaxation parameter increases, particles of the
material require more time to transfer heat to their neighboring particles. In other words,
non-conducting behavior showed by the higher values of thermal relaxation parameter
material is responsible for reduction of temperature distribution.

Figure 4 represents the temperature profile in response to a change in Pr. The graph de-
picts that an increase in Pr leads to reduction in temperature and thermal boundary layer
thickness. Pr is the ratio of momentum to the thermal diffusivity. The thermal diffusivity
is weaker for larger Pr due to the fact that the rate of diffusion decreases. Such reduc-
tion in the diffusion rate acts as an agent showing reduction in temperature and thermal
boundary layer thickness. Here, we do not show the graph for f ′(η) since there is no effect
of changing Pr. This phenomenon can be roughly observed from equation (6), where Pr
is the coefficient of temperature and has a direct impact on temperature. The impact of
Pr on velocity is achieved through the coupling of various terms, hence the effect may be
weakened.

Figures 5 and 6 show the velocity and temperature profiles with respect to the suc-
tion/injection parameter s. The fluid velocity and temperature field are found to decrease
with increasing value of s. Suction (s > 0) causes the velocity of fluid to decrease in the
boundary layer region. This effect acts to decrease the wall shear stress. On the other
hand, increase in suction causes progressive thinning of the boundary layer.
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Figure 5 The velocity and temperature profiles for
different values of s (impermeable surface and
suction) when Pr = 1, β = 0.2, and γ = 0.5

Figure 6 The velocity and temperature profiles for
different values of s (injection) when Pr = 1, β = 0.2,
and γ = 0.5

5 Conclusions
The boundary layer flow of Maxwell fluid past a stretching surface is numerically stud-
ied in the presence of suction/injection by using two different methods, namely HWQM
and RK Gill. The governing partial differential equations were transformed into a system
of ordinary differential equations using similarity transformation before being solved nu-
merically. The impact of elasticity number β , non-dimensional thermal relaxation time γ ,
suction s, and Prandtl number Pr is examined. The main findings can be summarized as
follows:

(a) The elasticity number β has opposite effects on the velocity field and temperature
field;

(b) Temperature profile decreases with an increase in Pr and the temperature boundary
layer becomes thinner;

(c) Variation of suction/injection parameter s affects both velocity and temperature
fields. The larger number of s leads to reduction in velocity and temperature
distributions;

(d) f ′′(0) is found to decrease upon increasing the suction/injection parameter;
(e) No effect of changing the value of heat flux relaxation γ on the surface friction

coefficient f ′′(0) is noticed;
(f ) θ ′(0) decreases with the increase in heat flux relaxation, but it tends to increase with

the enhanced elasticity number.
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Appendix

Proof for equations (6) and (7) With ψ as a stream function and the velocity components
being given by u = ∂ψ/∂y and v = –∂ψ/∂x, the similarity transformation is introduced as
in equation (5). Hence, the velocity components and their derivatives can be expressed as
follows:

u =
∂

∂y
(√

νaxf (η)
)

= ax
∂f
∂η

, (A1)

v = –
∂

∂x
(√

aνxf (η)
)

= –
√

aνf , (A2)

∂u
∂x

=
∂

∂x

(
ax

∂f
∂η

)
= a

∂f
∂η

+ ax
∂2f

∂x ∂η
, (A3)

∂u
∂y

=
∂

∂y

(
ax

∂f
∂η

)
= ax

∂2f
∂η2

√
a
ν

, (A4)

∂2u
∂x2 =

∂

∂x

(
a

∂f
∂η

+ ax
∂2f

∂x ∂η

)
= 2a

∂2f
∂x ∂η

+ ax
∂3f

∂x2 ∂η
, (A5)

∂v
∂y

=
∂

∂y
(–

√
aνf ) = –a

∂f
∂η

, (A6)

∂v
∂x

=
∂

∂x
(–

√
aνf ) = –

√
aν

∂f
∂x

, (A7)

∂2u
∂y2 =

∂

∂y

(
ax

∂2f
∂η2

√
a
ν

)
=

a2

ν
x
∂3f
∂η3 , (A8)

∂2u
∂x ∂y

=
∂

∂x

(
ax

∂2f
∂η2

√
a
ν

)
= a

√
a
ν

∂2f
∂η2 + a

√
a
ν

x
∂3f

∂x ∂η2 . (A9)

Substitute all the related derivatives into momentum equation (2). Hence, we will get

a2x
(

∂f
∂η

)2

+ (ax)2 ∂f
∂η

∂2f
∂x ∂η

– a2xf
∂2f
∂η2

+ λ1

[
(ax)2

(
∂f
∂η

)2(
2a

∂2f
∂x ∂η

+ ax
∂3f

∂x2 ∂η

)]

+ λ1a3xf 2 ∂3f
∂η3 – 2λ1a3xf

∂f
∂η

∂2f
∂η2 – 2λ1a3x2f

∂f
∂η

∂3f
∂x ∂η2 = a2x

∂3f
∂η3 .

Dividing the equation above by a2x, we get

∂3f
∂η3 –

(
∂f
∂η

)2

+ f
∂2f
∂η2 + 2βf

∂f
∂η

∂2f
∂η2 – βf 2 ∂3f

∂η3

= (ax)2 ∂f
∂η

∂2f
∂x ∂η

+ β

[
ax2

(
∂f
∂η

)2(
2a

∂2f
∂x ∂η

+ ax
∂3f

∂x2 ∂η

)]
– 2β(ax)2f

∂f
∂η

∂3f
∂x ∂η2 , (A10)

where β = λ1a.
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The derivatives for energy equation (3) are given as follows:

T = T∞ + θ�T , (A11)

where �T = Tw – T∞.

∂T
∂x

= �T
∂θ

∂x
+ �T

(
∂θ

∂η

∂η

∂x

)
= �T

∂θ

∂x
, (A12)

∂2T
∂x2 =

∂

∂x

(
�T

∂θ

∂x

)
= �T

∂2θ

∂x2 , (A13)

∂T
∂y

= �T
∂θ

∂η

∂η

∂y
= �T

√
a
ν

∂θ

∂η
, (A14)

∂2T
∂y2 =

∂

∂y

(
�T

√
a
ν

∂θ

∂η

)
= �T

a
ν

∂2θ

∂η2 , (A15)

∂2T
∂x ∂y

=
∂

∂x

(
∂T
∂y

)
= �T

√
a
ν

∂2θ

∂x ∂η
. (A16)

Thus, energy equation (3) becomes

ax�T
∂f
∂η

∂θ

∂x
– af �T

∂θ

∂η
+ λ2a2x�T

(
∂f
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)2
∂θ

∂x
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+ λ2(ax)2�T
(
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∂2θ
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∂η2 – 2λ2a2xf �T
∂f
∂η

∂2θ

∂x ∂η
= α�T

a
ν

∂2θ

∂η2 .

Multiplying equation above by ν
α�Ta , we get

∂2θ

∂η2 + Pr f
∂θ

∂η
– Prγ f

∂f
∂η

∂θ

∂η
– Prγ f 2 ∂2θ

∂η2

= Pr x
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∂η
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+ Prγ x

(
∂f
∂η

)2
∂θ

∂x
+ Prγ x

∂f
∂η

∂2f
∂x ∂η

∂θ

∂x
– Prγ x

∂f
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∂θ
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– Prγ x
∂2f
∂η2

∂θ

∂x
+ Prγ x

(
∂f
∂η

)2
∂2θ

∂x2 – 2 Prγ xf
∂f
∂η

∂2θ

∂x∂η
, (A17)

where Pr = ν/α and γ = λ2a.
The new boundary conditions are given as follows:
At y = 0, η = y

√
a
ν

→ η = 0,

u = ax, u = ax
∂f
∂η

= ax → ∂f
∂η

= 1, (A18)

v = v0, v = –
√

aνf = v0 → f = –
v0√
aν

, (A19)

where s = – v0√
aν

(suction/injection)

T = Tw, θ =
T – T∞
Tw – T∞

→ θ =
Tw – T∞
Tw – T∞

= 1. (A20)
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As y → ∞,η = y
√

a
ν

⇒ η → ∞,

u → 0, u = ax
∂f
∂η

⇒ ∂f
∂η

→ 0, (A21)

T → T∞, θ =
T∞ – T∞
Tw – T∞

⇒ θ → 0. (A22)

From (A10) and (A17), the coordinates x and y are transformed to the independent vari-
ables ξ and ψ , where ξ is identical to x and ψ is the stream function. If we replace the
partial derivative with respect to ξ in equation (A10) by difference quotients, the result-
ing difference-differential equation, which only contains derivative with respect to η, can
be solved using numerical methods for nonlinear ordinary differential equations. By dis-
cretizing both the differential expressions, it can be transformed to a difference equation.

Thus, equations (A10) and (A17) become

f ′′′ – f ′2 + ff ′′ + β
(
2ff ′f ′′ – f 2f ′′′) = 0, (A23)

1
Pr

θ ′′ + f θ ′ – γ
(
ff ′θ ′ + f 2θ ′′) = 0, (A24)

with boundary conditions

f = s, f ′ = 1, θ = 1 at η = 0 and f ′ → 0, θ → 0 as η → ∞. (A25)

The prime denotes the derivative with respect to η. �
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