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Abstract
In this paper, we study the multiplicity of periodic solutions of one kind of planar
Hamiltonian systems with a nonlinear term satisfying semilinear conditions. Using a
generalized Poincaré–Birkhoff fixed point theorem, we prove that the system has
infinitely many periodic solutions, provided that the time map tends to zero.
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1 Introduction
We are concerned with the multiplicity of periodic solutions of planar Hamiltonian sys-
tems of the type

{
x′ = f (y) + p1(t, x, y),
y′ = –g(x) + p2(t, x, y),

(1.1)

where f , g : R → R are continuous, and pi : R3 → R (i = 1, 2) are continuous and 2π-
periodic with respect to the first variable t.

The periodic problem for planar Hamiltonian systems is a classical topic in nonlin-
ear analysis and ordinary differential equations, which has been widely studied in liter-
ature by using various different methods such as phase plane analysis, topological degree,
fixed point theorems, variational methods (see [1–5, 10, 11, 14, 19, 20] and the references
therein). For instance, using the Poincaré–Bohl fixed point theorem, Fonda and Sfecci [11]
studied the existence of periodic solutions of planar Hamiltonian systems

Jz′ = ∇zH(t, z), z = (x, y) ∈ R2, (1.2)

where J =
( 0 –1

1 0

)
is the standard symplectic matrix, and H : [0, T]×R2 → R is differentiable

with respect to the second variable. When ∇zH(t, z) satisfies some semilinear conditions
at infinity, it was proved in [11] that (1.2) has at least one T-periodic solution. Using a
generalized Poincaré–Bikhoff fixed point theorem, Boscaggin [4] studied the multiplicity
of periodic solutions of (1.2), provided that ∇zH(t, z) satisfies some superlinear condition
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at infinity. It was pointed out that the main theorem (Theorem 2.3) in [4] applies to the
forced Duffing equation

x′′ + g(x) = p(t, x) (1.3)

when g satisfies the superlinear condition

lim|x|→∞
g(x)

x
= +∞. (1.4)

We note that Ding and Zanolin [7] proved the multiplicity of periodic solutions of Eq. (1.3)
by replacing (1.4) with a weaker assumption on the time map of the autonomous equation
x′′ + g(x) = 0, namely that the limit of the time map equals zero. Clearly, this condition is
not included in [4].

In the present paper, we study the multiplicity of periodic solutions of (1.1) in terms of
the time map. Assume that g satisfies the condition

lim|x|→+∞ sgn(x)g(x) = +∞ (h1)

and f satisfies the semilinear condition at infinity

0 < α = lim inf|y|→+∞
f (y)

y
≤ lim sup

|y|→+∞
f (y)

y
= β < +∞. (h2)

Let G(x) =
∫ x

0 g(s) ds. Define the function

τ (c) =
∣∣∣∣
∫ c

0

dx√
2(G(c) – G(x))

∣∣∣∣.
From condition (h1) we know that τ (c) is continuous for |c| large enough; τ (c) is usually
called the time map related to the autonomous equation x′′ + g(x) = 0. The properties of
τ (c) were studied deeply in [6, 7, 18]. Assume that τ satisfies

lim|c|→+∞ τ (c) = 0. (h3)

From [18] we know that (h3) holds if g satisfies the superlinear condition (1.4). Throughout
the paper, we always assume that there exists a constant M > 0 such that

∣∣pi(t, x, y)
∣∣ ≤ M for all t, x, y ∈ R and i = 1, 2. (h4)

Moreover, there is a function U : R3 → R such that

∂U
∂y

= p1(t, x, y),
∂U
∂x

= –p2(t, x, y).

In this case, system (1.1) is a Hamiltonian system. We can give simple examples of such
functions. For example,

U (t, x, y) = p(t) sin x sin y.
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Clearly, if p1(t, x, y) = p1(t, y) and p2(t, x, y) = p2(t, x), then (1.1) is a Hamiltonian sys-
tem.

Note that we can write system (1.1) in the form (1.2). Let

H(t, z) = H(t, x, y) = G(x) + F(y) + U (t, x, y), z = (x, y) ∈ R2,

where F(y) =
∫ y

0 f (s) ds. Then we have that ∇zH(t, z) = (g(x) – p2(t, x, y), f (y) + p1(t, x, y)).
Since g only satisfies condition (h1), we know that ∇zH(t, z) does not satisfy the semilinear
condition as in [11] or the superlinear condition as in [4].

Using a generalized Poincaré–Birkhoff fixed point theorem and the phase-plane analysis
method, we prove the following results.

Theorem 1.1 Assume that conditions (hi) (i = 1, . . . , 4) hold. Then system (1.1) has in-
finitely many 2π -periodic solutions {(xj(t), yj(t))}∞j=1 that satisfy

lim
j→∞

(
min

t∈[0,2π ]

(
x2

j (t) + y2
j (t)

))
= +∞.

Theorem 1.2 Assume that conditions (hi) (i = 1, . . . , 4) hold. Then for any given integer
m ≥ 2, system (1.1) has infinitely many 2mπ -periodic solutions {(xj(t), yj(t))}∞j=1 that are
not 2kπ -periodic for 1 ≤ k ≤ m – 1 and satisfy

lim
j→∞

(
min

t∈[0,2mπ ]

(
x2

j (t) + y2
j (t)

))
= +∞.

Corollary 1.3 Assume that conditions (h2), (h4), and (1.4) hold. Then the conclusions of
Theorems 1.1 and 1.2 still hold.

Remark 1.4 Ding and Zanolin [7] proved the multiplicity of periodic solutions of Eq. (1.3)
when conditions (h1) and (h3) hold and p(t, x) is bounded. Note that Eq. (1.3) is equivalent
to the planar Hamiltonian system x′ = y, y′ = –g(x) + p(t, x), which is a particular form of
(1.1). Therefore our conclusions generalize the main results in [7].

Remark 1.5 We will prove the above results under the additional assumption that the so-
lutions to Cauchy problems of (1.1) are unique. It is shown in Sect. 4 that this requirement
is not restrictive and that our results are valid when the uniqueness of the solutions to
Cauchy problems is not satisfied.

Throughout this paper, by R and N we denote the sets of real and natural numbers,
respectively.

2 Several lemmas
In this section, we perform some phase-plane analysis for system (1.1). Let (x(t), y(t)) =
(x(t, x0, y0), y(t, x0, y0)) be the solution of (1.1) satisfying the initial value

x(0, x0, y0) = x0, y(0, x0, y0) = y0.

We denote

G(x) =
∫ x

0
g(s) ds, F(y) =

∫ y

0
f (s) ds.
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Lemma 2.1 Assume that conditions (hi) (i = 1, 2, 4) hold. Then every solution (x(t), y(t)) of
(1.1) exists on the whole t-axis.

Proof In view of (h1), there exists a constant c0 > 0 such that

sgn(x)g(x) > 0 for |x| ≥ c0. (2.1)

Let us define two Lyapunov-like functions V± : R2 → R:

V±(x, y) = G(x) + F(y) ± yh(x),

where h : R → R is a continuously differentiable function such that h(x) = M sgn(x) for
|x| ≥ c0 with M from (h4). We will prove that V± are coercive, that is, V±(x, y) → +∞ as
|x| + |y| → +∞. From (h1) we know that lim|x|→+∞ G(x) = +∞. From (h2) we get that

α

2
≤ lim inf|y|→+∞

F(y)
y2 ≤ lim sup

|y|→+∞
F(y)
y2 ≤ β

2
.

Since h(x) is bounded, we further see that the inequalities

α

2
≤ lim inf|y|→+∞

F(y) ± yh(x)
y2 ≤ lim sup

|y|→+∞
F(y) ± yh(x)

y2 ≤ β

2
(2.2)

hold uniformly with respect to x ∈ R. From (2.2) we have that the limits

lim|y|→+∞
(
F(y) ± yh(x)

)
= +∞

hold uniformly with respect to x ∈ R. Therefore V±(x, y) → +∞ as |x| + |y| → +∞.
Next, we show that every solution (x(t), y(t)) of (1.1) is defined on the interval [0, +∞).

Set V+(t) = V+(x(t), y(t)). We first prove that there exist constants c1 > 0 and c2 > 0 such
that

V ′
+(t) ≤ c1V+(t) + c2. (2.3)

For simplicity, we denote p1(t) = p1(t, x(t), y(t)), p2(t) = p2(t, x(t), y(t)). By (1.1) we have

V ′
+(t) =

(
p1(t) – h

(
x(t)

))
g
(
x(t)

)
+ y(t)h′(x(t)

)(
f
(
y(t)

)
+ p1(t)

)
+ p2(t)

(
f
(
y(t)

)
+ h

(
x(t)

))
.

If |x(t)| ≥ c0, then we infer from (h4), the definition of h(x), and (2.1) that

(
p1(t) – h

(
x(t)

))
g
(
x(t)

) ≤ 0.

If |x(t)| ≤ c0, then it follows from (h4) and the continuity of g(x) and h(x) that there exists
α0 > 0 such that

(
p1(t) – h

(
x(t)

))
g
(
x(t)

) ≤ α0.
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In view of (h2), we conclude that there exist l0 > 0 and α1 > 0 such that

∣∣f (y)
∣∣ ≤ l0|y| + α1 for y ∈ R. (2.4)

Since h′(x) = 0 for |x| ≥ c0, we know that h′(x) is bounded, and then there exists β0 > 0
such that |h′(x)| ≤ β0, x ∈ R. It follows from (2.4) that

∣∣y(t)h′(x(t)
)
f
(
y(t)

)∣∣ ≤ β0l0y2(t) + α1β0
∣∣y(t)

∣∣.
Meanwhile, in view of (h4), we have

∣∣y(t)h′(x(t)
)
p1(t)

∣∣ ≤ Mβ0
∣∣y(t)

∣∣.
From (h4) and (2.4) we get that

∣∣p2(t)f
(
y(t)

)∣∣ ≤ Ml0
∣∣y(t)

∣∣ + Mα1.

Since h(x) is bounded for x ∈ R, there exists β ′
0 > 0 such that |h(x)| ≤ β ′

0, x ∈ R. Conse-
quently, we have

∣∣p2(t)h
(
x(t)

)∣∣ ≤ Mβ ′
0.

Therefore, we obtain

V ′
+(t) ≤ β0l0y(t)2 + (α1β0 + Mβ0 + Ml0)

∣∣y(t)
∣∣ +

(
α0 + Mα1 + Mβ ′

0
)

≤ β1y(t)2 + β ′
1 (2.5)

with β1 = β0l0 + 1
2 and β ′

1 = 1
2 (α1β0 + Mβ0 + Ml0)2 + (α0 + Mα1 + Mβ ′

0). From (2.2) we know
that there exist l1 > 0 and β2 > 0 such that

y2 ≤ l1
(
F(y) + yh(x)

)
+ β2 for (x, y) ∈ R2. (2.6)

Combining (2.5) and (2.6), we get

V ′
+(t) ≤ β1l1

(
F
(
y(t)

)
+ y(t)h

(
x(t)

))
+ β1β2 + β ′

1.

Since lim|x|→+∞ G(x) = +∞, there exists G0 > 0 such that G(x) + G0 ≥ 0 for x ∈ R. We
conclude that

V ′
+(t) ≤ β1l1

(
G

(
x(t)

)
+ F

(
y(t)

)
+ y(t)h

(
x(t)

))
+ β1l1G0 + β1β2 + β ′

1.

Set c1 = β1l1 and c2 = β1l1G0 + β1β2 + β ′
1. We get that V ′

+(t) ≤ c1V+(t) + c2. Then, for any
finite ω > 0, we have

V+(t) ≤ V+(0)ec1ω +
c2

c1

(
ec1ω – 1

)
for t ∈ [0,ω).
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Since V+ is coercive, there is no blow-up for (x(t), y(t)) on any finite interval [0,ω). There-
fore, (x(t), y(t)) exists on the interval [0, +∞).

To prove that (x(t), y(t)) exists on the interval (–∞, 0], we consider another Lyapunov-
like function V–(x, y). Set V–(t) = V–(x(t), y(t)). Using the same methods as before, we can
show that there exist two positive constants d1, d2 such that

V ′
–(t) ≥ –d1V–(t) – d2. (2.7)

Then, for any ω > 0, we have

V–(t) ≤ V–(0)ed1ω +
d2

d1

(
ed1ω – 1

)
for t ∈ (–ω, 0].

Since V– is coercive, there is also no blow-up for (x(t), y(t)) on any finite interval (–ω, 0].
Therefore, (x(t), y(t)) exists on the interval (–∞, 0]. The proof is complete. �

Since the uniqueness of the solutions to Cauchy problems of (1.1) is assumed, we can
define the Poincaré map P : R2 → R2 as follows:

P : (x0, y0) → (x1, y1) =
(
x(2π , x0, y0), y(2π , x0, y0)

)
.

It is well known that the Poincaré map P is an area-preserving homeomorphism. The fixed
points of P correspond to the 2π-periodic solutions of (1.1).

On the basis of the global existence of solutions of (1.1), we can get the elasticity property
of solutions of (1.1) by using a classical result (Theorem 6.5 in [15]).

Lemma 2.2 Assume that conditions (hi) (i = 1, 2, 4) hold. Then, for any T > 0 and R1 > 0,
there exists R2 > R1 such that:

(1) If x2
0 + y2

0 ≤ R2
1, then x(t)2 + y(t)2 ≤ R2

2, t ∈ [0, T].
(2) If x2

0 + y2
0 ≥ R2

2, then x(t)2 + y(t)2 ≥ R2
1, t ∈ [0, T].

From Lemma 2.2 we know that if x2
0 + y2

0 is large enough, then x2(t) + y2(t) 
= 0, t ∈ [0, T].
Thus we can take the polar coordinate transformation

x(t) = r(t) cos θ (t), y(t) = r(t) sin θ (t).

Under this transformation, system (1.1) becomes

{
dr
dt = –g(r cos θ ) sin θ + f (r sin θ ) cos θ + p1(t, r, θ ) cos θ + p2(t, r, θ ) sin θ ,
dθ
dt = – 1

r g(r cos θ ) cos θ – 1
r f (r sin θ ) sin θ – 1

r p1(t, r, θ ) sin θ + 1
r p2(t, r, θ ) cos θ ,

(2.8)

where p1(t, r, θ ) = p1(t, r cos θ , r sin θ ) and p2(t, r, θ ) = p2(t, r cos θ , r sin θ ). Let us denote by
(r(t), θ (t)) = (r(t, r0, θ0), θ (t, r0, θ0)) the solution of (2.8) satisfying the initial value

r(0, r0, θ0) = r0, θ (0, r0, θ0) = θ0
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with x0 = r0 cos θ0, y0 = r0 sin θ0. We can rewrite the Poincaré map P in the polar coordinate
form P : (r0, θ0) → (r1, θ1),

r1 = r(2π , r0, θ0), θ1 = θ (2π , r0, θ0) + 2lπ ,

where l is an arbitrary integer.

Lemma 2.3 Assume that conditions (hi) (i = 1, 2, 4) hold. Then, for any T > 0, there exists
a constant R > 0 such that if r(t) ≥ R, t ∈ [0, T], then

θ ′(t) < 0, t ∈ [0, T].

Proof It follows from (h1) that there exists a1 > 0 such that

sgn(x)g(x) > M for |x| ≥ a1,

which, together with (h4), implies that

sgn(x)
(
g(x) – p2(t, x, y)

)
> 0 for |x| ≥ a1, t, y ∈ R.

From (h2) and (h4) we know that there exist two constants γ > 0 and a2 > 0 such that

f (y) + p1(t, x, y)
y

≥ γ for |y| ≥ a2, t, x ∈ R.

Therefore, if |x(t)| ≥ a1 and |y(t)| ≥ a2, then we have

dθ

dt
= –

1
r
(
g(r cos θ ) – p2(t, r, θ )

)
cos θ –

1
r
(
f (r sin θ ) + p1(t, r, θ )

)
sin θ < 0. (2.9)

If |x(t)| ≤ a1 and |y(t)| ≥ a2, then we have

1
r
(
f (r sin θ ) + p1(t, r, θ )

)
sin θ ≥ γ sin2 α,

where α = arctan a2
a1

. On the other hand, there exists A1 > 0 such that

∣∣g(x)
∣∣ +

∣∣p2(t, x, y)
∣∣ ≤ A1 for |x| ≤ a1, t, y ∈ R.

It follows that if r(t) is large enough and |x(t)| ≤ a1, then

∣∣∣∣1
r
(
g(r cos θ ) – p2(t, r, θ )

)∣∣∣∣ ≤ A1

r(t)
≤ γ

2
sin2 α.

Consequently, if r(t) is large enough and |x(t)| ≤ a1, |y(t)| ≥ a2, then we get

dθ

dt
≤

∣∣∣∣1
r
(
g(r cos θ ) – p2(t, r, θ )

)
cos θ

∣∣∣∣ –
1
r
[
f (r sin θ ) + p1(t, r, θ )

]
sin θ

≤ –
γ

2
sin2 α. (2.10)



Wang and Ma Boundary Value Problems  (2018) 2018:102 Page 8 of 19

Finally, we know that there exists A2 > 0 such that

∣∣f (y)
∣∣ +

∣∣p1(t, x, y)
∣∣ ≤ A2 for |y| ≤ a2, t, x ∈ R. (2.11)

If |y(t)| ≤ a2 and r(t) is large enough, then we have that |x(t)| is also large enough. There-
fore we get from (h1), (h4), and (2.11) that, for r(t) large enough,

[
g(r cos θ ) – p2(t, r, θ )

]
cos θ +

[
f (r sin θ ) + p1(t, r, θ )

]
sin θ

≥ g(r cos θ ) cos θ – (M + A2) > 0.

Furthermore

dθ

dt
= –

1
r
{[

g(r cos θ ) – p2(t, r, θ )
]

cos θ +
[
f (r sin θ ) + p1(t, r, θ )

]
sin θ

}
< 0. (2.12)

Combining (2.9), (2.10), and (2.12), we get the conclusion of Lemma 2.3. �

Lemma 2.4 Assume that conditions (hi) (i = 1, . . . , 4) hold. Let m be a positive integer. Then,
for any given integer n ≥ 1, there exists a constant 
n > 0 such that, for r0 ≥ 
n,

θ (2mπ , r0, θ0) – θ0 < –2nπ .

Proof From conditions (h1) and (h2) we know that there exists d > 0 such that

sgn(x)g(x) ≥ M, |x| ≥ d and sgn(y)f (y) ≥ M, |y| ≥ d. (2.13)

From Lemma 2.3 we know that there is a constant cm ≥ d such that

r(t) ≥ cm, t ∈ [0, 2mπ ]

and

θ ′(t) < 0, t ∈ [0, 2mπ ].

Then the solution (r(t), θ (t)) moves clockwise in the region

D =
{

(x, y) ∈ R2 : x2 + y2 ≥ c2
m
}

.

We now decompose the set D into eight regions as follows:

D1 =
{

(x, y) ∈ D : |x| ≤ cm, y > 0
}

,

D2 =
{

(x, y) ∈ D : x ≥ cm, y ≥ d
}

,

D3 =
{

(x, y) ∈ D : x ≥ cm, |y| ≤ d
}

,

D4 =
{

(x, y) ∈ D : x ≥ cm, y ≤ –d
}

,

D5 =
{

(x, y) ∈ D : |x| ≤ cm, y < 0
}

,
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D6 =
{

(x, y) ∈ D : x ≤ –cm, y ≤ –d
}

,

D7 =
{

(x, y) ∈ D : x ≤ –cm, |y| ≤ d
}

,

D8 =
{

(x, y) ∈ D : x ≤ –cm, y ≥ d
}

.

Next, we will estimate the time needed for the solution (x(t), y(t)) to pass through the
regions Di (i = 1, . . . , 8), respectively. Without loss of generality, we assume that (x0, y0) ∈
D1. Then, (x(t), y(t)) rotates following the cycle

D1 → D2 → D3 → D4 → D5 → D6 → D7 → D8 → D1.

Given k (k = 1, . . . , 8), let [t1, t2] ⊂ [0, 2nπ ] be such that

(
x(t), y(t)

) ∈ Dk , t ∈ [t1, t2],

and

(
x(ti), y(ti)

) ∈ ∂Dk (i = 1, 2).

We first treat the case (x(t), y(t)) ∈ D1, t ∈ [t1, t2]. It follows from (h2) that there exist con-
stants β0 ≥ α0 > 0 and M0 > such that

α0y – M0 ≤ f (y) ≤ β0y + M0, y ≥ 0. (2.14)

Therefore, if (x(t), y(t)) ∈ D1, then we have

x′(t) = f
(
y(t)

)
+ p1

(
t, x(t), y(t)

) ≥ α0y(t) – M1

with M1 = M0 + M. From Lemma 2.2 we know that, for any constant l (>
√

c2
m + M2

1
α2

0
), there

is a constant l0 > l such that, for r0 ≥ l0,

r(t) ≥ l, t ∈ [0, 2mπ ].

As a result, we get that, for r0 ≥ l0 and (x(t), y(t)) ∈ D1, t ∈ [t1, t2],

y(t) =
√

r2(t) – x2(t) ≥
√

l2 – c2
m.

Consequently,

x′(t) ≥ α0

√
l2 – c2

m – M1 > 0,

which implies that, for any sufficiently small ε > 0,

t2 – t1 ≤ 2cm

α0
√

l2 – c2
m – M1

< ε, (2.15)
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provided that l is sufficiently large. According to Lemma 2.2, we further know that (2.15)
holds when r0 is sufficiently large.

Similarly, we have that if (x(t), y(t)) ∈ D5, t ∈ [t1, t2], then

t2 – t1 < ε,

provided that r0 is sufficiently large.
We next treat the case (x(t), y(t)) ∈ D2, t ∈ [t1, t2]. Let us define W+ : R2 → R as follows:

W+(x, y) = F(y) + G(x) – M(x – y).

Set

W+(t) = F
(
y(t)

)
+ G

(
x(t)

)
– M

(
x(t) – y(t)

)
.

If x(t) ≥ cm and y(t) ≥ d, then we get from (h4) and (2.14) that

W ′
+(t) = f

(
y(t)

)(
p2(t, x, y) – M

)
+ g

(
x(t)

)(
p1(t, x, y) – M

)
+ M

(
p2(t, x, y) – p1(t, x, y)

)
≤ f

(
y(t)

)(
p2(t, x, y) – M

)
+ g

(
x(t)

)(
p1(t, x, y) – M

)
+ M

(
M – p1(t, x, y)

)
≤ f

(
y(t)

)(
p2(t, x, y) – M

)
+

(
g
(
x(t)

)
– M

)(
p1(t, x, y) – M

) ≤ 0,

which implies that W+(t) is decreasing when (x(t), y(t)) lies in the field D2. Hence, we get
that, for t ∈ [t1, t2],

W+(t) ≥ W+(t2).

Consequently,

F
(
y(t)

)
+ G

(
x(t)

)
– M

(
x(t) – y(t)

)
≥ F

(
y(t2)

)
+ G

(
x(t2)

)
– M

(
x(t2) – y(t2)

)
, t ∈ [t1, t2]. (2.16)

Since y(t2) = d, there is a constant B > 0 such that |F(y(t2))| ≤ B. It follows from (2.16) that

F
(
y(t)

)
+ My(t) ≥ (

G
(
x(t2)

)
– G

(
x(t)

))
– M

(
x(t2) – x(t)

)
– M1, t ∈ [t1, t2], (2.17)

where M1 = B + Md. According to (2.14), we have that, for y ≥ 0,

F(y) ≤ 1
2
β0y2 + M0y. (2.18)

Hence we get that, if t ∈ [t1, t2], then we infer from (2.17) and (2.18) that

β0y2(t) + 2(M + M0)y(t) ≥ 2
(
G

(
x(t2)

)
– G

(
x(t)

))
– 2M

(
x(t2) – x(t)

)
– 2M1.

Let us take η > β0 such that, for y ≥ d,

ηy2 ≥ β0y2 + 2(M + M0)y + 2M1.
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Then we obtain

ηy2(t) ≥ 2
(
G

(
x(t2)

)
– G

(
x(t)

))
– 2M

(
x(t2) – x(t)

)
. (2.19)

Using the mean value theorem, we get

G
(
x(t2)

)
– G

(
x(t)

)
– M

(
x(t2) – x(t)

)
=

1
2
(
G

(
x(t2)

)
– G

(
x(t)

))
+

(
1
2

g(ξ ) – M
)(

x(t2) – x(t)
)
,

where ξ ∈ [x(t), x(t2)]. Since x(t) ≥ cm, t ∈ [t1, t2], we can take cm large enough such that
g(ξ ) ≥ 2M. Therefore, we obtain that, for t ∈ [t1, t2],

G
(
x(t2)

)
– G

(
x(t)

)
– M

(
x(t2) – x(t)

) ≥ 1
2
(
G

(
x(t2)

)
– G

(
x(t)

))
),

which, together with (2.19), implies that

y(t) ≥
√

1
η

(
G

(
x(t2) – G

(
x(t)

)))
. (2.20)

Since x′(t) = f (y(t)) + p1(t, x(t), y(t)), we infer from (2.14) and (2.20) that

x′(t) ≥ α0√
η

√
G

(
x(t2)

)
– G

(
x(t)

)
– (M0 + M).

Let us take a fixed positive constant L. Then we have that, for x(t) ∈ [cm, x(t2) – L],

G
(
x(t2)

)
– G

(
x(t)

) ≥ G
(
x(t2)

)
– G

(
x(t2) – L

)
= g

(
ξ ′)L → +∞, x(t2) → +∞,

which implies that there exists a positive constant η0 < α0√
η

such that, for x(t) ∈
[cm, x(t2) – L],

α0√
η

√
G

(
x(t2)

)
– G

(
x(t)

)
– (M0 + M) ≥ η0

√
G

(
x(t2)

)
– G

(
x(t)

)
.

Consequently, for x(t) ∈ [cm, x(t2) – L], we get

x′(t) ≥ η0

√
G

(
x(t2)

)
– G

(
x(t)

)
.

Let t∗ ∈ [t1, t2] be such that x(t∗) = x(t2) – L. Then we have that, for any sufficiently small
ε > 0,

t∗ – t1 ≤ 1
η0

∫ x(t2)–L

c0

dx√
G(x(t2)) – G(x)

≤ 1
η0

∫ x(t2)

0

dx√
G(x(t2)) – G(x)

=
√

2
η0

τ
(
x(t2)

)
<

ε

2
, (2.21)
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provided that x(t2) is large enough. Consequently, we have that t∗ – t1 < ε
2 , provided that

r0 is sufficiently large. We next estimate t2 – t∗. If t ∈ [t∗, t2], then we have

y(t) = d +
∫ t2

t
g
(
x(s)

)
ds +

∫ t2

t
p2

(
s, x(s), y(s)

)
ds

≥ d + ν
(
x(t2)

)
(t2 – t) – M(t2 – t),

where ν(x(t2)) = min{g(x) : x(t2)–L ≤ x ≤ x(t2)}. Obviously, ν(x(t2)) → +∞ as x(t2) → +∞.
On the other hand, it follows from (2.14) that

x′(t) = f (y) + p1
(
t, x(t), y(t)

) ≥ α0y(t) – (M + M0).

Therefore, we get that, for x(t2) large enough,

L =
∫ t2

t∗
x′(s) ds ≥ α0

∫ t2

t∗
y(s) ds – (M + M0)(t2 – t∗)

≥ α0

[
d(t2 – t∗) +

1
2
ν
(
x(t2)

)
(t2 – t∗)2 –

1
2

M(t2 – t∗)2
]

– (M + M0)(t2 – t∗)

≥ (α0d – M – M0)(t2 – t∗) +
1
4
α0ν

(
x(t2)

)
(t2 – t∗)2,

which, together with ν(x(t2)) → +∞ as x(t2) → +∞, implies that, for any sufficiently small
ε > 0,

t2 – t∗ <
ε

2
, (2.22)

provided that x(t2) is large enough or r0 is large enough. From (2.21) and (2.22) we know
that, for any sufficiently small ε > 0,

t2 – t1 < ε,

provided that r0 is large enough.
Similarly, we have that, if (x(t), y(t)) ∈ Di, i = 4, 6, 8, t ∈ [t1, t2], then

t2 – t1 < ε,

provided that r0 is large enough.
We now consider the case (x(t), y(t)) ∈ D3, t ∈ [t1, t2]. In this case, we have

∣∣y(t)
∣∣ ≤ d, t ∈ [t1, t2]. (2.23)

Integrating both sides of y′ = –g(x(t)) + p2(t, x(t), y(t)) over [t1, t2] and using y(t1) = d and
y(t2) = –d, we get

2d =
∫ t2

t1

g
(
x(s)

)
ds –

∫ t2

t1

p2
(
s, x(s), y(s)

)
ds

≥ (μ∗ – M)(t2 – t1),
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where μ∗ = min{g(x(t)) : t1 ≤ t ≤ t2}. From (2.23), (h1), and Lemma 2.2 we get that μ∗ →
+∞ as r0 → ∞. Therefore, we have that, for any sufficiently small ε > 0,

t2 – t1 < ε,

provided that r0 is large enough.
Similarly, we have that, if (x(t), y(t)) ∈ D7, t ∈ [t1, t2], then

t2 – t1 < ε,

provided that r0 is large enough.
From the previous conclusion we get that, for any sufficiently small ε > 0, there is 
1 > 0

such that if r0 ≥ 
1, then (x(t), y(t)) ∈ D, and if

θ (s2) – θ (s1) = –2π ,

then

0 < s2 – s1 < 8ε.

Consequently, the motion (x(t), y(t)) rotates clockwise a turn in a period less than 8ε.
Therefore, for any integer n ≥ 1, there is 
n > 0 such that, for r0 ≥ 
n, the motion (x(t), y(t))
can rotate more than n turns during the period 2mπ .

The proof of Lemma 2.4 is thus complete. �

3 Proof of main theorems
First, we recall a generalized version of the Poincaré–Birkhoff fixed point theorem by Re-
belo [19].

A generalized form of the Poincaré–Birkhoff fixed point theorem. Let A be an annular re-
gion bounded by two strictly star-shaped curves around the origin, �1 and �2, �1 ⊂ int(�2),
where int(�2) denotes the interior domain bounded by �2. Suppose that F : int(�2) → R2 is
an area-preserving homeomorphism and F|A admits a lifting, with the standard covering
projection � : (r, θ ) → z = (r cos θ , r sin θ ), of the form

F̃|A : (r, θ ) → (
w(r, θ ), θ + h(r, θ )

)
,

where w and h are continuous functions of period 2π in the second variable. Correspond-
ingly, for �̃1 = �–1(�1) and �̃2 = �–1(�2), assume the twist condition

h(r, θ ) > 0 on �̃1; h(r, θ ) < 0 on �̃2.

Then, F has two fixed points z1, z2 in the interior of A such that

h
(
�–1(z1)

)
= h

(
�–1(z2)

)
= 0.
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Remark 3.1 The assumption on the star-shaped boundaries of the annulus is a delicate
hypothesis. Martins and Ureña [17] showed that the star-shapedness assumption on the
interior boundary is not eliminable. Le Calvez and Wang [16] then proved that the star-
shapedness of the exterior boundary is also necessary, although this assumption was not
made in Ding’s theorem [8].

Proof of Theorem 1.1 Let us take m = 1 in Lemma 2.4. From Lemmas 2.2 and 2.3 we have
that there is c′

1 > 0 such that, for r0 > c′
1,

θ ′(t) < 0, t ∈ [0, 2π ].

Let a1 > c′
1 be a fixed constant. Then there exists an integer n1 > 0 such that, for r0 = a1,

θ (2π , r0, θ0) – θ0 > –2n1π . (3.1)

According to Lemma 2.4, there exists a constant b1 > a1 such that, for r0 = b1,

θ (2π , r0, θ0) – θ0 < –2n1π . (3.2)

Let us define the annulus

D1 =
{

(x, y) ∈ R2 : a1 ≤ √
x2 + y2 ≤ b1

}
.

Consider the Poincaré map P : R2 → R2. Write the map P in the form

(r0, θ0) → (r1, θ1)

with

r1 = r(2π , r0, θ0), θ1 = θ (2π , r0, θ0) + 2n1π .

Set

�(r0, θ0) = θ (2π , r0, θ0) – θ0 + 2n1π .

Then we have

P : r1 = r(2π , r0, θ0), θ1 = θ0 + �(r0, θ0).

From (3.1) and (3.2) we have that

�(r0, θ0) > 0 for r0 = a1, (3.3)

�(r0, θ0) < 0 for r0 = b1. (3.4)

Since system (1.1) is conservative, P is an area-preserving mapping. It follows from (3.3)
and (3.4) that the area-preserving map P is twisting on the annulus D1. According to the



Wang and Ma Boundary Value Problems  (2018) 2018:102 Page 15 of 19

generalized Poincaré–Birkhoff fixed point theorem, P has at least two fixed points in D1.
Similarly, we can find a sequence

(a1 < b1 <)a2 < b2 < · · · < aj < bj < · · · (→ ∞)

such that the area-preserving map P is twisting on the annuluses

Dj =
{

(x, y) ∈ R2 : aj ≤
√

x2 + y2 ≤ bj
}

, j = 2, 3, . . . .

Using the generalized Poincaré–Birkhoff fixed point theorem, we know that P has at least
two fixed points in each annulus Dj, j = 2, 3, . . . . Thus we have obtained the existence of a
sequence of 2π-periodic solutions {(xj(t), yj(t))} of system (1.1) satisfying

lim
j→∞

(
min

t∈[0,2π ]

(
x2

j (t) + y2
j (t)

))
= +∞.

The proof of Theorem 1.1 is complete. �

Proof of Theorem 1.2 Let m ≥ 2 in Lemma 2.4. From Lemmas 2.2 and 2.3 we have that
there is c′

m > 0 such that, for r0 ≥ c′
m,

θ ′(t) < 0, t ∈ [0, 2mπ ].

Let a′
1 > c′

m be a sufficiently large constant. Then there is a prime q1 ≥ 2 such that, for
r0 = a′

1,

θ (2mπ , r0, θ0) – θ0 > –2q1π .

According to Lemma 2.4, we know that there is b′
1 > a′

1 such that, for r0 = b′
1,

θ (2mπ , r0, θ0) – θ0 < –2q1π .

Set

D′
1 =

{
(x, y) ∈ R2 : a′

1 ≤ √
x2 + y2 ≤ b′

1
}

.

Then the area-preserving iteration map Pm is twisting on the annulus D′
1. Using the gen-

eralized Poincaré–Birkhoff fixed point theorem, Pm has at least two fixed points (x1i, y1i)
(i = 1, 2) in D′

1. Hence

(
x1i(t), y1i(t)

)
=

(
x(t, x1i, y1i), y(t, x1i, y1i)

)
(i = 1, 2)

are two 2mπ-periodic solutions of system (1.1). Since q1 is a prime, we can further prove
that (x1i(t), y1i(t)) are not 2kπ-periodic for 1 ≤ k ≤ m – 1 by the same method as in [7].
Similarly, we can find two sequences

(
a′

1 < b′
1 <

)
a′

2 < b′
2 < · · · < a′

j < b′
j < · · · (→ ∞)
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and

q1 < q2 < · · · < qj < · · · (→ ∞)

with qj (j = 1, 2, . . .) being prime numbers such that, for r0 = a′
j,

θ (2mπ , r0, θ0) – θ0 > –2qjπ

and, for r0 = b′
j,

θ (2mπ , r0, θ0) – θ0 < –2qjπ .

Therefore, Pm is twisting on the annuluses

D′
j =

{
(x, y) : a′

j ≤
√

x2 + y2 ≤ b′
j
}

(j = 2, 3, . . .).

It follows that Pm has at least two fixed points in each annulus D′
j, j = 2, 3, . . . , which corre-

spond to two 2mπ-periodic solutions of system (1.1). In the same way, these 2mπ-periodic
solutions are not 2kπ-periodic for 1 ≤ k ≤ m – 1. Consequently, system (1.1) has infinitely
many 2mπ-periodic solutions {(xj(t), yj(t))}∞j=1 that are not 2kπ-periodic for 1 ≤ k ≤ m – 1
and satisfy

lim
j→∞

(
min

t∈[0,2mπ ]

(
x2

j (t) + y2
j (t)

))
= +∞.

The proof of Theorem 1.2 is thus complete. �

4 Remarks
The assumption on the uniqueness of the solutions to Cauchy problems of (1.1) made in
the proofs of the previous sections can be removed. In fact, Lemmas 2.3 and 2.4 guarantee
the applicability of the nonuniqueness version of the Poincaré–Birkhoff theorem, which
was proved by Fonda and Ureña [13]. We now state this theorem for a general Hamiltonian
system in R2N . Let us consider the Hamiltonian system

{
x′ = ∇yH(t, x, y),
y′ = –∇xH(t, x, y),

(4.1)

where the continuous function H : R × RN × RN → R, H = H(t, x, y) is T-periodic in
its first variable t and continuously differentiable with respect to (x, y), x = (x1, . . . , xN ),
y = (y1, . . . , yN ).

We next introduce the definition of the rotation number of a continuous path in R2.
Let σ : [t1, t2] → R2 be a continuous path such that σ (t) 
= (0, 0) for every t ∈ [t1, t2]. The
rotation number of σ around the origin is defined as

Rot
(
σ (t); [t1, t2]

)
=

θ (t2) – θ (t1)
2π

,

where θ : [t1, t2] → R is a continuous determination of the argument along σ , that is, σ (t) =
|σ (t)|(cos θ (t), sin θ (t)).
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Assume that, for each i = 1, . . . , N , there are two strictly star-shaped Jordan closed curves
around the origin �i

1,�i
2 ⊂ R2 such that

o ∈D
(
�i

1
) ⊂D

(
�i

1
) ⊂D

(
�i

2
)
,

where D(�) is the open region bounded by the Jordan closed curve �. Consider the gen-
eralized annular region

A =
[
D

(
�1

2
) \D(

�1
1
)] × · · · × [

D
(
�N

2
) \D(

�N
1
)] ⊂ R2N .

Theorem 4.1 ([13]) Under the framework above, denoting zi(t) = (xi(t), yi(t)), assume that
every solution z(t) = (z1(t), . . . , zN (t)) of (4.1) departing from z(0) ∈ ∂A is defined on [0, T]
and satisfies

zi(t) 
= (0, 0) for all t ∈ [0, T] and i = 1, . . . , N .

Assume that there are integer numbers v1, . . . , vN ∈ Z such that, for each i = 1, . . . , N , either

Rot
(
zi(t); [0, T]

){
< vi, if zi(0) ∈ �i

1,
> vi, if zi(0) ∈ �i

2,

or

Rot
(
zi(t); [0, T]

){
> vi, if zi(0) ∈ �i

1,
< vi, if zi(0) ∈ �i

2.

Then Hamiltonian system (4.1) has at least N + 1 distinct T-periodic solutions z0(t), . . . ,
zN (t), with z0(0), . . . , zN (0) ∈A, such that

Rot
(
zk

i (t); [0, T]
)

= vi for all k = 0, . . . , N and i = 1, . . . , N .

Remark 4.2 Note that there is no requirement of uniqueness of the solutions to Cauchy
problems of (4.1) in this higher-dimensional Poincaré–Birkhoff theorem for Hamiltonian
flows. Theorem 4.1 can be applied to deal with the multiplicity of periodic solutions of
higher-dimensional Hamiltonian systems [9, 12]. Fonda and Sfecci [12] studied the mul-
tiplicity of periodic solutions of weakly coupled Hamiltonian systems

⎧⎪⎪⎨
⎪⎪⎩

–x′′
1 = x1[h1(t, x1) + p1(t, x1, . . . , xN )],

...
–x′′

N = xN [hN (t, xN ) + pN (t, x1, . . . , xN )],

(4.2)

where all the functions hi : R × R → R are continuous, T-periodic in the first variable t,
and such that

lim|x|→∞ hi(t, x) = +∞ uniformly in t ∈ [0, T].
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The functions pi : R × RN are continuous, T-periodic in the first variable t, and bounded.
Moreover, there is a function U : R × RN → R such that

∂U
∂xi

= xipi(t, x1, . . . , xN ) for all (t, x1, . . . , xN ) ∈ [0, T] × RN and i = 1, . . . , N .

In this case, (4.2) is a superlinear Hamiltonian system. Under these conditions, it was
proved in [12] that (4.2) has infinitely many periodic solutions by using Theorem 4.1. The-
orems 1.1 and 1.2 in the present paper can also be extended to a weakly coupled Hamilto-
nian system of the type

{
x′

i = fi(yi) + p1i(t, x, y),
y′

i = –gi(xi) + p2i(t, x, y)
(i = 1, . . . , N), (4.3)

where x = (x1, . . . , xN ), y = (y1, . . . , yN ), fi, gi : R → R are continuous, pji : R × RN × RN → R
(j = 1, 2, i = 1, . . . , N ) are continuous and 2π-periodic in the first variable t. Assume that
there is a function W : R × RN × RN → R such that

∂W
∂yi

= p1i(t, x, y),
∂W
∂xi

= –p2i(t, x, y) (i = 1, . . . , N).

It follows that system (4.3) is a Hamiltonian system. Assume that the following conditions
hold:

(h′
1) lim|s|→∞ sgn(s)gi(s) = +∞ (i = 1, . . . , N ).

(h′
2) There are positive constants αi, βi such that

0 < αi = lim inf|s|→+∞
fi(s)

s
≤ lim sup

|s|→+∞
fi(s)

s
= βi < +∞.

(h′
3) There are positive constants Mi such that

∣∣p1i(t, x, y)
∣∣ ≤ Mi,

∣∣p2i(t, x, y)
∣∣ ≤ Mi for all t, x, y ∈ R and i = 1, . . . , N .

(h′
4) The time maps τi(c) satisfy lim|c|→∞ τi(c) = 0, where τi(c) are defined like τ (c) in

Sect. 1.
Using Theorem 4.1, we can prove that (4.3) has infinitely many 2π-periodic solutions

and, for any integer m ≥ 2, (4.3) has infinitely many 2mπ-periodic solutions that are not
2kπ-periodic for 1 ≤ k ≤ m–1, provided that conditions (h′

i) (i = 1, . . . , 4) hold. For brevity,
we omit the details.
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