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Abstract
In this paper, we study the periodic problem for the Liénard equation with an
indefinite singularity of attractive type

x′′ + f (x)x′ + ϕ(t)x +
r(t)
xμ

= 0,

where f : (0, +∞) → R is continuous and may have singularities at zero, r, ϕ : R → R
are T -periodic functions, and μ is a positive constant. Using the method of upper and
lower functions, we obtain some new results on the existence of positive periodic
solutions to the equation.
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1 Introduction
As is well known, differential equations with singularities have a wide range of applica-
tions in physics, mechanics, and biology [1–6]. In the past years, many mathematical re-
searchers focused their attention on the equations with singularities [7–20]. As is widely
acknowledged, the paper [18] by Lazer and Solimini is a major milestone for the study of
periodic problem to second-order differential equations with singularities. In that paper,
the existence of periodic solutions was investigated for the singular equations

x′′(t) +
1

xα(t)
= h(t) (1.1)

(the singularity of attractive type) and

x′′(t) –
1

xα(t)
= h(t) (1.2)

(the singularity of repulsive type), where h : R → R is a continuous periodic function. Using
topological degree methods, together with the method of lower and upper functions, they
obtained that a necessary and sufficient condition for the existence of positive periodic
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solutions to (1.1) is
∫ T

0 h(s) ds > 0. Furthermore, assuming that α ≥ 1, a necessary and suf-
ficient condition for the existence of positive periodic solutions to (1.2) is

∫ T
0 h(s) ds < 0.

For α ∈ (0, 1) (weak singularity condition), some equations like (1.2) were given in [18],
where h(t) have negative mean values, but the equations have no T-periodic solution. Af-
ter that, many papers focused on the periodic problem for some second-order differential
equations with singularities of repulsive type [21–24]. Among them, the singular term was
allowed to have a weak singularity (i.e., α ∈ (0, 1)). Compared with the singularity of repul-
sive type, the attractive case did not attract much attention of mathematical researchers.
Even so, there are still quite a few papers that focus on the study of periodic solutions for
the equations with attractive singularities [7, 16, 17, 20]. For example, Mawhin [7] consid-
ered the problem of periodic solutions to the Liénard equation with a attractive singularity
suggested by the fundamental example

(∣
∣x′∣∣p–2x′)′ + f (x)x′ +

l
xμ

= h(t), (1.3)

where p > 1, l > 0, and μ > 0 are constants, and h ∈ L∞(0, T). Using the method of upper
and lower functions, they obtained that

∫ T
0 h(s) ds > 0 is a necessary and sufficient con-

dition for the existence of positive periodic solutions for equation (1.3). Hakl and Torres
[16] obtained sufficient conditions guaranteeing the existence of positive solutions to the
periodic problem associated to the equation of Rayleigh–Plesset type

x′′ + f
(
x(t)

)
x′(t) + ϕ(t)xσ +

g1

xυ
–

g2

xγ
= 0, (1.4)

x(0) = x(T), x′(0) = x′(T), (1.5)

where g1, g2, σ are nonnegative constants, c, μ, υ , γ are real numbers, and h0 ∈ L([0, T]; R).
For the case of δ = 1, g1 > 0, and g2 = 0, they obtained the following result.

Theorem 1.1 Let δ = 1, g1 > 0, and g2 = 0. If ϕ̄ < 0 and

T
4

∫ T

0

[
ϕ(s)

]
+ ds

∫ T

0

[
ϕ(s)

]
– ds <

∫ T

0

[
ϕ(s)

]
– ds –

∫ T

0

[
ϕ(s)

]
+ ds,

then there exists at least one positive solution to problem (1.4)–(1.5).

It is easy to see that in either equation (1.3) or the equation in problem (1.4)–(1.5), the
singular terms are all autonomous. Despite the fact that there are many papers focusing on
the equation with nonautonomous singularity term of repulsive type [21–25], equations
with nonautonomous singularity term of attractive type seem to receive little attention. We
have found only the paper by Hakl and Zamora [17], who studied the following equations
with a singularity of attractive type:

x′′ +
g(t)
xλ

= h(t)xδ , (1.6)

where λ > 0, δ ∈ [0, 1), g , h ∈ L([0, T]; R), and g is a nonnegative function. Using a contin-
uation theorem of coincidence degree theory, they obtained a new result on the existence
of positive periodic solutions to (1.6). However, the exponent δ in the power function xδ
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is required to satisfy δ ∈ [0, 1), and there is no friction term of Liénard type f (x)x′ in (1.6).
For other recent developments and applications in this field, we refer the reader to [16, 23,
26–31]. Inspired by the papers mentioned, the aim of this paper is to study the periodic
problem

x′′ + f (x)x′ + ϕ(t)x +
r(t)
xμ

= 0, (1.7)

x(0) = x(T), x′(0) = x′(T), (1.8)

where f belongs to C((0,∞); R) and may have singularities at zero, r, ϕ : R → R are T-
periodic functions with r,ϕ ∈ L([0, T]; R), and μ is a positive constant. Since r(t) is a time-
varying function, (1.7) describes the nature processes more accurately. Observe that in the
case where r(t) is equal to zero for some subinterval of [0, T], the singularity can disappear.
So the singularity r(t)

xμ in equation (1.7) is said to be of indefinite attractive type. Using
the method of lower and upper functions, we obtain some new results on the existence
of positive solutions to boundary value problem (1.7)–(1.8). The significance is that the
methods for constructing lower and upper functions in [16] cannot be directly applied to
(1.7), since the singularity term r(t)

xμ in (1.7) is nonautonomous, and r(t) may be equal to
zero at some t ∈ [0, T].

Remark 1.1 In this paper, a function u : [0, T] → (0, +∞) is said to be a positive solution to
problem (1.7)–(1.8) if u : [0, T] → R+ is absolutely continuous together with its first deriva-
tive on [0, T] and satisfies (1.8) together with (1.7) almost everywhere on [0, T]. From this
definition, r, ϕ : R → R being T-periodic, we can easily find that if u0 : [0, T] → R is a posi-
tive solution to boundary value problem (1.7)–(1.8), then ũ : R → R, which is a T-periodic
extension of u0(t), is a positive T-periodic solution to (1.7). Thus, the existence of positive
periodic solutions to (1.7) is equivalent to the existence of positive solutions to boundary
value problem (1.7)–(1.8).

For convenience, in the end of this introduction, we give some notations used through-
out the paper:

R+ = (0, +∞), R0
+ = [0, +∞), [x]+ = max{x, 0}, [x]– = max{–x, 0}; AC1([0, T]; R) is the set

of functions u : [0, T] → R such that u and u′ are absolutely continuous; p = 1
T

∫ T
0 |p(s)|ds

for p ∈ L([0, T]; R).

2 Preliminary lemmas
The method of lower and upper functions is one of the most widely used methods in non-
linear analysis. Its main idea goes back at least to Picard. Many mathematical researchers
have obtained rich results by using this method. For a complete historical review of the
method, we refer to the monograph [32]. Now, we give the definitions of upper and lower
functions.

Definition 2.1 A function α ∈ AC1([0, T]; R) is called a lower function to problem (1.7)–
(1.8) if α(t) > 0 for every t ∈ [0, T] and

α′′(t) + f
(
α(t)

)
α′(t) + ϕ(t)α(t) +

r(t)
αμ(t)

≥ 0, a.e. t ∈ [0, T],

α(0) = α(T), α′(0) ≥ α′(T).
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Definition 2.2 A function β ∈ AC1([0, T]; R) is called an upper function to problem (1.7)–
(1.8) if β(t) > 0 for every t ∈ [0, T] and

β ′′(t) + f
(
β(t)

)
β ′(t) + ϕ(t)β(t) +

r(t)
βμ(t)

≤ 0, a.e. t ∈ [0, T],

β(0) = β(T), β ′(0) ≤ β ′(T).

The following proposition can be found in [32] (or a more general case in [33]).

Proposition 2.1 Let α and β be lower and upper functions to problem (1.7)–(1.8) such
that

α(t) ≤ β(t), t ∈ [0, T].

Then there exists a positive solution u to problem (1.7)–(1.8) such that

α(t) ≤ u(t) ≤ β(t), t ∈ [0, T].

We further show some auxiliary results obtained by Hakl, Torres and Zamora [16].
Given x1 ∈ R+ and x0 ∈ R0

+ as fixed constants and the operator K : C1([0, T]; R) →
C1([0, T]; R) defined by

K(u)(t) = x1 + x0
(
u(t) – min

{
u(s) : s ∈ [0, T]

})
, t ∈ [0, T], (2.1)

we consider the auxiliary problem

x′′(t) + f
(
K(x)(t)

)
x′(t) = q(t), a.e. t ∈ [0, T], (2.2)

x(0) = 0, x(T) = 0, (2.3)

where f ∈ C(R+; R) and q ∈ L([0, T]; R). By a solution to problem (2.2)–(2.3) we understand
a function u ∈ AC1([0, T]; R) that satisfies (2.2) almost everywhere on [0, T] and (2.3).

Lemma 2.1 ([16]) For every solution u to problem

x′′(t) + λf
(
K(x)(t)

)
x′(t) = λq(t), a.e. t ∈ [0, T], (2.4)

x(0) = 0, x(T) = 0, (2.5)

with λ ∈ (0, 1], we have the estimate

M – m ≤ T
4

max

{∫ T

0

[
q(s)

]
+ ds,

∫ T

0

[
q(s)

]
– ds

}

, (2.6)

where M = max{u(t) : t ∈ [0, T]}, m = min{u(t) : t ∈ [0, T]}.

Lemma 2.2 ([16]) For all x1 ∈ R+, x0 ∈ R0
+, and q ∈ L([0, T]; R), there exists a solution u(t)

to problem (2.2)–(2.3). Furthermore,

u′(T) – u′(0) =
∫ T

0
q(s) ds, (2.7)

and (2.6) is fulfilled.
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Lemma 2.3 If h,α ∈ L([0, T], R) and α(t) ≥ 0 for a.e. t ∈ [0, T], then

lim
n→+∞

∫ T

0

[

h(s) –
α(s)

n

]

+
ds =

∫ T

0

[
h(s)

]
+ ds.

Proof Let

hn(t) =

⎧
⎨

⎩

α(t)
n , h(t) > α(t)

n ,

h(t), h(t) ≤ α(t)
n .

Then we have

h(t) = hn(t) +
[

h(t) –
α(t)

n

]

+
.

Moreover,

∫ T

0
h(s) ds =

∫ T

0
hn(s) ds +

∫ T

0

[

h(s) –
α(s)

n

]

+
ds. (2.8)

By the definition of hn(t) we obtain

lim
n→+∞ hn(t) → f (t), a.e. t ∈ [0, T],

where

f (t) =

⎧
⎨

⎩

h(t), a.e. t ∈ E–(h),

0, a.e. t ∈ E+(h),

E–(h) = {t ∈ [0, T] : h(t) ≤ 0}, E+(h) = {t ∈ [0, T] : h(t) > 0}, and

–
[
h(t)

]
– ≤ hn(t) ≤ h(t).

By the Lebesgue dominated convergence theorem we get

lim
n→+∞

∫ T

0
hn(t) dt =

∫ T

0
f (t) dt = –

∫ T

0

[
h(t)

]
– dt.

Substituting this into (2.8), we obtain

lim
n→+∞

∫ T

0

[

h(s) –
α(s)

n

]

+
ds =

∫ T

0

[
h(s)

]
+ ds.

The proof is complete. �

3 Main results
3.1 Construction of lower function
In this section, we use the notations

Y+ =
∫ T

0

[
y(s)

]
+ ds,
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Y– =
∫ T

0

[
y(s)

]
– ds,

where y ∈ L([0, T]; R).

Theorem 3.1 Let ϕ, r ∈ L([0, T], R) be such that ess inf{r(t) : t ∈ [0, T]} > 0. Then there
exists a lower function α to problem (1.7)–(1.8) satisfying 0 < α(t) < 1.

Proof Let r1 > 0 be such that

ess inf
{

r(t) : t ∈ [0, T]
} ≥ r1.

Consider the periodic problem

x′′ + f (x)x′ + ϕ(t)x +
r1

xμ
= 0, x(0) = x(T), x′(0) = x′(T). (3.1)

By Corollary 2.13 in [16] (with h0(t) = –ϕ(t), ρ0(x) = x, g(x) = r1
xμ , c sufficiently large, and

x0 ∈ (0, 1)) there exists a lower function α to periodic problem (3.1) such that 0 < α(t) ≤ x0

for t ∈ [0, T]. Obviously, the same α is also a lower function to (1.7)–(1.8). �

Theorem 3.2 Let ϕ, r ∈ L([0, T], R), r(t) ≥ 0 a.e. t ∈ [0, T] and r̄ > 0. Suppose T
4 ×

∫ T
0 [ϕ(s)]–(s) ds < 1. Then there exists a lower function α to problem (1.7)–(1.8) such that

0 < α(t) < 1 for t ∈ [0, T].

Proof Let

y(t, x) = –ϕ(t) –
r(t)
xμ+1 for (t, x) ∈ [0, T] × (0, +∞).

Then we have

Y (x) =
∫ T

0
y(s, x) ds = –T ϕ̄ –

Tr̄
xμ+1 .

Obviously, for a constant c satisfying c > –ϕ̄, there must exist a constant a1 ∈ (0, 1) such
that, for any x ∈ (0, a1), we have

Y (x) < 0.

Since Y (x) = Y+(x) – Y–(x), we arrive at Y+(x) < Y–(x) for x ∈ (0, a1). By a direct calculation,
for x ∈ (0, a1), we get

Y+(x) ≤
∫ T

0

[
ϕ(s)

]
– ds.

Since Y (x) = Y+(x) – Y–(x), we obtain the following inequality as x → 0+:

Y–(x) = Y+(x) – Y (x) ≥ –Y (x) = T ϕ̄ +
Tr̄

xμ+1 → +∞.
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So, for a sufficiently small constant a1 ∈ (0, 1), we have the following equality for x ∈ (0, a1):

1 +
T
4

Y–(x) >
1

1 – T
4

∫ T
0 [ϕ(s)]– ds

. (3.2)

Choose a constant x2 ∈ (0, a1), and let x1 = (1 – T
4 Y+(x2))x2. Since T

4
∫ T

0 [ϕ(s)]– ds < 1 by
assumption, we have 1 – T

4 Y+(x2) > 0, which ensures that x1 make sense. As the first case,
we suppose Y+(x2) > 0.

Put

x0 =
4(x2 – x1)

TY–(x2)Y+(x2)
, (3.3)

q(t) = Y–(x2)
[
y(t, x2)

]
+ – Y+(x2)

[
y(t, x2)

]
–, t ∈ [0, T].

Now we obtain

∫ T

0
q(s) ds = 0. (3.4)

By Lemma 2.2 there exists a solution u to (2.2)–(2.3) such that (2.6) and (2.7) hold.
Using (2.6) and (2.7), we get

M – m ≤ T
4

Y+(x2)Y–(x2), (3.5)

u′(0) = u′(T), (3.6)

where the constants M and m are defined in Lemma 2.1.
Put α(t) = K(u)(t) = x1 + x0(u(t) – min{u(s) : s ∈ [0, T]}). Then equation (2.2) can be writ-

ten as

α′′(t) + f
(
α(t)

)
α′(t) = x0Y–(x2)

[
y(t, x2)

]
+ – x0Y+(x2)

[
y(t, x2)

]
– (3.7)

for almost every t ∈ [0, T]. Besides, according to (3.3), (3.5), and the definition of α(t), we
arrive at

x1 ≤ α(t) ≤ x2, t ∈ [0, T]. (3.8)

Then, using (3.6), we get

α(0) = α(T), α′(0) = α′(T). (3.9)

In addition, by the definition of x1, x2 and by (3.2) we obtain

x2 – x1 = x2 – x2

(

1 –
T
4

Y+(x2)
)

≤ x2 – x2

(

1 –
T
4

∫ T

0

[
ϕ(s)

]
– ds

)
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≤ x2 –
x2

1 + T
4 Y–(x2)

=
T
4 Y–(x2)x2

1 + T
4 Y–(x2)

≤ T
4

Y–(x2)x2

(

1 –
T
4

Y+(x2)
)

=
x1

1 – T
4 Y+(x2)

(

1 –
T
4

Y+(x2)
)

T
4

Y–(x2)

=
T
4

Y–(x2)x1. (3.10)

From the definition of x1, x2, we arrive at

x2 – x1 =
T
4

x2Y+(x2). (3.11)

Using (3.3) and (3.10), we get

x0Y+(x2) =
4(x2 – x1)
TY–(x2)

≤ x1. (3.12)

Relations of (3.3) and (3.11) imply

x0Y–(x2) =
4(x2 – x1)
TY+(x2)

= x2. (3.13)

By (3.8), (3.12), (3.13) we obtain

x0Y+(x2) ≤ α(t) ≤ x0Y–(x2), t ∈ [0, T]. (3.14)

Substituting (3.14) into (3.7), we get

α′′(t) + f
(
α(t)

)
α′(t) ≥ α(t)y(t, x2), a.e. t ∈ [0, T]. (3.15)

By (3.8) we have

–
r(t)

αμ+1(t)
≤ –

r(t)
xμ+1

2
.

Moreover,

y(t, x2) = –ϕ(t) –
r(t)
xμ+1

2
≥ –ϕ(t) –

r(t)
αμ+1(t)

. (3.16)

Substituting this into (3.15), we arrive at

α′′(t) + f
(
α(t)

)
α′(t) + ϕ(t)α(t) +

r(t)
αμ(t)

≥ 0, a.e. t ∈ [0, T]. (3.17)

Consequently, (3.9) and (3.17) ensure that α(t) is a lower function to problem (1.7)–(1.8)
such that 0 < α(t) < 1 for t ∈ [0, T].
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We further consider the case of Y+(x2) = 0. For this case, it is easy to see that

y(t, x2) ≤ 0,

which means

–ϕ(t) –
r(t)
xμ+1

2
≤ 0,

that is,

ϕ(t)x2 +
r(t)
xμ

2
≥ 0.

Obviously, α(t) = x2 is a lower function to problem (1.7)–(1.8), and 0 < α(t) < 1 for t ∈
[0, T]. �

3.2 Construction of upper function
Theorem 3.3 Let r, ϕ ∈ L([0, T], R) be such that ess sup{r(t) : t ∈ [0, T]} < +∞. Let, more-
over,

T
4

∫ T

0

[
ϕ(t)

]
– ds

∫ T

0

[
ϕ(t)

]
+ ds ≤

∫ T

0

[
ϕ(t)

]
– ds –

∫ T

0

[
ϕ(t)

]
+ ds. (3.18)

Then there exists an upper function β(t) to problem (1.7)–(1.8), and β(t) > 1 for t ∈ [0, T].

Proof Since ess sup{r(t) : t ∈ [0, T]} < +∞, there exists a constant c1 ∈ R such that

ess sup
{

r(t) : t ∈ [0, T]
} ≤ c1,

which results in

lim
x→∞

r(t)
xμ+1 = 0 uniformly for a.e. t ∈ [0, T].

Thus there exist 1 < a1(ε) ≤ a2(ε) < +∞ such that

r(t)
xμ+1 ≤ ε for every x ∈ [

a1(ε), a2(ε)
]
, a.e. t ∈ [0, T]. (3.19)

Let ψ(t) = –ϕ(t) – ε. By Lemma 2.3 we have

lim
ε→0

∫ T

0

[
–ϕ(t) – ε

]
+ ds =

∫ T

0

[
ϕ(t)

]
– ds,

namely,

lim
ε→0

∫ T

0

[
ψ(t)

]
+ ds =

∫ T

0

[
ϕ(t)

]
– ds.



Lu and Yu Boundary Value Problems  (2018) 2018:101 Page 10 of 19

We easily have

lim
ε→0

∫ T

0

[
ψ(t)

]
– ds =

∫ T

0

[
ϕ(t)

]
+ ds.

Arguing as before, (3.18) is equal to

T
4

∫ T

0

[
ψ(t)

]
+ ds

∫ T

0

[
ψ(t)

]
– ds ≤

∫ T

0

[
ψ(t)

]
+ ds –

∫ T

0

[
ψ(t)

]
– ds, (3.20)

which implies ψ̄ ≥ 0, that is, + ≥ – ≥ 0. As a first case, we suppose – > 0.
Put

a0 =
4(a2 – a1)
T+–

, (3.21)

q(t) = –
[
ψ(t)

]
+ – +

[
ψ(t)

]
–, a.e. t ∈ [0, T]. (3.22)

From the definition of q(t) we have

∫ T

0
q(s) ds = 0. (3.23)

By Lemma 2.2 there exists a solution u to problem (2.2)–(2.3) such that (2.6) and (2.7)
hold. By (2.6) and (2.7) we get

M – m ≤ T
4

+–, (3.24)

u′(0) = u′(T), (3.25)

where the constants M and m are defined in Lemma 2.1.
Let β(t) = K(u)(t) = a1 + a0(u(t) – min{u(s) : s ∈ [0, T]}). The function β satisfies

β ′′(t) + f
(
β(t)

)
β ′(t) = a0–

[
ψ(t)

]
+ – a0+

[
ψ(t)

]
–, a.e. t ∈ [0, T]. (3.26)

Using (3.24), (3.25), and the definition of β(t), we obtain

a1 ≤ β(t) ≤ a2, (3.27)

β(0) = β(T), β ′(0) = β ′(T). (3.28)

Putting a2 = a1 + T
4 a1+ and combining with (3.20), we arrive at

a2– ≤ a1+. (3.29)

The definition of a0 and (3.29) imply

a2 ≤ a0+, a1 = a0–.
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From a1 ≤ β(t) ≤ a2 we get

a0– ≤ β(t) ≤ a0+. (3.30)

Substituting (3.30) into (3.26), we arrive at

β ′′(t) + f
(
β(t)

)
β ′(t) ≤ β(t)

[
ψ(t)

]
+ – β(t)

[
ψ(t)

]
– = β(t)ψ(t) a.e. t ∈ [0, T], (3.31)

which, together with (3.19) and (3.27), gives

β ′′(t) + f
(
β(t)

)
β ′(t) ≤ β(t)

(

–ϕ(t) –
r(t)

βμ+1(t)

)

, a.e. t ∈ [0, T], (3.32)

that is,

β ′′(t) + f
(
β(t)

)
β ′(t) + β(t)ϕ(t) +

r(t)
βμ(t)

≤ 0, a.e. t ∈ [0, T]. (3.33)

Consequently, by Definition 2.2, (3.33), and (3.28), we get that β(t) is an upper function to
problem (1.7)–(1.8) and β(t) > 1.

Now, we consider the case of – = 0. For this case, it is easy to see that ψ(t) ≥ 0 for a.e.
t ∈ [0, T]. By Lemma 2.2, when q(t) = 0, there is a solution u to (2.2)–(2.3) satisfying (3.24)
and (3.25). Let β(t) = K(u)(t) = a1 + a0(u(t) – min{u(s) : s ∈ [0, T]}). Then β(t) ≥ 0 for all
t ∈ [0, T], and (3.26) can be rewritten as

β ′′(t) + f
(
β(t)

)
β ′(t) = 0.

Since β(t)ψ(t) ≥ 0 for a.e. t ∈ [0, T], we get

β ′′(t) + f
(
β(t)

)
β ′(t) ≤ β(t)ψ(t) = β(t)

(
–ϕ(t) – ε

)
, a.e. t ∈ [0, T],

which, together with (3.19), yields

β ′′(t) + f
(
β(t)

)
β ′(t) ≤ β(t)

(

–ϕ(t) –
r(t)

βμ+1(t)

)

, a.e. t ∈ [0, T],

that is,

β ′′(t) + f
(
β(t)

)
β ′(t) + β(t)ϕ(t) +

r(t)
βμ(t)

≤ 0, a.e. t ∈ [0, T]. (3.34)

Consequently, by Definition 2.2, (3.28), and (3.34) we get that β(t) is an upper function to
problem (1.7)–(1.8) and β(t) > 1. �

Theorem 3.4 Let ϕ, r ∈ L([0, T], R), and let r(t) ≥ 0 for a.e. t ∈ [0, T]. Suppose that

T
4

∫ T

0

[
ϕ(s)

]
+ ds

∫ T

0

[
ϕ(s)

]
– ds <

∫ T

0

[
ϕ(s)

]
– ds –

∫ T

0

[
ϕ(s)

]
+ ds. (3.35)

Then there exists an upper function β(t) to problem (1.7)–(1.8), and β(t) > 1.
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Proof Put z(t, x) = –ϕ(t) – r(t)
xμ+1 , (t, x) ∈ [0, T] × (0, +∞). Then

Z(x) =
∫ T

0
z(s, x) ds = –T ϕ̄ –

Tr̄
xμ+1 .

Using the definition of Z(x), we easily obtain that Z(x) → –T ϕ̄ as x → +∞. Furthermore,
by Lemma 2.3 we get

Z+(x) → �–, Z–(x) → �+, x → +∞. (3.36)

The condition r(t) > 0, a.e. t ∈ [0, T], gives that

Z+(x) ≤ �–, Z–(x) ≥ �+ for x ∈ (0, +∞).

Also, (3.36) implies that there exist a constant ε0 ∈ (0, 1) (small enough) and a constant
ρ ∈ (1, +∞) (large enough) such that

�– – ε0 < Z+(x) ≤ �–, �+ ≤ Z–(x) < �+ + ε0, x ∈ (ρ, +∞), (3.37)

and

T
4

(∫ T

0

[
ϕ(t)

]
+ ds + ε0

)∫ T

0

[
ϕ(t)

]
– ds ≤

∫ T

0

[
ϕ(t)

]
– ds –

∫ T

0

[
ϕ(t)

]
+ ds – 2ε0. (3.38)

We consider the case Z–(a1) > 0 as the first case. Put a1 ∈ (ρ, +∞) and a2 = a1 +
T
4 a1Z+(a1). Then a2 ∈ (ρ, +∞). Let

a0 =
4(a2 – a1)

TZ+(a1)Z–(a1)
, (3.39)

q(t) = Z+(a1)
[
z(t, a1)

]
– – Z+(a1)

[
z(t, a1)

]
–, a.e. t ∈ [0, T]. (3.40)

Clearly,

∫ T

0
q(s) ds = 0. (3.41)

By Lemma 2.2 there exists a solution u to (2.2)–(2.3) satisfying (2.6) and (2.7). In view of
(2.6) and (2.7), we get

M – m ≤ T
4

Z+(a1)Z–(a1), (3.42)

u′(0) = u′(T), (3.43)

where the constants M and m are defined in Lemma 2.1. Put

β(t) = K(u)(t) = a1 + a0
(
u(t) – min

{
u(s) : s ∈ [0, T]

})
. (3.44)



Lu and Yu Boundary Value Problems  (2018) 2018:101 Page 13 of 19

Then (2.2) can be rewritten as

β ′′(t) + f
(
β(t)

)
β ′(t) = a0Z–(a1)

[
z(t, a1)

]
+ – a0Z+(a1)

[
z(t, a1)

]
–, (3.45)

a.e. t ∈ [0, T]. So

1 < ρ < a1 ≤ β(t) ≤ a2, t ∈ [0, T], (3.46)

β(0) = β(T), β ′(0) = β ′(T). (3.47)

From (3.37), (3.38), and the definition of a2 it follows that

a2Z–(a1) ≤ a2(�+ + ε0) =
(

a1 +
T
4

a1Z+(a1)
)

(�+ + ε0)

≤ a1

(

1 +
T
4

�–

)

(�+ + ε0)

= a1(�+ + ε0) +
T
4

a1�–(�+ + ε0)

< a1(�+ + ε0) + (�– – �+ – 2ε0)a1

= a1(�– – ε0)

< Z+(a1)a1.

(3.48)

Using (3.48) and the definition of a0, we get

a2 ≤ a0Z+(a1), a1 = a0Z–(a1). (3.49)

Because of a1 ≤ β(t) ≤ a2, we have

β(t) ≤ a0Z+(a1), β(t) ≥ a0Z–(a1).

Substituting this into (3.45), we obtain

β ′′(t) + f
(
β(t)

)
β ′(t) ≤ β(t)

[
z(t, a1)

]
+ – β(t)

[
z(t, a1)

]
– = β(t)z(t, a1), (3.50)

a.e. t ∈ [0, T], that is,

β ′′(t) + f
(
β(t)

)
β ′(t) ≤ β(t)

(

–ϕ(t) –
r(t)
aμ+1

1

)

, a.e. t ∈ [0, T].

By the inequality β(t) ≥ a1, t ∈ [0, T] (see (3.46)), we get that

β ′′(t) + f
(
β(t)

)
β ′(t) + β(t)ϕ(t) +

r(t)
βμ(t)

≤ 0 a.e. t ∈ [0, T]. (3.51)

From (3.51) and (3.47) we see that β(t) is an upper function to problem (1.7)–(1.8), and
β(t) > 1 for all t ∈ [0, T].
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Now, we consider the remaining case Z–(a1) = 0. Under this situation, we have z(t, a1) ≥
0 for t ∈ [0, T], which implies

–ϕ(t) –
r(t)
aμ+1

1
≥ 0,

that is,

ϕ(t)a1 +
r(t)
aμ

1
≤ 0.

Obviously, β(t) = a1 is an upper function to problem (1.7)–(1.8). �

3.3 Existence theorems
Theorem 3.5 Let ϕ, r ∈ L([0, T], R) be such that

ess inf
{

r(t) : t ∈ [0, T]
}

> 0, ess sup
{

r(t) : t ∈ [0, T]
}

< +∞.

Let, moreover,

T
4

∫ T

0

[
ϕ(t)

]
+ ds

∫ T

0

[
ϕ(t)

]
– ds ≤

∫ T

0

[
ϕ(t)

]
– ds –

∫ T

0

[
ϕ(t)

]
+ ds.

Then there exists at least one positive T-periodic solution to problem (1.7).

Proof By Theorems 3.1 and 3.3 there exist a lower function 0 < α(t) < 1 and an upper
function β(t) > 1. Therefore, the result can be obtained directly from Proposition 2.1 and
Remark 1.1 in Sect. 1. �

Example 3.1 Consider the following second-order differential equation:

x′′(t) +
x′(t)
x3 – (2 + sin t)x(t) +

2 + sin t
xμ(t)

= 0, (3.52)

where μ ∈ (0, +∞) is a constant.

From the equation we see that ϕ(t) = –2 – sin t and r(t) = 2 + sin t; obviously, r,ϕ ∈
L([0, T], R), and 1 ≤ r(t) ≤ 3. By direct calculation we get

∫ 2π

0

[
ϕ(s)

]
+ ds =

∫ 2π

0
0 ds = 0,

∫ 2π

0

[
ϕ(s)

]
– ds =

∫ 2π

0
(2 + sin s) ds = 4π ,

and we arrive at

T
4

∫ T

0

[
ϕ(t)

]
+ ds

∫ T

0

[
ϕ(t)

]
– ds = 0,

∫ T

0

[
ϕ(t)

]
– ds –

∫ T

0

[
ϕ(t)

]
+ ds = 4π .
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Consequently, all the conditions of Theorem 3.5 are satisfied. So by this theorem we get
that there exists at least one positive T-periodic solution to equation (3.52).

Theorem 3.6 Let ϕ, r ∈ L([0, T], R) be such that

r(t) ≥ 0, a.e. t ∈ [0, T],

and

T
4

∫ T

0

[
ϕ(s)

]
+ ds

∫ T

0

[
ϕ(s)

]
– ds <

∫ T

0

[
ϕ(s)

]
– ds –

∫ T

0

[
ϕ(s)

]
+ ds.

Then there exists at least one positive T-periodic solution to problem (1.7).

Proof By Theorems 3.1 and 3.4 there exist a lower function 0 < α(t) < 1 and an upper
function β(t) > 1. Therefore, the result is a direct consequence of Proposition 2.1 and Re-
mark 1.1 in Sect. 1. �

Example 3.2 Consider the following second-order differential equation:

x′′(t) +
x′(t)
x 1

3
–

(

1 +
1
2

sin t
)

x(t) +
1 + 1

2 cos t
xμ(t)

= 0, (3.53)

where μ ∈ (0, +∞) is a constant.

From the equation we see that ϕ(t) = –1 – 1
2 sin t and r(t) = 1 + 1

2 cos t ≥ 0; obviously,
r,ϕ ∈ L([0, T], R). By direct calculation we have

∫ 2π

0

[
ϕ(s)

]
+ ds = 0,

∫ 2π

0

[
ϕ(s)

]
– ds =

∫ 2π

0

(

1 +
1
2

sin s
)

ds = 2π ,

and we arrive at

T
4

∫ T

0

[
ϕ(s)

]
+ ds

∫ T

0

[
ϕ(s)

]
– ds = 0,

∫ T

0

[
ϕ(s)

]
– ds –

∫ T

0

[
ϕ(s)

]
+ ds = 2π .

Consequently, all the conditions of Theorem 3.6 are satisfied, and so by this theorem there
exists at least one positive T-periodic solution to equation (3.53).

Theorem 3.7 Let ϕ, r ∈ L([0, T], R). Suppose that the following assumptions hold:
(1) r(t) ≥ 0 for a.e. t ∈ [0, T], r̄ > 0, and ess sup{r(t)} < +∞;
(2) T

4
∫ T

0 [ϕ(s)]– ds < 1;
(3) T

4
∫ T

0 [ϕ(t)]+ ds
∫ T

0 [ϕ(t)]– ds ≤ ∫ T
0 [ϕ(t)]– ds –

∫ T
0 [ϕ(t)]+ ds.

Then there exists at least one positive T-periodic solution to problem (1.7).
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Proof By Theorems 3.2 and 3.3 there exist a lower function 0 < α(t) < 1 and an upper
function β(t) > 1. Therefore, the result is a direct consequence of Proposition 2.1 and Re-
mark 1.1 in Sect. 1. �

Example 3.3 Consider the following second-order differential equation:

x′′(t) –
x′(t)
x 1

3
– (5 – 2 sin t)x(t) +

r(t)
xμ(t)

= 0, (3.54)

where μ ∈ (0, +∞) is a constant, and r : R → R is T-periodic with

r(t) =

⎧
⎨

⎩

–1, t = –π ,

1 + sin t, t ∈ (–π ,π ].

From equation (3.54) we see that ϕ(t) = –5 + 2 sin t. Obviously, ϕ, r ∈ L([0, T], R), and
condition (1) is satisfied. By direct calculation we have

2π

4

∫ 2π

0

[
–ϕ(s)

]
– ds =

2π

4

∫ 2π

0
0 ds = 0 < 1.

This inequality implies that condition (2) is satisfied. Also, we can get the equalities

∫ 2π

0

[
ϕ(s)

]
– ds =

∫ 2π

0
(5 – 2 sin s) ds = 10π

and
∫ 2π

0

[
ϕ(s)

]
+ ds = 0,

which results in

T
4

∫ T

0

[
ϕ(t)

]
+ ds

∫ T

0

[
ϕ(t)

]
– ds = 0,

∫ T

0

[
ϕ(t)

]
– ds –

∫ T

0

[
ϕ(t)

]
+ ds = 10π .

Consequently, all the conditions of Theorem 3.7 are satisfied, so by this theorem there
exists at least one positive T-periodic solution to equation (3.54).

Theorem 3.8 Let ϕ, r ∈ L([0, T], R) satisfy r̄ > 0. Assume that the following conditions
hold:

(1) r(t) ≥ 0 for a.e. t ∈ [0, T];
(2) T

4
∫ T

0 [ϕ(s)]–(s) ds < 1;
(3) T

4
∫ T

0 [ϕ(s)]+ ds
∫ T

0 [ϕ(s)]– ds <
∫ T

0 [ϕ(s)]– ds –
∫ T

0 [ϕ(s)]+ ds.
Then there exists at least one positive T-periodic solution to problem (1.7).

Proof By Theorems 3.2 and 3.4 there exist a lower function 0 < α(t) < 1 and an upper
function β(t) > 1. Therefore, the result follows immediately from Proposition 2.1 and Re-
mark 1.1 in Sect. 1. �
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Example 3.4 Consider the following second-order differential equation:

x′′(t) – f (x)x′ –
(

1 +
1
2

sin t
)

x(t) +
r(t)

xμ(t)
= 0, (3.55)

where f ∈ C((0, +∞), R), μ ∈ (0, +∞) is a constant, and r : R → R is T-periodic defined as

r(t) =

⎧
⎨

⎩

0, t ∈ (0,π ],

1 + cos t, t ∈ (–π , 0].

From (3.55) we see that ϕ(t) = –1 – 1
2 sin t. Obviously, ϕ, r ∈ L([0, T], R), and condition

(1) is satisfied. By direct calculation we have

T
4

∫ T

0

[
ϕ(s)

]
+(s) ds = 0 < 1.

This implies that condition (2) is satisfied. Furthermore, we can also get the equalities

∫ T

0

[
ϕ(s)

]
– ds =

∫ 2π

0

(

1 +
1
2

sin t
)

ds = 2π

and

∫ T

0

[
ϕ(s)

]
+ ds = 0,

which results in

T
4

∫ T

0

[
ϕ(s)

]
+ ds

∫ T

0

[
ϕ(s)

]
– ds = 0,

∫ T

0

[
ϕ(s)

]
– ds –

∫ T

0

[
ϕ(s)

]
+ ds = 2π .

Consequently, all the conditions of Theorem 3.8 are satisfied, so that by this theorem there
exists at least one positive T-periodic solution to equation (3.55).

Remark 3.1 Obviously, the conclusions associated with Examples 3.1–3.4 can be obtained
neither by using the results of [7] nor by using the results of [16] (see Theorem 1.1), since
the singularity term r(t)

xμ is nonautonomous. Furthermore, even if f (x) ≡ 0 for x ∈ (0, +∞),
the above conclusion associated with Example 3.4 cannot be deduced from the main the-
orem of [17] (Theorem 1 of [17]). This is due to the fact that the condition of δ ∈ [0, 1) is
required in [17].

4 Conclusions
In this paper, we study the periodic problem for Liénard equations with a singularity of
attractive type in the case of r(t) ≥ 0 for a.e. t ∈ [0, T]. The proofs of main results are
based on the method of upper and lower functions. It is interesting that the singularity
term r(t)

xμ in (1.7) is nonautonomous, which generalizes the corresponding results in the
known literature where r(t) is a constant function. In the next research, we will continue
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to study the periodic problem to the singular equation like (1.7) where r(t) is a changing-
sign function.
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