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1 Introduction
It is well known that the Sturm–Liouville problem with eigenparameter dependent bound-
ary conditions is of great importance for its wide applications in mechanics, mathemati-
cal physics, and engineering (see [1–4] and the corresponding references cited therein). It
happens at any time by using the approach of separation of variables to solve suitable par-
tial differential equations with boundary conditions containing a directional derivative.
Particularly, some examples of spectral problems appearing in mechanical engineering
and containing eigenparameter on the boundary conditions were listed in the classical
book [1], and Friedman in [5] investigated the method of operator formula to solve the
Sturm–Liouville problems with eigenparameter dependent boundary conditions. Later, a
large amount of such problems have been considered (see [6–30] and the references cited
therein). Particularly, Walter in [4] considered Sturm–Liouville problem with boundary
condition dependent on the eigenparameter. They obtained the asymptotic formulas of
eigenvalues and eigenfunctions, the expansion theorem was also involved. In [21], Bind-
ing et al. considered the Sturm–Liouville problem with the right boundary condition ra-
tionally dependent on the eigenparameter and got the existence of eigenvalues and the
oscillation theory of eigenfunctions. The authors in [22] also discussed the inverse prob-
lems in terms of given spectral data.

Meanwhile, lots of researchers are interested in the discontinuous Sturm–Liouville
problems connected with discontinuous material properties, such as heat and mass trans-
fer (see [31]), vibrating string problems when the string loaded additionally with point
masses, and diffraction problems. To deal with interior discontinuities, some conditions,
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which are often called transmission conditions [10–13], interface conditions [14, 16], are
imposed on the discontinuous points. Mukhtarov et al. in [13] considered eigenparame-
ter dependent Sturm–Liouville problems with transmission conditions and obtained some
properties of eigenvalues. Also, a two interior discontinuous points case was investigated
in [18, 20]. Numerous authors have been devoted to this area (see [10–20]). By using
Mukhtarov’s method (see, for example, [10, 12, 13, 20]), the authors defined a new in-
ner product in the direct sum of classical Hilbert spaces in such a way that the considered
problem can be interpreted as an eigenvalue problem for a self-adjoint operator with com-
pact resolvent. Most of authors in these literature works focus on the asymptotic formula
of eigenvalues and eigenfunctions, oscillation theory, etc. Moreover, what calls for spe-
cial attention is that the eigenparameter dependent boundary conditions are of rational
fraction of parameter λ of order one except [21, 22]. Inspired by the above-mentioned
literature, we consider the following discontinuous Sturm–Liouville equation:

Ly := –y′′(x) + q(x)y(x) = λy(x), x ∈ [0, ξ ) ∪ (ξ , 1], ξ ∈ (0, 1) (1.1)

subject to the boundary conditions

L1y :=
y′(0)
y(0)

= f (λ), (1.2)

L2y :=
y′(1)
y(1)

= g(λ), (1.3)

and the transmission conditions

L3y := y(ξ + 0) – δ1y(ξ – 0) = 0, (1.4)

L4y := y′(ξ + 0) – δ2y′(ξ – 0) = 0, (1.5)

where λ ∈ C is a spectral parameter; q(x) is a real-valued continuous function on [0, ξ ) ∪
(ξ , 1] with finite limits q(ξ ± 0) = limx→(ξ±0) q(x); δ1 and δ2 are nonzero real numbers and
δ1δ2 > 0; f (λ) and g(λ) are rational functions of the form

f (λ) = –aλ + b +
M∑

i=1

bi

λ – ci
,

where all the coefficients are real and a ≥ 0, bi > 0 (i = 1, 2, . . . , M), c1 ≤ c2 ≤ · · · ≤ cM , M
is finite and is allowed to be 0 (in this case, there are no ci). If f (λ) = ∞, then y′(0)

y(0) = f (λ) is
seen as a Dirichlet boundary condition y(0) = 0.

g(λ) = cλ + d +
N∑

j=1

dj

ej – λ
,

where all the coefficients are real and c ≥ 0, dj > 0 (j = 1, 2, . . . , N ), e1 ≤ e2 ≤ · · · ≤ eN , N is
finite and is allowed to be 0 (in this case, there are no ej). If g(λ) = ∞, then y′(1)

y(1) = g(λ) is
seen as a Dirichlet boundary condition y(1) = 0. Recall that f (λ) and g(λ) are sometimes
called Herglotz–Nevanlinna type (see [21, 22]).
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In this paper, we research a discontinuous Sturm–Liouville problem with both of the
boundary conditions rationally dependent on the eigenparameter λ. Using classical anal-
ysis and operator theoretic formulation, we define a new self-adjoint operator A in a new
Hilbert space so that the eigenvalues of such a problem coincide with those of A.

The organization of the paper is as follows: after this section, we give the operator for-
mulation in Sect. 2 and get the asymptotic formulas for eigenvalues and eigenfunctions of
the problem in Sect. 3. Finally, we discuss the completeness of its eigenfunctions in Sect. 4.

2 Operator formulation in a new Hilbert space
In what follows, we always assume that a > 0, c > 0. Firstly, we introduce the Hilbert space
H = L2[0, ξ ) ⊕ L2(ξ , 1] ⊕C

M+N+2, the inner product on H is defined by

〈Y , Z〉 = δ1δ2

∫ ξ

0
y(x)z(x) dx +

∫ 1

ξ

y(x)z(x) dx

+ δ1δ2

( M∑

i=1

yizi

bi
+

yM+1zM+1

a

)
+

N∑

j=1

gjrj

dj
+

gN+1rN+1

c

for Y = (y(x), y1, y2, . . . , yM+1, g1, g2, . . . , gN+1)T , Z = (z(x), z1, z2, . . . , zM+1, r1, r2, . . . , rN+1)T ∈
H , and y(x), z(x) ∈ L2[0, ξ ) ⊕ L2(ξ , 1]. For the convenience, note H1 = L2[0, ξ ) ⊕ L2(ξ , 1].

In the Hilbert space H , we consider the operator A as follows:

D(A) =
{

Y =
(
y(x), T0(y), T1(y)

)T ∈ H | y(x), y′(x) are absolutely continuous

on [0, ξ ) ∪ (ξ , 1] with finite limits y(ξ ± 0), y′(ξ ± 0) and satisfy

Ly ∈ L2[0, ξ ) ⊕ L2(ξ , 1], T0(y) = (y1, y2, . . . , yM+1), T1(y) = (g1, g2, . . . , gN+1),

yM+1 = –ay(0), gN+1 = cy(1), y(ξ + 0) = δ1y(ξ – 0),

y′(ξ + 0) = δ2y′(ξ – 0), y(x) ∈ H1
}

,

which acts by the rule

AY =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

–y′′(x) + q(x)y(x)
c1y1 + b1y(0)

...
cMyM + bMy(0)

y′(0) – by(0) –
∑M

i=1 yi

e1g1 – d1y(1)
...

eN gN – dN y(1)
y′(1) – dy(1) –

∑N
j=1 gj

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

withY =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

y(x)
y1
...

yM

yM+1

g1
...

gN

gN+1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ D(A).

Then Sturm–Liouville problem (1.1)–(1.5) can be rewritten in the operator-theoretic for-
mulation as AY = λY for Y = (y(x), y1, . . . yM, yM+1, g1, g2, . . . , gN+1)T ∈ D(A). Obviously, the
following lemmas hold.
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Lemma 2.1 The eigenvalues and eigenfunctions of Sturm–Liouville problem (1.1)–(1.5)
correspond to the eigenvalues and the first element of the corresponding eigenfunctions of
operator A, respectively.

Lemma 2.2 The domain D(A) is dense in H .

Definition 2.1 Set W (f , g; x) = f (x)g ′(x) – f ′(x)g(x) expresses the Wronskians of functions
f (x) and g(x).

Theorem 2.1 Operator A is a symmetric operator in H .

Proof For every Y , Z ∈ D(A), by the definition of inner product and operator A in the new
Hilbert space H and integration by parts, we obtain

〈AY , Z〉 – 〈Y , AZ〉 = δ1δ2W (z, y; 0) – δ1δ2W (z, y; ξ – 0) – W (z, y; 1)

+ W (z, y; ξ + 0) – δ1δ2W (z, y; 0) + W (z, y; 1). (2.1)

By transmission conditions (1.4)–(1.5), we get

W (z, y; ξ + 0) = δ1δ2W (z, y; ξ – 0). (2.2)

Substituting (2.2) into (2.1) yields that 〈AY , Z〉 – 〈Y , AZ〉 = 0. Our claim is established. �

Further, taking into account Lemma 2.2 and Theorem 2.1, we have the following theo-
rem.

Theorem 2.2 Operator A is self-adjoint.

Proof In order to identify that A is a self-adjoint operator, we should prove for every

Y =
(
y(x), y1, . . . , yM, yM+1, g1, g2, . . . , gN+1

)T ∈ D(A),

〈AY , W 〉 = 〈Y , T〉 for some T ∈ H implies that W ∈ D(A) and AW = T , where

W =
(
w(x), w1, . . . , wM, wM+1, l1, . . . , lN , LN+1

)T ,

T =
(
t(x), t1, . . . , tM, tM+1, s1, . . . , sN , sN+1

)T .

Precisely, we need to prove that the following properties hold:
(i) w(x), w′(x) are absolutely continuous on [0, ξ ) ∪ (ξ , 1], Lw ∈ L2([0, ξ ) ∪ (ξ , 1]);

(ii) t(x) = Lw(x);
(iii) L3w = L4w = 0;
(iv) wM+1 = –aw(0), lN+1 = cw(1);
(v) tk = ckwk + bkw(0), k = 1, 2, . . . , M;

(vi) sn = enln – dnw(1), n = 1, 2, . . . , N ;
(vii) tM+1 = w′(0) – bw(0) –

∑M
k=1 wk ;

(viii) sN+1 = w′(1) – dw(1) –
∑N

n=1 ln.
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For an arbitrary point Y ∈ C∞
0 ⊕ 0 ⊂ D(A) (where 0 ⊂C

M+N+2), we have

〈Ly, w〉H1 = 〈y, t〉H1 ,

namely

δ1δ2

∫ ξ

0

(
Ly(x)

)
w(x) dx +

∫ 1

ξ

(
Ly(x)

)
w(x) dx = δ1δ2

∫ ξ

0
y(x)t(x) dx +

∫ 1

ξ

y(x)t(x) dx.

In accordance with the classical Sturm–Liouville theory, (i) and (ii) hold. So 〈AY , W 〉 =
〈Y , T〉, ∀Y ∈ D(A) implies

〈Ly, w〉H1 + δ1δ2

M∑

k=1

[ckyk + bky(0)]wk

bk
+

[y′(0) – by(0) –
∑M

k=1 yk]wM+1

a

+
N∑

n=1

[engn – dny(1)]ln

dn
+

[y′(1) – dy(1) –
∑N

n=1 gn]lN+1

c

= 〈y, Lw〉H1 + δ1δ2

( M∑

k=1

yktk

bk
+

yM+1tM+1

a

)
+

N∑

n=1

gnsn

dn
+

gN+1sN+1

c
. (2.3)

Besides, by integration by parts we get

〈Ly, w〉H1 – 〈y, Lw〉H1 = δ1δ2
[
W (y, w; ξ – 0) – W (y, w; 0)

]

+ W (y, w; 1) – W (y, w; ξ + 0). (2.4)

Combining (2.4) with (2.3), we have

δ1δ2

[ M∑

k=1

yktk

bk
– y(0)tM+1

]
+

N∑

n=1

gnsn

dn
+ y(1)sN+1

– δ1δ2

M∑

k=1

[ckyk + bky(0)]wk

bk
+

[y′(0) – by(0) –
∑M

k=1 yk]wM+1

a

–
N∑

n=1

[engn – dny(1)]ln

dn
–

[y′(1) – dy(1) –
∑N

n=1 gn]lN+1

c

= δ1δ2
[
W (y, w; ξ – 0) – W (y, w; 0)

]
+ W (y, w; 1) – W (y, w; ξ + 0). (2.5)

By Naimark’s patching lemma [24], there exists Y ∈ D(A) such that

y(0) = y(1) = y′(1) = y(ξ ± 0) = y′(ξ ± 0) = 0 �= y′(0),

yk = 0 (k = 1, 2, . . . , M), gn = 0 (n = 1, 2, . . . , N).

Substituting them into (2.5), we obtain wM+1 = –aw(0). Similarly, we can find Y ∈ D(A)
such that

y(0) = y′(0) = y(1) = y(ξ ± 0) = y′(ξ ± 0) = 0 �= y′(1),
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yk = 0 (k = 1, 2, . . . , M), gn = 0 (n = 1, 2, . . . , N).

We can get lN+1 = cw(1). So (iv) holds. Next, set Y ∈ D(A) such that

y(0) = y′(0) = y(1) = y′(1) = y(ξ ± 0) = 0,

yk = 0 (k = 1, 2, . . . , M), gn = 0 (n = 1, 2, . . . , N),

y′(ξ – 0) = δ1, y′(ξ + 0) = δ1δ2.

Then, by (2.5), we get L3w = 0. Analogously, we can get L4w = 0.
When we choose Y ∈ D(A) which satisfies

y(0) = y′(0) = y(1) = y′(1) = y(ξ ± 0) = y′(ξ ± 0) = 0,

gn = 0 (n = 1, 2, . . . , N), yk = δik ,

(v) holds.
When we choose Y ∈ D(A) which satisfies

y(0) = y′(0) = y(1) = y′(1) = y(ξ ± 0) = y′(ξ ± 0) = 0,

yk = 0 (k = 1, 2, . . . , M), gn = δjn,

(vi) holds.
When we choose Y ∈ D(A) which satisfies

y′(0) = y(1) = y′(1) = y(ξ ± 0) = y′(ξ ± 0) = 0 �= y(0),

yk = 0 (k = 1, 2, . . . , M), gn = 0 (n = 1, 2, . . . , N),

(vii) holds. Similarly, we have (viii). So the operator A is a self-adjoint operator. �

From the characteristics of self-adjoint operators, we have the following.

Corollary 2.1 All eigenvalues of Sturm–Liouville problem (1.1)–(1.5) are real.

Corollary 2.2 Let λ1 and λ2 be two different eigenvalues of Sturm–Liouville problem (1.1)–
(1.5), then the corresponding eigenfunctions y(x) and z(x) are orthogonal in the sense of

δ1δ2

∫ ξ

0
y(x)z(x) dx +

∫ 1

ξ

y(x)z(x) dx

+ δ1δ2

( M∑

i=1

yizi

bi
+

yM+1zM+1

a

)
+

N∑

j=1

gjrj

dj
+

gN+1rN+1

c
= 0.

3 Asymptotic formulas for eigenvalues and eigenfunctions
We rebuild the fundamental solutions of Sturm–Liouville problem (1.1)–(1.5) and get the
asymptotic formulas for the eigenvalues and eigenfunctions in this section.
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Lemma 3.1 (see [26]) Let the real-valued function q(x) be continuous on I = [0, ξ ) ∪ (ξ , 1],
and f (λ), g(λ) be given entire functions. Then, for any λ ∈C, the following equation

Ly := –y′′(x) + q(x)y(x) = λy(x), x ∈ [0, ξ ) ∪ (ξ , 1]

has the unique solution y = y(x,λ) satisfying the initial conditions

y(0,λ) = f (λ), y′(0,λ) = g(λ).

For each fixed x ∈ [0, ξ ) ∪ (ξ , 1], y(x,λ) is an entire function of λ.

Now, we define fundamental solutions ϕ(x,λ) and χ (x,λ) of equation (1.1) by the fol-
lowing procedure, where

ϕ(x,λ) =

⎧
⎨

⎩
ϕ1(x,λ), x ∈ [0, ξ ),

ϕ2(x,λ), x ∈ (ξ , 1]

and

χ (x,λ) =

⎧
⎨

⎩
χ1(x,λ), x ∈ [0, ξ ),

χ2(x,λ), x ∈ (ξ , 1].

Set ϕ1(x,λ) is the solution of equation (1.1) on the interval [0, ξ ), which satisfies the initial
conditions

ϕ1(0,λ) = 1, (3.1)

ϕ′
1(0,λ) = f (λ). (3.2)

In accordance with Lemma 3.1, we can define the solution ϕ2(x,λ) of equation (1.1) on
(ξ , 1] by the initial conditions

(
ϕ2(ξ + 0)
ϕ′

2(ξ + 0)

)
=

(
δ1ϕ1(ξ – 0)
δ2ϕ

′
1(ξ – 0)

)
; (3.3)

similarly, we define the solutions χ2(x,λ) and χ1(x,λ) of equation (1.1) by the initial con-
ditions, respectively,

χ2(1,λ) = 1, (3.4)

χ ′
2(1,λ) = g(λ), (3.5)

(
χ1(ξ – 0,λ)
χ ′

1(ξ – 0,λ)

)
=

(
χ2(ξ+0,λ)

δ1
χ ′

2(ξ+0,λ)
δ2

)
. (3.6)

Now we consider Wronskians

Wi(λ) := W (ϕi,χi; x) = ϕi(x,λ)χ ′
i (x,λ) – ϕ′

i(x,λ)χi(x,λ) (i = 1, 2).
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By the dependence of solutions of initial value problems on the parameter, we have Wi(λ)
(i = 1, 2) are independent of x.

Lemma 3.2 For every λ ∈ C, W2(λ) = δ1δ2W1(λ).

Proof By the definition of Wi(λ), we get

W1(λ) = ϕ1(ξ – 0,λ)χ ′
1(ξ – 0,λ) – ϕ′

1(ξ – 0,λ)χ1(ξ – 0,λ),

W2(λ) = ϕ2(ξ + 0,λ)χ ′
2(ξ + 0,λ) – ϕ′

2(ξ + 0,λ)χ2(ξ + 0,λ).

Using the transmission conditions (1.4)–(1.5), short calculation gives that

W (ϕ2,χ2; ξ + 0) = δ1δ2W (ϕ1,χ1; ξ – 0).

Thus, for every λ ∈C, we have W2(λ) = δ1δ2W1(λ), this completes the proof. �

Besides, we set W (λ) := W1(λ) = 1
δ1δ2

W2(λ).

Theorem 3.1 The eigenvalues of Sturm–Liouville problem (1.1)–(1.5) coincide with the
roots of W (λ) = 0.

Proof Let ν0(x,λ0) be any eigenfunction corresponding to eigenvalue λ0, then the function
ν0(x,λ0) can be written as the form

ν0(x,λ0) =

⎧
⎨

⎩
m1ϕ1(x,λ0) + m2χ1(x,λ0), x ∈ [0, ξ ),

m3ϕ2(x,λ0) + m4χ2(x,λ0), x ∈ (ξ , 1],

where at least one of the constants mi (i = 1, 2, 3, 4) is nonzero. We should show that
W (λ0) = 0. Suppose to the contrary that there exists λ0 ∈ R such that W (λ0) = W1(λ0) =

1
δ1δ2

W2(λ0) �= 0. Since the eigenfunction ν0(x,λ0) satisfies both boundary and transmission
conditions (1.2)–(1.5), we have Liν0(x,λ0) = 0 (i = 1, 2, 3, 4). However, the determinant of
coefficient matrix is nonzero, so we get mi = 0 (i = 1, 2, 3, 4), which is a contradiction. Then
W (λ0) = 0. Conversely, set W (λ0) = 0, then W (λ0) = W1(λ0) = 1

δ1δ2
W2(λ0) = 0, therefore,

χi(x,λ0) = kϕi(x,λ0) (i = 1, 2) for some k �= 0. Since both ϕ2(x,λ0) and χ2(x,λ0) satisfy the
boundary condition (1.3), thus

ϕ(x,λ0) =

⎧
⎨

⎩
ϕ1(x,λ0), x ∈ [0, ξ ),

ϕ2(x,λ0), x ∈ (ξ , 1]

satisfies problem (1.1)–(1.5). So the function ϕ(x,λ0) is an eigenfunction of problem (1.1)–
(1.5) corresponding to eigenvalue λ0. Our claim is established. �

Remark 3.1 We define y(x,λ) to be a non-trivial solution of (1.1), (1.4)–(1.5), write F(λ) =
y′(0,λ) – f (λ)y(0,λ), G(λ) = y′(1,λ) – g(λ)y(1,λ), W (λ) = F(λ)G(λ). If W (λ) = 0, then λ is
an eigenvalue of (1.1)–(1.5). If, in addition, Wλ(λ) �= 0, then we call λ a simple eigenvalue,
where the suffix denotes differentiation with respect to λ. To discuss the poles of f (λ),
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we use �(λ) = (y(0,λ) – y′(0,λ)
f (λ) )(y(1,λ) – y′(1,λ)

g(λ) ) instead of W (λ). Particularly, if y(0,λ) = 0,
then λ = ci is an eigenvalue. In addition, if yλ(0,λ) �= 0, then λ = ci is a simple eigenvalue.
If y(1,λ) = 0, then λ = ej is an eigenvalue. In addition, if yλ(1,λ) �= 0, then λ = ej is a simple
eigenvalue.

Theorem 3.2 All eigenvalues of Sturm–Liouville problem (1.1)–(1.5) are analytically sin-
gle.

Proof Set λ = s + it, we use the following notations: ϕ = ϕ(x,λ), ϕ1λ = ∂ϕ1
∂λ

, ϕ′
1λ = ∂ϕ

′
1

∂λ
. Dif-

ferentiating the equation Aχ = λχ with respect to λ, we obtain

Aχλ = χ + λχλ. (3.7)

Then

〈λχλ,ϕ〉H1 – 〈χλ,λϕ〉H1 = 〈χ ,ϕ〉H1 .

Using integration by parts, we have

〈Aχλ,ϕ〉1 – 〈χλ, Aϕ〉1 = δ1δ2
(
χ1λϕ1

′ – χ ′
1λϕ1

)|ξ0 +
(
χ2λϕ2

′ – χ ′
2λϕ2

)|1ξ . (3.8)

Further, by the initial conditions, we have

δ1δ2
(
χ1λϕ1

′ – χ ′
1λϕ1

)|ξ0 +
(
χ2λϕ2

′ – χ ′
2λϕ2

)|1ξ

= δ1δ2χ
′
1λ(0) – ϕ2(1)

[
c +

N∑

j=1

dj

(ej – λ)2

]
– δ1δ2χ1λ(0)

(
–aλ + b +

M∑

i=1

bi

λ – ci

)
.

By virtue of the definition of W (λ), (3.1), and (3.2), we observe that

W (λ) = ϕ1(0,λ)χ ′
1(0,λ) – ϕ′

1(0,λ)χ1(0,λ)

= χ ′
1(0,λ) –

(
–aλ + b +

M∑

i=1

bi

λ – ci

)
χ1(0,λ).

Differentiating it we get

W ′(λ) = χ ′
1λ(0,λ) – χ1λ(0,λ)

(
–aλ + b +

M∑

i=1

bi

λ – ci

)
+ χ1(0,λ)

[
a +

M∑

i=1

bi

(λ – ci)2

]
.

Next, let λ0 be an arbitrary root of W (λ) = 0. Then we get ϕi(x,λ0) = kχi(x,λ0) (i = 1, 2)
(k �= 0), k ∈R. Noting that λ0 ∈R, by a short calculation, (3.8) becomes

W ′(λ0) = k
∫ ξ

0

∣∣χ1(x)
∣∣2 dx +

k
δ1δ2

[∫ 1

ξ

∣∣χ2(x)
∣∣2 dx + c +

N∑

j=1

dj

(ej – λ0)2

]

+
1
k

[
a +

M∑

i=1

bi

(λ0 – ci)2

]
.
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Since c > 0, a > 0, bi > 0 (i = 1, 2, . . . , M), dj > 0 (j = 1, 2, . . . , N ), δ1δ2 > 0, k �= 0, so we know
W ′(λ0) �= 0. Hence the eigenvalues of Sturm–Liouville problem (1.1)–(1.5) are analytically
single. �

Lemma 3.3 Let λ = s2, s = σ + it. Then the following equalities hold for k = 0 and k = 1:

dk

dxk ϕ1(x,λ) =
dk

dxk cos(sx) –

(
–as +

b
s

+
M∑

i=1

bi

s3 – cis

)
dk

dxk sin(sx)

+
1
s

∫ x

0

dk

dxk sin
[
s(x – τ )

]
q(τ )ϕ1(τ ) dτ , (3.9)

dk

dxk ϕ2(x,λ) = δ1ϕ1(ξ – 0)
dk

dxk cos
[
s(x – ξ )

]
+

1
s
δ2ϕ

′
1(ξ – 0)

dk

dxk sin
[
s(x – ξ )

]

+
1
s

∫ x

ξ

dk

dxk sin
[
s(x – τ )

]
q(τ )ϕ2(τ ) dτ . (3.10)

Proof For the case of k = 0, since –ϕ′′
1 + qϕ1 = s2ϕ1, we have qϕ1 = ϕ′′

1 + s2ϕ1, and

∫ x

0
sin

[
s(x – τ )

]
q(τ )ϕ1(τ ) dτ = s2

∫ x

0
ϕ1(τ ) sin

[
s(x – τ )

]
dτ +

∫ x

0
sin

[
s(x – τ )

]
ϕ′′

1 (τ ) dτ .

Using integration by parts and noting the initial conditions

ϕ1(0) = 1, ϕ′
1(0) = –as2 + b +

M∑

i=1

bi

s2 – ci
,

we obtain

sϕ1(x,λ) =

(
–as2 + b +

M∑

i=1

bi

s2 – ci

)
sin(sx) + s cos(sx) +

∫ x

0
sin

[
s(x – τ )

]
q(τ )ϕ1(τ ) dτ .

Thus,

ϕ1(x,λ) =

(
–as +

b
s

+
M∑

i=1

bi

s3 – cis

)
sin(sx) + cos(sx)

+
1
s

∫ x

0
sin

[
s(x – τ )

]
q(τ )ϕ1(τ ) dτ . (3.11)

Then (3.9) can be got by differentiating (3.11) with respect to x. The proof for (3.10) is
similar. �

Similarly, we have the following lemma.

Lemma 3.4 Let λ = s2, s = σ + it. Then the following equalities hold for k = 0 and k = 1:

dk

dxk χ1(x,λ) =
χ2(ξ + 0)

δ1

dk

dxk cos
[
s(x – ξ )

]
+

χ ′
2(ξ + 0)

sδ2

dk

dxk sin
[
s(x – ξ )

]

–
1
s

∫ ξ

x

dk

dxk sin
[
s(x – τ )

]
q(τ )χ1(τ ) dτ , (3.12)
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dk

dxk χ2(x,λ) =
dk

dxk cos
[
s(x – 1)

]
+

(
cs +

d
s

–
N∑

j=1

dj

ejs – s3

)
dk

dxk sin
[
s(x – 1)

]

–
1
s

∫ 1

x

dk

dxk sin
[
s(x – τ )

]
q(τ )χ2(τ ) dτ . (3.13)

Lemma 3.5 Let λ = s2, s = σ + it. Then ϕ(x,λ) have the following asymptotic representa-
tions for k = 0, 1:

dk

dxk ϕ1(x,λ) = –sa
dk

dxk sin(sx) + O
(|s|ke|t|x),

dk

dxk ϕ2(x,λ) = –sa sin(sξ )
dk

dxk cos
[
s(x – ξ )

]

– saδ2 cos(sξ )
dk

dxk sin
[
s(x – ξ )

]
+ O

(|s|ke|t|x). (3.14)

Each of these estimations holds uniformly for x as |λ| → ∞.

Proof The proof of asymptotic equalities for ϕ1(x,λ) are similar to those of Titchmarsh’s
proof for ϕ(x,λ) (see [25]), so we only prove (3.14), the other asymptotic equalities are
similar.

For the case of k = 0, by the estimations of ϕ1(x,λ) and ϕ′
1(x,λ), we get

ϕ1(ξ – 0,λ) = –sa sin(sξ ) + O
(|s|e|t|ξ ),

ϕ′
1(ξ – 0,λ) = –s2a cos(sξ ) + O

(|s|2e|t|ξ ).

Substituting them into (3.10) and noting (3.3), we have

ϕ2(x,λ) = –sa sin(sξ ) cos
[
s(x – ξ )

]
– saδ2 cos(sξ ) sin

[
s(x – ξ )

]
+ O

(|s|e|t|x).

Then, differentiating it with respect to x, we obtain (3.14). �

Lemma 3.6 Let λ = s2, s = σ + it. Then χ (x,λ) have the following asymptotic representa-
tions for k = 0, 1:

dk

dxk χ1(x,λ) = –
sc
δ1

sin
[
s(ξ – 1)

] dk

dxk cos
[
s(x – ξ )

]

+
sc
δ2

cos
[
s(ξ – 1)

] dk

dxk sin
[
s(x – ξ )

]
+ O

(|s|ke|t|(x–1)),

dk

dxk χ2(x,λ) = sc
dk

dxk sin
[
s(x – 1)

]
+ O

(|s|ke|t|(x–1)).

Each of these estimations holds uniformly for x as |λ| → ∞.

Theorem 3.3 Let λ = s2, s = σ + it. The function W1(λ) has the following estimations:

W1(λ) =
acs3 cos(sξ ) sin[s(ξ – 1)]

δ1
–

acs3 sin(sξ ) cos[s(ξ – 1)]
δ2

+ O
(|s|2e|t|).
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Proof By the definition of W1(λ), we have

W1(λ) = ϕ1(0,λ)χ ′
1(0,λ) – ϕ′

1(0,λ)χ1(0,λ)

= χ ′
1(0,λ) –

(
–sa +

b
s

+
M∑

i=1

bi

s3 – cis

)
sχ1(0,λ).

According to the estimations of χ1(0,λ) and χ ′
1(0,λ) in Lemma 3.6, we can obtain the

asymptotic representations of W1(λ). �

Corollary 3.1 The eigenvalues of Sturm–Liouville problem (1.1)–(1.5) are bounded below.

Proof Setting s = it (t > 0) in Theorem 3.3, we get W1(λ) = W1(–t2) → ∞ (t → ∞). Then
W1(–t2) �= 0 for λ negative and sufficiently large. Our claim is established. �

Further, according to the asymptotic representations for W1(λ), we have the following
theorem. For the convenience, in the sequel, we assume δ1 = δ2 = δ.

Theorem 3.4 The eigenvalues λn = s2
n (n = 0, 1, 2, . . .) of discontinuous Sturm–Liouville

problem (1.1)–(1.5) have the following estimations as n → ∞:

√
λn = (n – 1)π + O

(
1
n

)
.

Proof Using the well-known Rouché theorem in a closed curve removing ci (i = 1, 2, . . . , M)
and ej (j = 1, 2, . . . , N ), we can obtain this result (see [23], Theorem 2.3). �

Combining Theorem 3.4, Lemma 3.5 with Lemma 3.6, we can obtain the following
asymptotic representations of the eigenfunctions ϕ(x,λn) and χ (x,λn):

Theorem 3.5 The eigenfunctions ϕ(x,λn) and χ (x,λn) (n = 0, 1, 2, . . .) of Sturm–Liouville
problem (1.1)–(1.5) have the following asymptotic representations as n → ∞:

ϕ(x,λn) =

⎧
⎨

⎩
–a(n – 1)π sin[(n – 1)πx] + O(1), x ∈ [0, ξ ),

–aδ(n – 1)π sin[(n – 1)πx] + O(1), x ∈ (ξ , 1].

χ (x,λn) =

⎧
⎨

⎩
πc (n–1)

δ
sin[(n – 1)π (x – 1)] + O(1), x ∈ [0, ξ ),

c(n – 1)π sin[(n – 1)π (x – 1)] + O(1), x ∈ (ξ , 1].

4 Completeness of eigenfunctions
In this section, we get the property of spectrum for the operator A and discuss the com-
pleteness of the eigenfunctions of problem (1.1)–(1.5) .

Theorem 4.1 The operator A has only point spectrum, i.e., σ (A) = σp(A).

Proof We claim that if θ is not an eigenvalue of A, then θ must be in the resolvent set of
A. The spectrum of A will consist of eigenvalues accumulating only at ∞, and this will
complete the proof. According to Theorem 2.2, we only need to consider real θ . The L2
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component of (A – θ )Y = H̃ ∈ H , where θ ∈ R involves the equations Ly = h, where Y =
(y(x), y1, . . . yM, yM+1, g1, g2, . . . , gN+1)T , H̃ = (h(x), h1, . . . hM, hM+1,�1,�2, . . . ,�N+1)T . Con-
sider the problem

⎧
⎪⎪⎨

⎪⎪⎩

–y′′(x) + q(x)y(x) – θy(x) = h(x), x ∈ [0, ξ ) ∪ (ξ , 1]

y(ξ + 0) = δ1y(ξ – 0),

y′(ξ + 0) = δ2y′(ξ – 0).

(4.1)

Let

ψ(x) =

⎧
⎨

⎩
ψ1(x), x ∈ [0, ξ ),

ψ2(x), x ∈ (ξ , 1]
(4.2)

be the solution of the equation –y′′(x) + q(x)y(x) – θy(x) = 0 satisfying the transmission
conditions (1.4)–(1.5). Let

φ(x) =

⎧
⎨

⎩
φ1(x), x ∈ [0, ξ ),

φ2(x), x ∈ (ξ , 1]
(4.3)

be the solution of the equation –y′′(x) + q(x)y(x) – θy(x) = h(x) satisfying the transmission
conditions (1.4)–(1.5). Then equation (4.1) has the general solution

y(x) =

⎧
⎨

⎩
μψ1(x) + φ1(x), x ∈ [0, ξ ),

μψ2(x) + φ2(x), x ∈ (ξ , 1],
(4.4)

where μ ∈C.
Observe that

y′(0) – y(0)f (θ ) �= 0, (4.5)

y′(1) – y(1)g(θ ) �= 0. (4.6)

The next M + 1 components of (A – θ )Y = H̃ ∈ H lead to

(ci – θ )yi = θhi – biy(0) (i = 1, 2, . . . , M), (4.7)

y′(0) – by(0) –
M∑

i=1

yi + aθy(0) = hM+1; (4.8)

The next N + 1 components of (A – θ )Y = H̃ ∈ H lead to

(ej – θ )gj = θ�j + djy(1) (j = 1, 2, . . . , N), (4.9)

y′(1) – dy(1) –
N∑

j=1

gj – θcy(1) = �N+1. (4.10)
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Substituting (4.4) and (4.7) into (4.8), substituting (4.4) and (4.9) into (4.10), we can get that
μ, gj and yi are uniquely solvable. So y(x) is uniquely determined. Noting that (A – θ I)–1 is
defined on all of H . We obtain that (A – θ I)–1 is bounded by Theorem 2.2 and the closed
graph theorem. Thus θ ∈ ρ(A). Hence our claim is established. �

Lemma 4.1 The operator A has compact resolvent, that is, for each δ ∈ R/σp(A), (A – δI)–1

is compact on H (see [19], Theorem 6.3.3).

Using the above lemma and the spectral mapping theorem, we also get the following
theorem.

Theorem 4.2 The eigenfunctions of Sturm–Liouville problem (1.1)–(1.5), expanded to be-
come eigenfunctions of A, are complete in H . Namely, let {�n = (ϕn(x), T0(ϕn), T1(ϕn)); n ∈
N} be a maximum set of orthogonal eigenfunctions of A, then for all F ∈ H , F =

∑∞
n=1〈F ,

�n〉�n, where {ϕn(x); n ∈N} are eigenfunctions of Sturm–Liouville problem (1.1)–(1.5).

Remark 4.1 When δ1 = δ2 = 1, the considered problem turns into continuous case.

Remark 4.2 When f (λ) = cotα, the boundary condition (1.2) degenerates to the left
boundary condition in [21, 22].

Remark 4.3 When a = 0 or c = 0, we need to redefine a new Hilbert space and a new inner
product, similar results hold.

5 Conclusion
This paper gives a detailed characterization of spectral properties of certain kind of
Sturm–Liouville problems with intermediate discontinuous point. The novelty lies in that
the Sturm–Liouville problems we considered here involve both singular endpoints and
an intermediate discontinuous point. By a newly defined Hilbert space and fundamental
solutions of the equations, we give the spectrum of these equations.
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