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Abstract
In this paper, we investigate a class of nonlinear two-term fractional differential
equations involving two fractional orders δ ∈ (1, 2] and τ ∈ (0,δ) with integral
boundary value conditions. By the Schauder fixed point theorem we obtain the
existence of positive solutions based on the method of upper and lower solutions.
Then we obtain the uniqueness result by the Banach contraction mapping principle.
Examples are given to illustrate our main results.
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1 Introduction
Fractional differential equations are an important tool to describe many processes and
phenomena of science and engineering [1–3]. The boundary value problems of fractional
differential equations have received widespread attention in recent years, and there are
some attractive results obtained: see [4–9]. The theory of lower and upper solutions is
known to be an effective method for proving the existence of solutions to fractional dif-
ferential equations (see, e.g., [10–14]).

In this paper, we study positive solutions for the integral boundary value problems

Dδx(t) + f
(
t, x(t)

)
= Dτ g

(
t, x(t)

)
, t ∈ (0, 1), (1.1)

x(0) = 0, x(1) =
1

�(δ – τ )

∫ 1

0
(1 – s)δ–τ–1g

(
s, x(s)

)
ds, (1.2)

where Dδ and Dτ are the standard Riemann–Liouville derivatives, 1 < δ ≤ 2, 0 < τ < δ,
f , g : [0, 1] × [0, 1] → [0, +∞) are given continuous functions, g(t, x) is nondecreasing on x
for any t ∈ [0, 1], and f is not required any monotone assumption.

In the literature, single-term fractional differential equations of the form Dδx(t) =
f (t, x(t)) have been studied by many researchers (see [15–23]). In practical problems the
equation contains more than one fractional differential term, for example, the classical
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Bagley–Torvik equation [24]

AD2y(x) + BD
3
2 y(x) + Cy(x) = f (x),

where A, B, C are constants, and f is a given function. This equation was introduced in
1984 as the mathematical model for the motion of thin plate in Newtonian fluid. The
Langevin equation with the fractional derivatives of the form

Dβ
(
Dα + μ

)
x(t) = f (t)

is another great example [25–27]. More generally, we can refer to [6, 10] on the equation
of type Dβx(t) = f (t, x(t), Dαx(t)).

Recently, in the aspect of theories, there are some excellent results on the existence of
solutions to two-term fractional differential equations. For example, Ibrahim et al. [28]
studied the boundary value problem

⎧
⎨

⎩

cDαu(t) – acDβu(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = u0, u(1) = u1,

where cDα and cDβ are the Caputo fractional derivatives with 1 < α ≤ 2 and 1 ≤ β < α. The
existence and uniqueness of solutions were obtained by the Banach contraction principle
and Krasnoselskii’s fixed point theorem.

Staněk [29], applying the Schauder fixed point theorem, considered the existence, mul-
tiplicity, and uniqueness of solutions to the periodic boundary value problem

⎧
⎨

⎩

cDαu(t) + q(t, u(t))cDβu(t) = f (t, u(t)), 0 < t < 1,

u(0) = u(T).

Agarwal et al. [6] investigated the singular fractional Dirichlet boundary value problem

⎧
⎨

⎩
Dαu(t) + f (t, u(t), Dμu(t)) = 0,

u(0) = u(1) = 0.

By means of a fixed point theorem on cone, the existence of positive solutions was proved.
In recent paper [30], positivity results of the initial value problems

⎧
⎨

⎩

cDαx(t) = f (t, x(t)) + cDα–1g(t, x(t)), 0 < t ≤ T ,

x(0) = θ1 > 0, x′(0) = θ2 > 0,

were considered by using the method of upper and lower solutions, Schauder fixed point
theorem, and Banach fixed point theorem. It is interesting that the upper and lower control
functions f need no any monotone requirement.

To the best of our knowledge, no paper has considered the existence of positive so-
lutions for nonlinear fractional differential equations with integral boundary conditions
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(1.1)–(1.2). This equation has two nonlinear terms, one containing the fractional deriva-
tive. Compared to many two-term fractional differential equations, the form of the equa-
tion we considered is more general in a way. In addition, the other nonlinear term requires
no any monotonicity, which can respond better to objective laws.

In this paper, we prove the existence of positive solutions to the boundary value prob-
lem (1.1)–(1.2) by the Schauder fixed point theorem and the method of upper and lower
solutions. Then, we give a uniqueness result by the Banach contraction mapping principle.

The paper is organized as follows. Section 2 contains some necessary concepts and re-
sults. In Sect. 3, our main results on the existence of positive solutions are proved. Sec-
tion 4 is devoted to study the uniqueness of positive solutions.

2 Preliminaries
In this section, we present some definitions and lemmas, which are required for our the-
orems.

Definition 2.1 ([1]) The fractional integral of order α > 0 of a function f : (0, +∞) →R is
given by

Iαf (t) =
1

�(α)

∫ t

0
(t – s)α–1f (s) ds,

where �(α) is the gamma function, provided that the right-hand side is pointwise defined
on (0, +∞).

Definition 2.2 ([1]) The Riemann–Liouville fractional derivative of order α > 0 of a con-
tinuous function f : (0, +∞) →R is given by

Dαf (t) =
1

�(n – α)

(
d
dt

)n ∫ t

0
(t – s)n–α+1f (s) ds,

where n = [α]+1 ([α] denotes the integer part of a number α), provided that the right-hand
side is pointwise defined on (0, +∞).

Lemma 2.1 ([2]) Let α > 0. If f ∈ L1([a, b],RN ) and In–αf ∈ ACn([a, b],RN ), then

Iα
(
Dαf (t)

)
= f (t) –

n∑

j=1

f (n–j)
n–α (a)

�(α – j + 1)
tα–j

almost everywhere on [a, b], where n is the smallest integer greater than or equal to α.

Lemma 2.2 ([3]) If α > 0 and β > 0, then the equation

Iα
(
Iβ f (t)

)
= Iα+β f (t) (2.1)

is satisfied at almost every point t ∈ [a, b] for f ∈ Lp([a, b],RN ) (1 ≤ p ≤ ∞). If α + β > 1,
then relation (2.1) holds at any point of [a, b].
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Lemma 2.3 ([3]) If α > 0 and β > 0, then

Iαtβ–1 =
�(β)

�(β + α)
tβ+α–1. (2.2)

Lemma 2.4 ([3]) Let X be a Banach space, and let � ⊂ X be a convex closed bounded set.
If T : � → � is a continuous operator such that T� ⊂ X and T� is relatively compact,
then T has at least one fixed point in �.

Lemma 2.5 ([3]) Let (X, d) be a complete metric space, and let T : X → X be a contraction
mapping:

d(Tx, Ty) ≤ kd(x, y),

where 0 < k < 1, for all x, y ∈ X. Then there exists a unique fixed point x of T in X : Tx = x.

Lemma 2.6 Let x ∈ L1([0, 1],R) and I2–δx ∈ AC2([0, 1],R) with 1 < δ ≤ 2. Then x is a solu-
tion of the boundary value problem (1.1)–(1.2) if and only if

x(t) =
∫ 1

0
H(t, s)f

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds, (2.3)

where

H(t, s) =

⎧
⎨

⎩

[t(1–s)]δ–1–(t–s)δ–1

�(δ) , 0 ≤ s ≤ t ≤ 1,
[t(1–s)]δ–1

�(δ) , 0 ≤ t ≤ s ≤ 1.
(2.4)

Proof The proof is divided into two cases.
Case 1. τ ≤ 1. From Lemma 2.1, applying Iδ on both sides of (1.1), it follows that

x(t) + c1tδ–1 + c2tδ–2 + Iδf
(
t, x(t)

)
= Iδ–τ

(
Iτ Dτ g

(
t, x(t)

))

= Iδ–τ
(
g
(
t, x(t)

)
+ c3tτ–1), (2.5)

that is,

x(t) + c1tδ–1 + c2tδ–2 +
1

�(δ)

∫ t

0
(t – s)δ–1f

(
s, x(s)

)
ds

=
1

�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds + c3

�(τ )
�(δ)

tδ–1. (2.6)

By the boundary condition (1.2) we have c2 = 0 and

c1 = –
1

�(δ)

∫ 1

0
(1 – s)δ–1f

(
s, x(s)

)
ds + c3

�(τ )
�(δ)

.

Case 2. τ > 1. As in Case 1, we can obtain

x(t) + c1tδ–1 + c2tδ–2 + Iδf
(
t, x(t)

)
= Iδ–τ

(
g
(
t, x(t)

)
+ c3tτ–1 + c4tτ–2) (2.7)
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and

x(t) + c1tδ–1 + c2tδ–2 +
1

�(δ)

∫ t

0
(t – s)δ–1f

(
s, x(s)

)
ds

=
1

�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds + c3

�(τ )
�(δ)

tδ–1 + c4
�(τ – 1)
�(δ – 1)

tδ–2. (2.8)

According to boundary condition (1.2), we get c2 = c4
�(τ–1)
�(δ–1) and

c1 = –
1

�(δ)

∫ 1

0
(1 – s)δ–1f

(
s, x(s)

)
ds + c3

�(τ )
�(δ)

.

Therefore

x(t) =
1

�(δ)

∫ 1

0
tδ–1(1 – s)δ–1f

(
s, x(s)

)
ds –

1
�(δ)

∫ t

0
(t – s)δ–1f

(
s, x(s)

)
ds

+
1

�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds

=
∫ 1

0
H(t, s)f

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds. (2.9)

This process is reversible. �

Lemma 2.7 ([17]) The function H(t, s) defined by (2.4) satisfies:
(1) H(t, s) > 0 for t, s ∈ (0, 1);
(2) max0≤t≤1 H(t, s) = H(s, s), s ∈ (0, 1).

Let the Banach space X = C([0, 1]) be endowed with the norm ‖x‖ = max0≤t≤1 |x(t)|.
Define

P =
{

u ∈ X : u(t) > 0, t ∈ (0, 1], u(0) = 0
}

.

The positive solution we consider in this paper is a function such that u ∈ P.
To use the fixed point theorem, according to Lemma 2.6, we define the operator T as

Tx(t) =
∫ 1

0
H(t, s)f

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds. (2.10)

Then we have the following lemma.

Lemma 2.8 The operator T : X → X is completely continuous.

Proof Obviously, operator T is continuous because of the continuity of f and g . For any
η > 0, take Bη = {x ∈ X,‖x‖ ≤ η}. Then for any t ∈ [0, 1], x ∈ Bη , there exists a constant M1
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such that f (t, x), g(t, x) ≤ M1 and

Tx(t) =
∫ 1

0
H(t, s)f

(
s, x(s)

)
ds

+
1

�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds

≤
∫ 1

0

1
�(δ)

[
s(1 – s)

]δ–1M1 ds +
M1

�(δ – τ )

≤ M1

�(δ)
+

M1

�(δ – τ )
. (2.11)

Thus T(Bη) is uniformly bounded.
For all x ∈ Bη , t1, t2 ∈ [0, 1], t1 < t2, we get

∣∣(Tx)(t2) – (Tx)(t1)
∣∣

=
∣
∣∣
∣

1
�(δ)

∫ 1

0

[
t2(1 – s)

]δ–1f
(
s, x(s)

)
ds +

1
�(δ)

∫ t2

0
(t2 – s)δ–1f

(
s, x(s)

)
ds

+
1

�(δ – τ )

∫ t2

0
(t2 – s)δ–τ–1g

(
s, x(s)

)
ds –

1
�(δ)

∫ 1

0

[
t1(1 – s)

]δ–1f
(
s, x(s)

)
ds

–
1

�(δ)

∫ t1

0
(t1 – s)δ–1f

(
s, x(s)

)
ds –

1
�(δ – τ )

∫ t1

0
(t1 – s)δ–τ–1g

(
s, x(s)

)
ds

∣
∣∣
∣

≤
∣∣
∣∣
tδ–1
2 – tδ–1

1
�(δ)

∫ 1

0
(1 – s)δ–1f

(
s, x(s)

)
ds

+
1

�(δ)

∫ t2

0

(
(t2 – s)δ–1 – (t1 – s)δ–1)f

(
s, x(s)

)
ds +

∫ t1

t2

(t1 – s)δ–1f
(
s, x(s)

)
ds

+
∫ t2

0
(t2 – s)δ–τ–1 – (t1 – s)δ–τ–1g

(
s, x(s)

)
ds +

∫ t1

t2

(t1 – s)δ–τ–1g
(
s, x(s)

)
ds

∣∣
∣∣

≤ ∣
∣tδ–1

2 – tδ–1
1 + tδ

2 – tδ
1
∣
∣ M1

�(δ + 1)
+

∣
∣tδ–τ

2 – tδ–τ
1

∣
∣ M1

�(δ – τ + 1)
.

As t1 → t2, the right-hand side of the inequality tends to zero, which means that T(Bη) is
equicontinuous. By the Arzelà–Ascoli theorem T : X → X is compact. �

Let a, b ∈ R
+ with b > a. For any x ∈ [a, b], we definite the upper control function by

U(t, x) = sup
{

f (t,λ) : a ≤ λ ≤ x
}

(2.12)

and the lower control function by

L(t, x) = inf
{

f (t,λ) : x ≤ λ ≤ b
}

. (2.13)

It is clear that U(t, x) and L(t, x) are nondecreasing on x and

L(t, x) ≤ f (t, x) ≤ U(t, x).
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Definition 2.3 Let a, b ∈R
+ with b > a, and let x, x ∈ P with a ≤ x(t) ≤ x(t) ≤ b satisfy

x(t) ≥
∫ 1

0
H(t, s)U

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds,

x(t) ≤
∫ 1

0
H(t, s)L

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds

for all t ∈ (0, 1]. Then the functions x and x are called a pair of upper and lower solutions
of the boundary value problem (1.1)–(1.2).

3 Existence of positive solutions
In this section, we establish the existence of positive solutions for the boundary value
problem (1.1)–(1.2) by the Schauder fixed point theorem based on the method of upper
and lower solutions.

Theorem 3.1 Assume that x and x are a pair of upper and lower solutions of the boundary
value problem (1.1)–(1.2). Then the boundary value problem (1.1)–(1.2) has at least one
positive solution x ∈ X, and x(t) ≤ x(t) ≤ x(t), t ∈ [0, 1].

Proof Let

K =
{

x ∈ P : x(t) ≤ x(t) ≤ x(t), t ∈ [0, 1]
}

.

Clearly, ‖x‖ ≤ b. Thus K ⊂ X is convex, bounded, and closed. By Lemma 2.8 the operator
T : X → X is completely continuous. We only need to prove that T(K) ⊂ K . Let x ∈ K .
Then, by the definitions of upper and lower solutions,

(Tx)(t) =
∫ 1

0
H(t, s)f

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds

≤
∫ 1

0
H(t, s)U

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds

≤
∫ 1

0
H(t, s)U

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds

≤ x(t) (3.1)

and

(Tx)(t) =
∫ 1

0
H(t, s)f

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds

≥
∫ 1

0
H(t, s)L

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds

≥
∫ 1

0
H(t, s)L

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds

≥ x(t). (3.2)
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Then T : K → K is a compact mapping. By the Schauder fixed point theorem, T has at
least one fixed point x ∈ K . Therefore, the boundary value problem (1.1)–(1.2) has at least
one positive solution x ∈ K with x(t) ≤ x(t) ≤ x(t), t ∈ [0, 1]. �

Corollary 3.1 Assume that there exist continuous functions k1, k2, k3, and k4 such that

0 ≤ k1(t) ≤ f (t, u) ≤ k2(t) < ∞, (t, u) ∈ [0, 1] × [0, +∞), (3.3)

0 ≤ k3(t) ≤ g(t, u) ≤ k4(t) < ∞, (t, u) ∈ [0, 1] × [0, +∞), (3.4)

and one of k1(t) and k3(t) is not identically equal to 0. Then the boundary value problem
(1.1)–(1.2) has at least one positive solution x ∈ P, and

x(t) ≥
∫ 1

0
H(t, s)k1(s) ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1k3(s) ds, (3.5)

x(t) ≤
∫ 1

0
H(t, s)k2(s) ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1k4(s) ds. (3.6)

Proof Consider the boundary value problem

⎧
⎨

⎩
Dδy(t) + k2(t) = Dτ k4(t),

y(0) = 0, y(1) = 1
�(δ–τ )

∫ 1
0 (1 – s)δ–τ–1k4(s) ds.

(3.7)

Then (3.7) has a positive solution

y(t) =
∫ 1

0
H(t, s)k2(s) ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1k4(s) ds. (3.8)

From the definition of a control function (2.12)–(2.13) we have

k1(t) ≤ L(t, y) ≤ U(t, y) ≤ k2(t), (t, y) ∈ [0, 1] × [a, b],

where a, b are the minimum and maximum of y(t) on [0, 1]. Therefore this implies that

y(t) ≥
∫ 1

0
H(t, s)U

(
s, y(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, y(s)

)
ds ds. (3.9)

Clearly, (3.8) is an upper solution of the boundary value problem (1.1)–(1.2). In the same
way, we can conclude that

z(t) =
∫ 1

0
H(t, s)k1(s) ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1k3(s) ds (3.10)

is a lower solution of the boundary value problem (1.1)–(1.2). By Theorem 3.1 the bound-
ary value problem (1.1)–(1.2) has at least one positive solution x ∈ P with z(t) ≤ x(t) ≤
y(t). �

Corollary 3.2 Let (3.4) and f (t, u) ≥ k1(t) ≥ 0, t ∈ [0, 1], hold with at least one of k1(t)
and k3(t) not identically zero. Assume that f (t, u) converges uniformly on [0, 1] to k(t) as
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u → ∞. Then the boundary value problem (1.1)–(1.2) has at least one positive solution
on P.

Proof By assumption there exist N , M2 > 0 such that

∣∣f (t, u) – k(t)
∣∣ < N , u > M2, t ∈ [0, 1],

that is,

0 ≤ f (t, u) ≤ k(t) + N , u > M2, t ∈ [0, 1].

Let M3 = max0≤t≤1,0≤u≤M2 f (t, u). Then, we have

k1(t) ≤ f (t, u) ≤ k(t) + N + M3, t ∈ [0, 1], u ∈ [0, +∞).

Thus, by Corollary 3.1, the boundary value problem (1.1)–(1.2) has at least one positive
solution x ∈ P such that

x(t) ≥
∫ 1

0
H(t, s)k1(s) ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1k3(s) ds

and

x(t) ≤
∫ 1

0
H(t, s)k(s) ds +

(N + M3)(tδ–1 – tδ)
�(δ + 1)

+
1

�(δ – τ )

∫ t

0
(t – s)δ–τ–1k4(s) ds. �

For simplicity, we denote

M(t,α,β) =
α(tδ–1 – tδ)
�(δ + 1)

+
βtδ–τ

�(δ – τ + 1)
.

Corollary 3.3 Assume that

lim
u→∞ max

t∈[0,1]

f (t, u)
u

< a1, (3.11)

lim
u→∞ max

t∈[0,1]

g(t, u)
u

< a2, (3.12)

where a1, a2 ∈ R
+ with maxt∈[0,1] M(t, a1, a2) < 1, and f (t, u) ≥ c1, g(t, u) ≥ c2, t ∈ [0, 1], u ∈

[0,∞), where c1, c2 ≥ 0 with c1
2 + c2

2 
= 0. Then the boundary value problem (1.1)–(1.2) has
at least one positive solution x ∈ P.

Proof By (3.11) there exist constants N1, N2, a1, a2 > 0 such that

f (t, u) ≤ a1u, u > N1, t ∈ [0, 1],

and

g(t, u) ≤ a2u, u > N2, t ∈ [0, 1].
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Let b1 = maxt∈[0,1],u∈[0,N1] f (t, u) and b2 = maxt∈[0,1],u∈[0,N2] g(t, u). Then we have

f (t, u) ≤ a1u + b1

and

g(t, u) ≤ a2u + b2

for t ∈ [0, 1] and u ∈ [0,∞).
Consider the boundary value problem

⎧
⎨

⎩
Dδx(t) + a1x(t) + b1 = Dτ (a2x(t) + b2), t ∈ (0, 1),

x(0) = 0, x(1) = a2
�(δ–τ )

∫ 1
0 (1 – s)δ–τ–1x(s) ds + b2

�(δ–τ+1) .
(3.13)

Then x ∈ L1([0, 1],R) and I2–δx ∈ AC2([0, 1],R) is a solution of (3.13) if and only if

x(t) =
∫ 1

0
H(t, s)

(
a1x(s) + b1

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1(a2x(s) + b2

)
ds

= a1

∫ 1

0
H(t, s)x(s) ds +

a2

�(δ – τ )

∫ t

0
(t – s)δ–τ–1x(s) ds + M(t, b1, b2). (3.14)

Define the operator T1 : X → X as

(T1x)(t) = a1

∫ 1

0
H(t, s)x(s) ds+

a2

�(δ – τ )

∫ t

0
(t – s)δ–τ–1x(s) ds+M(t, b1, b2), t ∈ [0, 1].

By the proof of Lemma 2.8 operator T1 is completely continuous in X. Let

γ = max
t∈[0,1]

{
M(t, b1, b2)

1 – M(t, a1, a2)

}
.

If x ∈ Bγ = {x ∈ X : ‖x‖ ≤ γ }, then

∣
∣(T1x)(t)

∣
∣ ≤ a1‖x‖

∫ 1

0
H(t, s) ds + b1

∫ 1

0
H(t, s) ds

+
a2‖x‖

�(δ – τ )

∫ t

0
(t – s)δ–τ–1 ds +

b2tδ–τ

�(δ – τ + 1)

= M(t, a1, a2)‖x‖ + M(t, b1, b2)

≤ γ .

Thus T1 : Bγ → Bγ is a compact operator. Hence, by the Schauder fixed theorem, T1 has
at least one fixed point in Bγ , and (3.13) has at least one positive solution x(t) with

x(t) = a1

∫ 1

0
H(t, s)x(s) ds +

a2

�(δ – τ )

∫ t

0
(t – s)δ–τ–1x(s) ds + M(t, b1, b2). (3.15)
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By the definition of a control function we get

x(t) ≥
∫ 1

0
H(t, s)U

(
s, x(s)

)
ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1g

(
s, x(s)

)
ds. (3.16)

Then x is an upper positive solution of the boundary value problem (1.1)–(1.2). Similarly,

x(t) = M(t, c1, c2) (3.17)

is a lower solution of the boundary value problem (1.1)–(1.2). By Theorem 3.1 the bound-
ary value problem (1.1)–(1.2) has at least one positive solution x ∈ P, and x(t) ≤ x(t) ≤
x(t). �

Example 3.1 Consider the boundary value problem

⎧
⎨

⎩
D 5

4 x(t) + �(9/4) sin x(t)
2 + t + 1 = �(3/2)

2 D 3
4 (x(t) + cos t + 1), t ∈ (0, 1),

x(0) = 0, x(1) = 1
4
∫ 1

0 (1 – s)–1/2(x(s) + cos s + 1) ds,
(3.18)

where f (t, x) = �(9/4) sin x
2 + t + 1 and g(t, x) = �(3/2)

2 (x + cos t + 1). We can see that g is nonde-
creasing in x and that

lim
x→∞ max

t∈[0,1]

f (t, x)
x

≤ �(9/4)
2

,

lim
x→∞ max

t∈[0,1]

g(t, x)
x

≤ �(3/2)
2

,

and maxt∈[0,1] M(t, �(9/4)
2 , �(3/2)

2 ) < 1. By Corollary 3.3, (3.18) has at least one positive solu-
tion.

4 Uniqueness of positive solution
In this section, we prove the uniqueness of a positive solution for the boundary value
problem (1.1)–(1.2) by the Banach contraction mapping principle. In particular, the mono-
tonicity of g(t, x) is dispensable.

Theorem 4.1 Assume that f + g 
≡ 0 and that there are constants L1, L2 > 0 such that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ L1‖x – y‖,

∣∣g(t, x) – g(t, y)
∣∣ ≤ L2‖x – y‖

for all t ∈ [0, 1] and x, y ∈ [0, +∞). Then, if

max
t∈[0,1]

M(t, L1, L2) < 1,

then the boundary value problem (1.1)–(1.2) has a unique positive solution on P.
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Proof We will prove the T defined by (2.10) is a contraction mapping on P. Clearly, if x ∈ P,
then Tx ∈ P. In fact, for any x, y ∈ [0, +∞), we get

∣
∣(Tx)(t) – (Ty)(t)

∣
∣

≤
∫ 1

0
H(t, s)

∣
∣f

(
s, x(s)

)
– f

(
s, y(s)

)∣∣ds

+
1

�(δ – τ )

∫ t

0
(t – s)δ–τ–1∣∣g

(
s, x(s)

)
– g

(
s, y(s)

)∣∣ds

≤
∫ 1

0
H(t, s)L1‖x – y‖ds +

1
�(δ – τ )

∫ t

0
(t – s)δ–τ–1L2‖x – y‖ds

= M(t, L1, L2)‖x – y‖. (4.1)

Hence, T is a contraction mapping on P. Therefore, by the Banach contraction mapping
principle, T has a unique fixed point on P, and the boundary value problem (1.1)–(1.2)
has a unique positive solution on P. �

Remark 4.1 The conditions of Corollary 3.3 imply the conditions of Theorem 4.1, and
thus Corollary 3.3 also concludes the uniqueness of a positive solution.

Example 4.1 Consider the boundary value problem

⎧
⎨

⎩
D 5

4 x(t) + t2 + tx(t)
3+x(t) = D 1

8 (1 + t + x(t)
2+x(t) ), t ∈ (0, 1),

x(0) = 0, x(1) = 1
�(9/8)

∫ 1
0 (1 – s)1/8(1 + s + x(s)

2+x(s) ) ds,
(4.2)

where f (t, x) = t2 + tx
3+x and g(t, x) = 1 + t + x

2+x . Then

∣
∣f (t, x) – f (t, y)

∣
∣ =

∣∣
∣∣

tx
3 + x

–
ty

3 + y

∣∣
∣∣ ≤ 1

3
|x – y|

and

∣∣g(t, x) – g(t, y)
∣∣ =

∣
∣∣
∣

x
2 + x

–
y

2 + y

∣
∣∣
∣ ≤ 1

2
|x – y|

for all t ∈ [0, 1] and x, y ∈ [0, +∞). Since M(t, 1
3 , 1

2 ) < 1, by Theorem 4.1, (4.2) has a unique
positive solution.
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