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1 Introduction
The nonlinear Schrödinger (NLS) equation provides a canonical description of envelope
dynamics of quasi-monochromatic plane wave propagation processes which are negligi-
ble. The dynamics are linear within short propagation distance and short time, but cumu-
lative nonlinear interactions lead to an important modulation of the wave amplitude on
large spatial and temporal scales.

In optics, it can also be considered as the extension to nonlinear media of the parax-
ial approximation used for linear waves propagating in some random medium. However,
by Kaminow [1], we know that single-mode optical fibers are not really single-mode, but
actually bimodal according to the presence of birefringence. This birefringence can influ-
ence the way in which an optical fiber evolves during the propagation travel along the fiber.
Indeed, it occurs that the linear birefringence makes a pulse split into two, and nonlinear
birefringent traps them together against splitting. Menyuk [2, 3] showed that the evolu-
tion of two orthogonal pulse envelopes in birefringent optical fibers can be governed by
the following coupled nonlinear Schrödinger system:

iφt + φxx +
(|φ|2 + e|ψ |2)φ = 0, (1.1)

iψt + ψxx +
(
e|φ|2 + |ψ |2)ψ = 0, (1.2)

where e is a positive constant depending on the anisotropy of the fibers.
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When e = 0, system (1.1)–(1.2) becomes two decoupled nonlinear Schrödinger equa-
tions.

When e = 1, system (1.1)–(1.2) is known as Manakov equations. The integrability of this
system was proved by Manakov in 1974, and we shall regard it as the Integrable Manakov
System (IMS).

Equations (1.1)–(1.2) are important for a number of physical applications (see [1–7])
when e is positive and all the remaining constants are set equal to 1. For example, when
e = 2 for two-mode optical fibers; when e = 2/3 for propagation of two modes in fibers
with strong birefringence, and in the general case 2/3 ≤ e ≤ 2 for elliptical eigenmodes.
The special value e = 1 (IMS) corresponds to at least two possible physical cases, one is
the case of a purely electrostrictive nonlinearity, and another is in the elliptical birefrin-
gence case, when the angle between the major and minor axes of the birefringence el-
lipse is approximately 35°. Moreover, the experimental observation of Manakov solitons
in crystals has been reported. The pulse–pulse collision between wavelength–division–
multiplexed channels of optical fiber transmission systems are described by (1.1)–(1.2)
with e = 2 (Hasewaga and Kodama [4]).

Since the coupled nonlinear Schrödinger (CNLS) equations describe the propagation
of light waves in a nonlinear birefringent optical fiber, up to now, they have been studied
intensively over 30 years to realize the idea of using optical solitons as information bits in
high-speed telecommunication systems (see [8–19]). Moreover, collision of solitary waves
is a common phenomenon in science and engineering and it has diverse applications in
many areas of physics, including nonlinear optics, plasma physics, and hydrodynamics.

Notice that generalized coupled nonlinear Ginzburg–Laudau equations are more com-
mon than GCNLS equations and are supplemented by external force:

iu1t – (b + ai)�u1 + g
(|u1|2 + |u2|2

)
u1 = f1, (1.3)

iu2t – (b + ai)�u2 + g
(|u1|2 + |u2|2

)
u2 = f2. (1.4)

Firstly, we focus on generalized coupled nonlinear Ginzburg–Laudau equations which
are more common than GCNLS equations and are supplemented with damping and ex-
ternal force as follows:

iu1t – (b + ai)�u1 + g
(|u1|2 + |u2|2

)
u1 + iru1 = f1,

iu2t – (b + ai)�u2 + g
(|u1|2 + |u2|2

)
u2 + iσu2 = f2,

where u1, u2 are the wave amplitudes in two polarizations, a, b are positive real numbers,
r,σ > 0 are the damping parameters, g(s) is a nonnegative smooth function on R+, and the
external forcing f1(x) and f2(x) are independent of t, belonging to L2(�), where � is an
open bounded set in Rn.

With the appearance of memory materials, a great attention has been focused on the
study of problems involving the fractional Laplacian

iu1t + (b + ai)(–�)su1 + g
(|u1|2 + |u2|2

)
u1 + iru1 = f1, (1.5)

iu2t + (b + ai)(–�)su2 + g
(|u1|2 + |u2|2

)
u2 + iσu2 = f2. (1.6)
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Consider the initial conditions

u1(x, 0) = u10(x), u2(x, 0) = u20(x), (1.7)

and the boundary condition

u1(x, t) = u2(x, t) = 0, x ∈ ∂�. (1.8)

We rewrite (1.5) and (1.6) into the following form:

iUt + (b + ai)(–�)sU + g
(|U|2)U + iQU = F , (1.9)

where

U = (u1, u2)T , F = (f1, f2)T , |U|2 = |u1|2 + |u2|2, Q =

(
r 0
0 σ

)

,

and U(x, t) = U in C(� × R), t ∈ (0, T). We supply (1.9) with the initial and boundary
conditions

U0 = U(x, 0); U(x, t) = 0, x ∈ ∂�. (1.10)

The global solution of problem (1.9)–(1.10) can hardly be got. For the case of only an
equation of problem (1.9), i.e., for the 2D Ginzburg–Landau equation, we obtain some
explicit periodic wave solutions using the homogeneous balance principle and general Ja-
cobi elliptic-function method and provide a blow-up solution (see [20]). Here, let us men-
tion that there are both similarities and differences between the Schrödinger equation and
the Landau–Lifshitz equation, the Landau–Lifshitz equation is more intrinsically difficult
than the Ginzburg–Landau equation (see [21–24]). If α, β are positive real constants, we
change the coefficients of (1.9) and get the generalized coupled nonlinear Schrödinger
equations

iUt + α(–�)sU + g
(|U|2)U + iQU + βU = F . (1.11)

It is equipped with the same initial and boundary conditions as (1.10). With the help of
the extended techniques developed by Caffarelli and Silvestre [25], some existence and
nonexistence of Dirichlet problem involving the fractional Laplacian on bounded domain
have been established, see Refs. [26] for example.

In this paper, we would rather switch our viewpoint to the fractional order equation
(Eig,Q,F ,t):

(Eig,Q,F ,t)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DαU(x, t) = (bi – a)(–�)sU(x, t) + ig(|U(x, t)|2)U(x, t)

+ cU2(x, t)(–�) s
2 U(x, t) + d|U(x, t)|2(–�) s

2 U(x, t)

– QU(x, t) + iβU(x, t) – iF(x), in �T ,

U(x, t) = 0, on ∂�T ,

U(x, 0) = 
(x), in �,

Ut(x, 0) = �(x), in �,

(1.12)

in space V = Hs
0(�) × Hs

0(�).
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Notice that (1.9) is a special case of (Eig,Q,F ,t). The equation (Eig,Q,F ,t) includes the frac-
tional Laplacian, time fractional order, and derivative terms, so it plays an important role
in physics and probability in finance. We refer, for example, to [27–29] and the references
therein.

As far as we know, there are few articles to study the global solution to (Eig,Q,F ,t) with
three terms at the same time: the fractional order with respect to time, space fractional
order, and derivative terms. It is studied only when there is the lack of the time fractional
order or the space fractional order. For the case with derivative term, the existence of global
solution is an open question even in the integer order case and one-dimensional space. In
this paper we first build the existence of weak solution to (Eig,Q,F ,t), then we prove the
existence of global attractor of (1.11) in L2(�) × L2(�), and the dynamic motions will be
given under the condition G(ρ) =

∫ ρ

0 g(τ ) dτ ≤ g(ρ)ρ (ρ ≥ 0).

2 Functional setting
As usual we denote the space of (classes of ) square-integrable measurable complex func-
tions on � ⊂ Rn by Lp(�) (p ≥ 1). Hm(�)m ∈ N is the subspace of L2-functions whose dis-
tribution derivatives of order no more than m belong to L2(�). H1

0 (�) denotes the space
of functions in H1(�) whose trace vanishes on ∂�.

The scalar product and norm on L2(�) are

(u, v) =
∫

�

u(x)v(x) dx, ‖u‖ = (u, u)1/2,

and we set

(u, v)m =
∑

[α]=m

(
Dαu, Dαv

)
, ‖u‖m = (u, u)1/2

m ,

where u, v ∈ Hm(�) and [α] = α1 + α2 + · · · + αn is length of the multi-index α =
(α1,α2, . . . ,αn) ∈ Nn.

The basic Hilbert space L2(�) × L2(�) is denoted by H , and we define the unbounded
operator –� on H with domain

D(–�) =
(
H2(�) × H2(�)

) ∩ (
H1

0 (�) × H1
0 (�)

)

such that

–�U = –
n∑

i=1

∂2U
∂x2

i
∈ H , U ∈ D(–�).

The operator I – � is self-adjoint, positive on H , and realizes an isomorphism from
D(–�) onto H . We deduce from the compactness of the embedding of H1(�) into L2(�)
that (I – �)–1 is a compact self-adjoint operator in H . Thus, there exists an orthonormal
Hilbert basis of H consisting of eigenvectors ωj of –� in H1

0 (�) ×H1
0 (�), associated to the

eigenvalues λj:

–�ωj = λjωj, ‖ωj‖H = 1,

0 < λ1 ≤ λ2 ≤ · · · ,λj → ∞ as j → ∞ (see [30]).
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In fact, let wj be an orthonormal basis of L2(�) consisting of eigenvectors ωj associated
to the eigenvalues μj. Let

ω2j–1 = (wj, 0), ω2j = (0, wj), j = 1, 2, . . . .

For every U = (u, v) = (
∑∞

j=1 β1jwj,
∑∞

j=1 β2jwj) =
∑∞

j=1
∫
�

(β1jw2j–1 + β2jw2j) dx.
If we set

V = H1
0 (�) × H1

0 (�),

according to the boundary condition, we consider norms

‖U‖H =
(‖u1‖2 + ‖u2‖2)1/2,

‖U‖V =
(‖u1‖2

1 + ‖u2‖2
1
)1/2,

and the scalar product can be written as

(
(u1, u2), (w1, w2)

)
=

∫

�

u1w1 + u2w2 dx.

For every given s > 0, we define

(–�)sωj = λs
jωj

if and only if

(
(–�)sωj, v

)
= λs

j (ωj, v), v ∈ H1
0

for those eigenvectors ωj of –�, associated to the eigenvalues λj.
The powers (–�)s, s ∈ R, are well-defined and the space Hs = D((–�)s/2) and its dual

space Hs
′ = D((–�)–s/2) are of particular interest in what follows. It should be noticed that

Hs =

{

U | U = (u1, u2) =

( ∞∑

j=1

β1jwj,
∞∑

j=1

β2jwj

)

,
∞∑

j=1

λs
j

∫

�

(|β1j|2 + |β2j|2
)

dx < ∞
}

.

‖U‖Hs =

√√√√
∞∑

j=1

∫

�

λs
j
(|β1j|2 + |β2j|2

)
dx,

(U , W )Hs =
∞∑

j=1

λs
j

∫

�

(β1jβ3j + β2jβ4j) dx,

where

U = (u1, u2) =

( ∞∑

j=1

β1jwj,
∞∑

j=1

β2jwj

)

,

W = (u3, u4) =

( ∞∑

j=1

β3jwj,
∞∑

j=1

β4jwj

)

.
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Remark 2.1 H1 = H1
0 = V , H2 = H2

0 , H–1 = H–1 = V ′, H[s] = H [s]
0 . When s is not an integer,

Hs defined by us is slightly different from the generalized Sobolev space:

(
(–�)sU , W

)
=

(
U , (–�)sW

)
=

(
(–�)s/2U , (–�)s/2W

)
= (U , W )Hs .

3 The time-fractional equations
Note that throughout this section the letter α may stand either for the parameter in
Eq. (1.9) or for the order of the fractional equation when we use the notation DαU . The
meaning to be chosen should be clear from the context.

In order to discuss the existence of the solution for the equation (Eig,Q,F ,t), we need
to present some basic notations, definitions, and preliminary results which will be used
throughout this section. We first have the following two definitions and one lemma by
Kilbas [31].

Definition 3.1 The Caputo fractional derivative of order α of a function f (t), t > 0, is
defined as follows:

Dαf (t) =
1

�(1 – {α})
∫ t

0

1
(t – s){α} f ([α]+1) ds,

where {α}, [α] denote the fractional and the integer part of the real number α respectively,
and �(·) is the gamma function.

Definition 3.2 The Riemann–Liouville fractional integral of order α of a function f (t),
t > 0, is defined as follows:

Iα
0+ f (t) =

1
�(α)

∫ t

0
(t – s)α–1f (s) ds,

provided that the right-hand side is pointwise defined on (0,∞).

Lemma 3.3 Assume y ∈ C[0, T], T > 0, 1 < α < 2, then the problem

Dαu(t) = y(t), t ∈ [0, T], (3.1)

has the unique solution

u(t) = u(0) + u′(0)t +
1

�(α)

∫ t

0
(t – s)α–1y(s) ds.

Now we establish some results of the existence of solution for the equation (Eig,Q,F ,t).
By Lemma 3.3, we may reduce equation (Eig,Q,F ,t) to an equivalent integral equation as

the following problem:

(Eig,Q,F ,t)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

U(x, t) = 
(x) + �(x)t

+ 1
�(α)

∫ t
0 (t – s)α–1((bi – a)(–�)sU(x, s) + ig(|U(x, s)|2)U(x, s)

+ cU2(x, s)(–�) s
2 U(x, s) + d|U(x, s)|2(–�) s

2 U(x, s)

– QU(x, s) + iβU(x, s) – iF(x)) ds, in �T ,

U(x, t) = 0, on ∂�T .

(3.2)
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And we set

ϒ(U) = 
(x) + �(x)t +
1

�(α)

∫ t

0
(t – s)α–1((bi – a)(–�)sU(x, s)

+ ig
(∣∣U(x, s)

∣
∣2)U(x, s) + cU2(x, s)(–�) s

2 U(x, s)

+ d
∣∣U(x, s)

∣∣2(–�)
s
2 U(x, s)

– QU(x, s) + iβU(x, s) – iF(x)
)

ds.

Definition 3.4 We call U ∈ C([0, T]; H ′
s(�) × H ′

s(�)), s ≥ 1, a weak solution of the frac-
tional order equation (Eig,Q,F ,t) if

∫
�

(U –ϒ(U))W dx = 0, ∀t ∈ [0, T] for every W ∈ Hs
0(�)×

Hs
0(�).

Lemma 3.5 The operator ϒ(U) ∈ C([0, T]; H ′
s(�) × H ′

s(�)) is completely continuous.

Proof Set B = {U | ‖U‖Hs×Hs ≤ M}. Put

K(U) = (bi – a)(–�)sU(x, s) + ig
(∣∣U(x, s)

∣∣2)U(x, s) + cU2(x, s)(–�) s
2 U(x, s)

+ d
∣∣U(x, s)

∣∣2(–�)
s
2 U(x, s) – QU(x, s) + iβU(x, s) – iF(x).

We can rewrite

ϒ(U) = 
(x) + �(x)t +
1

�(α)

∫ t

0
(t – s)α–1K(U) ds.

For each W ∈ Hs
0(�) × Hs

0(�) and ‖W‖Hs
0(�)×Hs

0(�) ≤ 1, when n ≤ 3s, 0 < r ≤ 3, 0 < q ≤
6, 1

r + 1
q = 1, and 1

2 – s
n ≤ 1

r , 1
2 – s

n ≤ 1
(2k+1)r (for example 0 < r ≤ 5

6 , k = 2), using embedding
theorem and Holder’s inequality, we have the following inequalities:

∣
∣〈(bi – a)(–�)sU(x, s), W

〉∣∣

=
∣
∣∣
∣

∫
(bi – a)(–�)

s
2 U(x, s)(–�)

s
2 W dx

∣
∣∣
∣

≤
∫ ∣∣(bi – a)(–�)

s
2 U(x, s)(–�)

s
2 W

∣∣

≤ √
a2 + b2

(∫ ∣∣(–�)
s
2 U

∣∣2 dx
) 1

2
(∫ ∣∣(–�)

s
2 W

∣∣2 dx
) 1

2

≤ √
a2 + b2

∥∥(–�)
s
2 U

∥∥
H

∥∥(–�)
s
2 W

∥∥
H + C‖U‖5

V ‖W‖V

≤ √
a2 + b2‖U‖Hs‖W‖Hs

≤ M1,
∣∣〈|U|2(–�)

s
2 U , W

〉∣∣

≤ ∥
∥|U|2∥∥Lr

∥
∥(–�)

s
2 U

∥
∥

L2‖W‖Lq

≤ ‖U‖3
Hs

≤ M2,
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∣∣〈g
(|U|2U , W

)〉∣∣

≤ ∥
∥g

(|U|2)U
∥
∥

Lr ‖W‖Lp

≤ (
C0 + |U|2)kr|U|r‖W‖Lp

≤ C1
(
C0|U|r + |U|2kr+r)‖W‖Lp

≤ M3,
∣∣〈U(x, s), W

〉∣∣

≤
(∫

|U|2 dx
) 1

2
(∫

|W |2 dx
) 1

2

≤ ‖U‖H‖W‖Hs + ‖F‖H‖W‖Hs

≤ M4.

Similarly, |〈U2(x, s)(–�) s
2 U(x, s), W 〉| ≤ M5, |〈F , W 〉| ≤ M6.

Applying the equalities above, we immediately get |〈K(U), W 〉| ≤ M.
Thus, by Cauchy–Schwarz inequalities, we obtain

∥
∥ϒ(U)

∥
∥

H′
s

= sup
‖W‖Hs

0
≤1

∣
∣〈ϒ(U), W

〉∣∣

= sup
‖W‖Hs

0
≤1

∣
∣∣∣
〈

(x), W

〉
+

〈
�(x), W

〉
t +

1
�(α)

∫ t

0
(t – s)α–1〈K(U), W

〉
ds

∣
∣∣∣

≤ ∣∣〈
(x), W
〉∣∣ +

∣∣〈�(x), W
〉
t
∣∣ +

∣∣∣
∣

1
�(α)

∫ t

0
(t – s)α–1〈K(U), W

〉
ds

∣∣∣
∣

≤ ∥∥
(x)
∥∥

L∞(�)‖W‖Hs +
∥∥�(x)

∥∥
L∞(�)‖W‖Hs T

+
∣
∣〈K(U), W

〉∣∣
∣∣
∣∣

1
�(α)

∫ t

0
(t – s)α–1 ds

∣∣
∣∣

≤ ∥
∥
(x)

∥
∥

L∞(�) +
∥
∥�(x)

∥
∥

L∞(�)T +
M

�(α)

∣∣
∣∣

∫ t

0
(t – s)α–1 ds

∣∣
∣∣

≤ ∥∥
(x)
∥∥

L∞(�) +
∥∥�(x)

∥∥
L∞(�)T –

M
α�(α)

tα

≤ ∥∥
(x)
∥∥

L∞(�) +
∥∥�(x)

∥∥
L∞(�)T +

M
α�(α)

Tα .

Hence, ϒ(U) is uniformly bounded.
On the other hand, given ε > 0, set

θ =
{(∥

∥ψ(x)
∥
∥

L∞(�) +
M

�(α)

)–1

ε

} 1
α

.
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Then, for every W ∈ V , t1 < t2, t1, t2 ∈ [0, T], and t2 – t1 < θ , one has ‖ϒU(t2)–ϒU(t1)‖H′
s =

sup‖W‖Hs
0
≤1 |〈ϒU(t2) – ϒU(t1), W 〉| ≤ ε. That is to say, ϒ(U) is equicontinuity. In fact,

∥∥ϒU(t2) – ϒU(t1)
∥∥

H′
s

= sup
‖W‖Hs

0
≤1

∣∣〈ϒU(t2) – ϒU(t1), W
〉∣∣

= sup
‖W‖Hs

0
≤1

∣∣〈�(x), W
〉∣∣(t2 – t1) +

1
�(α)

∫ t2

0
(t2 – s)α–1〈K(U), W

〉
ds

–
1

�(α)

∫ t1

0
(t1 – s)α–1〈K(U), W

〉
ds

≤ ∥∥�(x)
∥∥

L∞(�)‖W‖Hs |t2 – t1| +
1

�(α)
∣∣〈K(U), W

〉∣∣
∣
∣∣
∣

∫ t2

t1

∣∣(t2 – s)α–1 ds
∣∣
∣
∣∣
∣

+
∣∣∣
∣

1
�(α)

∫ t1

0

∣∣〈K(U), W
〉∣∣∣∣(t2 – s)α–1 – (t1 – s)α–1 ds

∣∣
∣∣∣
∣

≤ ∥∥�(x)
∥∥

L∞(�)|t2 – t1| +
M

–α�(α)
tα
2 –

M
–α�(α)

tα
1

=
∥∥�(x)

∥∥
L∞(�)|t2 – t1| –

M
α�(α)

(
tα
2 – tα

1
)

≤ ∥
∥�(x)

∥
∥

L∞(�)|t2 – t1| +
M

α�(α)
(
tα
2 – tα

1
)
.

In the following, we divide the proof into two cases.
Case 1: θ ≤ t1 < t2 < T , since 1 < α < 2, we get

∥∥ϒU(t2) – ϒU(t1)
∥∥

H′
s

= sup
‖W‖Hs

0
≤1

∣∣〈ϒU(t2) – ϒU(t1), W
〉∣∣

≤ ∥
∥�(x)

∥
∥

L∞(�)|t2 – t1| +
M

α�(α)
(
tα
2 – tα

1
)

=
∥∥�(x)

∥∥
L∞(�)|t2 – t1| +

M
α�(α)

αtα–1(t2 – t1)

≤ ∥∥�(x)
∥∥

L∞(�)|t2 – t1| +
M

�(α)θ1–α
(t2 – t1)

=
∥∥�(x)

∥∥
L∞(�)θ +

M
�(α)

θα

≤ ∥∥�(x)
∥∥

L∞(�)θ
α +

M
�(α)

θα

=
(∥∥�(x)

∥∥
L∞(�) +

M
�(α)

)
θα ≤ ε.

Case 2: 0 ≤ t1, t2 < α
1
α θ ,

∥
∥ϒU(t2) – ϒU(t1)

∥
∥

H′
s

= sup
‖W‖Hs

0
≤1

∣
∣〈ϒU(t2) – ϒU(t1), W

〉∣∣

≤ ∥
∥�(x)

∥
∥

L∞(�)|t2 – t1| +
M

α�(α)
(
tα
2 – tα

1
)



Song and Yang Boundary Value Problems  (2018) 2018:109 Page 10 of 27

≤ ∥∥�(x)
∥∥

L∞(�)θ +
M

α�(α)
(
α

1
α θ

)α

≤ ∥
∥�(x)

∥
∥

L∞(�)θ
α +

M
�(α)

θα

=
(∥∥�(x)

∥∥
L∞(�) +

M
�(α)

)
θα ≤ ε.

By applying the Arzela–Ascoli theorem, we know that ϒ(U) : Hs(�)×Hs(�) → H ′
s(�)×

H ′
s(�) is completely continuous. This completes the proof. �

By Lemma 3.5, we know that
∫
�

(U – ϒ(U))W dx = 0, ∀t ∈ [0, T] for every W ∈ Hs
0(�) ×

Hs
0(�). That is to say, the fractional order equation (Eig,Q,F ,t) has a unique weak solution

U ∈ C([0, T]; H ′
s(�) × H ′

s(�)).

4 Estimate to Ut

For U ∈ B, from Sect. 3, we have

‖Ut‖H′
s = sup

‖W‖Hs
0
≤1

∣∣〈Ut , W 〉∣∣

= sup
‖W‖Hs

0
≤1

∣∣∣
∣
〈
�(x), W

〉
+

1
�(α – 1)

∫ t

0
(t – s)α–2〈K(U), W

〉
ds

∣∣∣
∣

≤ sup
‖W‖Hs

0
≤1

∣
∣〈�(x), W

〉∣∣ +
∣∣
∣∣

1
�(α – 1)

∫ t

0
(t – s)α–2 sup

‖W‖Hs
0
≤1

〈
K(U), W

〉
ds

∣∣
∣∣

≤ ∥
∥�(x)

∥
∥

L∞(�)‖W‖Hs
0

+ sup
‖W‖Hs

0
≤1

∣∣〈K(U), W
〉∣∣
∣
∣∣
∣

1
�(α – 1)

∫ t

0
(t – s)α–2 ds

∣
∣∣
∣

≤ ∥
∥�(x)

∥
∥

L∞(�) +
M

�(α – 1)

∣∣
∣∣

∫ t

0
(t – s)α–2 ds

∣∣
∣∣

≤ ∥∥�(x)
∥∥

L∞(�) +
M

�(α)
tα–1

≤ ∥∥�(x)
∥∥

L∞(�) +
M

�(α)
Tα–1.

Hence, ‖Ut‖H′
s is bounded.

Because
∫ t

0
(t – s)α–1(–�)sU(x, s) ds

= U(x, t) – 
(x) – �(x)t –
1

�(α)

∫ t

0
(t – s)α–1(K(U) + (–�)sU(x, s)

)
ds, (4.1)

so
∫ t

0
(t – s)α–1((–�)sU(x, s), W

)
ds =

(
U(x, t), W

)
–

(

(x), W

)
–

(
�(x)t, W

)

–
1

�(α)

∫ t

0
(t – s)α–1(K(U) + (–�)sU(x, s), W

)
ds.
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Integrating by parts, we have

∫ t

0
(t – s)α–1∥∥(–�)

s
2 U(x, s)

∥∥
H′

s
ds

=
∫ t

0
(t – s)α–1 sup

‖W‖Hs ≤1

∣
∣〈(–�)

s
2 U , (–�)

s
2 W

〉∣∣ds

=
∫ t

0
(t – s)α–1∣∣((–�)sU(x, s), W

)∣∣ds

=
∣
∣∣
∣
(
U(x, t), W

)

–
(

(x), W

)
–

(
�(x)t, W

)
–

1
�(α)

∫ t

0
(t – s)α–1(K(U) + �U(x, s), W

)
ds

∣∣
∣∣

≤ ∣∣(U(x, t), W
)∣∣ + sup

‖W‖H1
0
≤1

∣
∣∣∣
〈

(x), W

〉
+

〈
�(x), W

〉
t

+
1

�(α)

∫ t

0
(t – s)α–1〈K(U) + (–�)sU(x, s), W

〉
ds

∣∣
∣∣

≤ ‖U‖H′
s +

∣
∣〈
(x), W

〉∣∣ +
∣
∣〈�(x), W

〉
t
∣
∣

+
∣∣
∣∣

1
�(α)

∫ t

0
(t – s)α–1〈K(U) + (–�)sU(x, s), W

〉
ds

∣∣
∣∣

≤ ‖U‖H′
s +

∥
∥
(x)

∥
∥

L∞(�)‖W‖Hs
0

+
∥
∥�(x)

∥
∥

L∞(�)‖W‖H1
0
T

+
∣
∣〈K(U)‖U‖H–1 +, W

〉∣∣
∣∣
∣∣

1
�(α)

∫ t

0
(t – s)α–1 ds

∣∣
∣∣

≤ ‖U‖H′
s +

∥∥
(x)
∥∥

L∞(�) +
∥∥�(x)

∥∥
L∞(�)T +

M
�(α)

∣
∣∣
∣

∫ t

0
(t – s)α–1 ds

∣
∣∣
∣

≤ ‖U‖H′
s +

∥∥
(x)
∥∥

L∞(�) +
∥∥�(x)

∥∥
L∞(�)T –

M
α�(α)

tα

≤ ‖U‖H′
s +

∥
∥
(x)

∥
∥

L∞(�) +
∥
∥�(x)

∥
∥

L∞(�)T +
M

α�(α)
Tα .

Because 〈K(U), W 〉 is bounded, thus from Sect. 2 we deduce 〈K(U) + (–�)sU(x, s),
W 〉 ≤ M. Hence,

∫ t
0 (t – s)α–1‖(–�) s

2 U(x, s)‖H′
s ds is bounded.

5 A priori estimate of (1.9)–(1.10)
Lemma 5.1 If F ∈ H , there is a priori estimate about solution U(x, t) ∈ Hs for problems
(1.9)–(1.10) as follows:

∥∥U(t)
∥∥2

H ≤ ‖U0‖F2
He–γ t +

M1

γ 2

(
1 – e–γ t),

∥
∥(–�)

s
2 U

∥
∥2

H +
∫

�

g
(|U|2)|U|2 dx ≤ C‖F‖2

H .

Proof Multiplying (1.9) by U and integrating on �, we have

i(Ut , U) + (b + ai)
(
(–�)sU , U

)
+

(
g
(|U|2)U , U

)
+ i(QU , U) + iβ(U , U) = (F , U). (5.1)
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From our definition
∫

�

(–�)sUU dx =
∫

�

∣
∣(–�)

s
2 U

∣
∣2 dx.

In formula (5.1), we know that

(QU , U) =
∫

�

(ru1u1 + σu2u2) dx = r‖u1‖2 + σ‖u2‖2,

we choose the imaginary part of (5.1)

1
2

d
dt

‖U‖2
H + a

∥∥(–�)
s
2 U

∥∥2
H +

(
r‖u1‖2 + σ‖u2‖2) = Im(F , U). (5.2)

Set γ = min{r,σ }, we have

1
2

d
dt

‖U‖2
H + a

∥
∥(–�)

s
2 U

∥
∥2

H + γ ‖U‖2
H ≤ Im(F , U). (5.3)

Because of a‖(–�) s
2 U‖2

H ≥ 0, we get

1
2

d
dt

‖U‖2
H + a

∥
∥(–�)

s
2 U

∥
∥2

H + γ ‖U‖2
H ≤ γ

2
‖U‖2

H +
1

2γ
‖F‖2

H .

To simplify the formula,

d
dt

‖U‖2
H + γ ‖U‖2

H + 2a
∥
∥(–�)

s
2 U

∥
∥2

H ≤ 1
γ

‖F‖2
H ,

where F ∈ H and ‖F‖2
H ≤ M1. By using Gronwall’s inequality, we have

∥
∥U(t)

∥
∥2

H ≤ ‖U0‖2
He–γ t +

M1

γ 2

(
1 – e–γ t).

Then

lim sup
t→∞

‖U‖2
H ≤ M1

γ 2 .

Deducing from (5.3), we have

1
2

d
dt

‖U‖2
H + a

∥
∥(–�)

s
2 U

∥
∥2

H ≤ γ ‖U‖2
H +

1
8γ

‖F‖2
H ≤ M1

8γ
+

M1

γ 2 .

We integrate the equation above for t ∈ (0, T),

∥∥U(T)
∥∥2

H + 2a
∫ T

0

∥∥(–�)
s
2 U(s)

∥∥2
H ds ≤ 2TM1

(
1

8γ
+

1
γ 2

)
+ 2‖U0‖2

H . (5.4)

Because of ‖U(T)‖2
H ≥ 0, and ‖U0‖2

H is bounded, therefore,
∫ T

0 ‖(–�) s
2 U(s)‖2

H ds is
bounded. Then we come to meet the conclusion that the local solution for coupled non-
linear Ginzburg–Laudau equations exists in the space Hs, and U(x, t) ∈ L2(0, T ; Hs).
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At the same time, we choose the real part of (5.1) to find

b
∥∥(–�)

s
2 U

∥∥2
H +

∫

�

g
(|U|2)|U|2 dx + β‖U‖2

H = Re(F , U), (5.5)

and so

b
∥
∥(–�)

s
2 U

∥
∥2

H +
∫

�

g
(|U|2)|U|2 dx ≤ 1

β
‖F‖2

H . (5.6)

This proves the assertion. �

6 Some a priori estimates of CNLS equations
Lemma 6.1 If F ∈ H , the solution U(x, t) of problems (1.10)–(1.11) has a priori estimates
as follows:

∥∥U(t)
∥∥2

H ≤ ‖U0‖2
He–γ t +

M1

γ 2

(
1 – e–γ t). (6.1)

Proof Multiplying (1.11) by U(x, t) and integrating on �, we have

i(Ut , U) + α
(
(–�)sU , U

)
+

(
g
(|U|2)U , U

)
+ i(QU , U) + (βU , U) = (F , U). (6.2)

Choosing an imaginary part of (6.2),

1
2

d
dt

∫

�

|U|2 dx + (QU , U) = Im
∫

�

FU dx,

where (QU , U) = ((ru1,σu2), (u1, u2)) =
∫
�

r|u1|2 + σ |u2|2 dx, we set γ = min{r,σ },

1
2

d
dt

‖U‖2
H + γ ‖U‖2

H ≤ Im
∫

�

FU dx. (6.3)

We know that U0 ∈ H ,

1
2

d
dt

‖U‖2
H + γ ‖U‖2

H ≤
∫

�

|FU|dx =
‖F‖2

H
2γ

+
γ

2
‖U‖2

H , (6.4)

d
dt

‖U‖2
H + γ ‖U‖2

H ≤ ‖F‖2
H

γ
. (6.5)

Because of F ∈ L∞(0, T ; H), we have ‖F‖2
H ≤ M1, U(0) ∈ H . By using Gronwall’s inequality,

we get

∥∥U(t)
∥∥2

H ≤ ‖U0‖2
He–γ t +

M1

γ 2

(
1 – e–γ t),

then we finally get

lim sup
t→∞

‖U‖2
H ≤ M1

γ 2 . (6.6)
�
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Lemma 6.2 If F ∈ H ∩ V and G(s) =
∫ s

0 g(s) ds satisfies G(s) ≤ g(s)s (s ≥ 0), the solution
U(x, t) of problems (1.10)–(1.11) has a priori estimates as follows:

η(U) ≤ η(U0)e–2γ t + C∞
(
1 – e–2γ t), (6.7)

here we introduced the functional equation

η(U) = β‖U‖2
H + α

∥
∥(–�)

s
2 U

∥
∥2

H +
∫

�

G
(|U|2)dx – 2 Re(F , U). (6.8)

Proof Multiplying (1.11) by Ut and integrating on �, we have

i(Ut , Ut) + α
(
(–�)sU , Ut

)
+

(
g
(|U|2)U , Ut

)
+ i(QU , Ut) + β(U , Ut) = (F , Ut), (6.9)

where (QU , Ut) = ((ru1 + σu2), (u1t , u2t)) =
∫
�

ru1u1t + σu2u2t dx, and

Re(ru1u1t + σu2u2t) =
r
2

d
dt

‖u1‖2
H +

σ

2
d
dt

‖u2‖2
H , (6.10)

and the real part of (6.9) is

Reα
(
(–�)

s
2 U , (–�)

s
2 Ut

)
+ Re

∫

�

g
(|U|2)UUt dx

– Im
∫

�

ru1u1t + σu2u2t dx + Reβ(U , Ut)

= Re(F , Ut). (6.11)

Return to see the real part of (6.2),

Im(U , Ut) + α
∥∥(–�)

s
2 U

∥∥2
H +

∫

�

g
(|U|2)|U|2 dx + β‖U‖2

H = Re(F , U), (6.12)

we have

Im
∫

�

ru1u1t + σu2u2t dx +
(
rα

∥
∥(–�)

s
2 u1

∥
∥2

H + σα
∥
∥(–�)

s
2 u2

∥
∥2

H

)

+
∫

�

g
(|U|2)(r|u1|2 + σ |u2|2

)
dx +

(
βr‖u1‖2

H + βσ‖u2‖2
H
)

= Re
∫

�

rf1u1 + σ f2u2 dx. (6.13)

Let us add (6.11) with (6.13), set γ = min{r,σ }, we have

α

2
d
dt

∥∥(–�)
s
2 U

∥∥2
H +

1
2

d
dt

∫

�

G
(|U|2)dx +

β

2
d
dt

‖U‖2
H

+ γ
∥
∥(–�)

s
2 U

∥
∥2

H + γ

∫

�

g
(|U|2)|U|2 dx + γβ‖U‖2

H

≤ Re(F , Ut) + Re
∫

�

rf1u1 + σ f2u2 dx. (6.14)
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Because f (x) is independent of t, so d
dt (FU) = FUt , and (6.14) can change into

1
2

d
dt

{
α
∥
∥(–�)

s
2 U

∥
∥2

H +
∫

�

G
(|U|2)dx + β‖U‖2

H – 2 Re(F , U)
}

+ γ

{
α
∥∥(–�)

s
2 U

∥∥2
H +

∫

�

G
(|U|2)dx + β‖U‖2

H – 2 Re(F , U)
}

≤ Re
∫

�

rf1u1 + σ f2u2 dx – 2γ Re(F , U). (6.15)

Set δ = max{r,σ }, rewrite (6.15) as

1
2

d
dt

η(U) + γ η(U)

≤ Re Re
∫

�

rf1u1 + σ f2u2 dx – 2γ Re(F , U)

≤ (δ + 2γ )
∫

�

|FU|dx

≤ δ + 2γ

2
(‖U‖2

H + ‖F‖2
H
)
. (6.16)

We know that F ∈ L∞(0, T ; H), Ft ∈ L∞(0, T ; H), then ‖Ft‖2
H , ‖F‖2

H are bounded in H , as
to (6.6), then

d
dt

η(U) + 2γ η(U) ≤ 2γ C∞.

By using Gronwall’s inequality, we get

η(U) ≤ η(U0)e–2γ t + C∞
(
1 – e–2γ t).

Finally, we get

lim sup
t→∞

η(U) ≤ C∞

and

β‖U‖2
H + α

∥∥(–�)
s
2 U

∥∥2
H +

∫

�

G
(|U|2)dx – 2 Re(F , U) ≤ C∞. (6.17)

Then

β‖U‖2
H + α

∥
∥(–�)

s
2 U

∥
∥2

H +
∫

�

G
(|U|2)dx

≤ C∞ + 2 Re(F , U)

≤ C∞ +
1
2
(‖F‖2

H + ‖U‖2
H
)

≤ C∞ +
1
2

(
M1 +

M1

γ 2

)
. (6.18)

�
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Lemma 6.3 If g(s) is a slowly increasing function, s ≥ n
2 , then

Ut ∈ L2(O, T ; Hs) ∩ C(0,∞; H).

Proof Multiplying the derivation of (1.9), with respect to t, by Ut and integrating on �,
we have

i(Utt, Ut) + (a + bi)
(
(–�)sUt , Ut

)
+

(
g ′(|U|2)|U|2t U

+ g
(|U|2)Ut , Ut

)
+ i(QUt , Ut) + β(Ut , Ut) = 0. (6.19)

Choosing the imaginary part, we have

1
2

d
dt

‖Ut‖2
H + b

∥∥(–�)sUt
∥∥2

H

+
∫

g ′(|U|2) Im
(
U2Ut

2) +
∫

�

ru1u1t + σu2u2t dx = 0. (6.20)

If g(s) is a slowly increasing function, s ≥ n
2 , then

∣∣
∣∣

∫

�

g ′(|U|2)|U|2t UUt dx
∣∣
∣∣ ≤

∫

�

|U|m|Ut|2 dx

≤ C1‖U‖m
L∞‖Ut‖2

H

≤ C‖Ut‖2
H .

We can deduce

1
2

d
dt

‖Ut‖2
H + b

∥
∥(–�)sUt

∥
∥2

H ≤ C‖Ut‖2
H .

This completes the proof. �

7 Existence of solution
The existence of solutions of coupled nonlinear Schrödinger equations will be considered
in this section. We apply the Galerkin method to prove the existence of global smooth
solution for problem (1.10)–(1.11). Let wj = (w1j, w2j)T be the normalized eigenfunction
of the equation –�wj + λjwj = 0 with the Dirichlet boundary condition corresponding to
eigenvalue λj, and {wj(x)}∞j=1 ∈ V forms a normalized orthogonal system of eigenfunctions.

For every m ∈ N , we denote the approximate solution Um(x, t) of (1.10)–(1.11) by the
following form:

Um(x, t) =
m∑

j=1

βjm(t)wj(x), t ∈ [0, T], (7.1)

where βjm(t)(j = 1, 2, . . . , m) are coefficient functions of variable t ∈ (0, L). According to
the Galerkin method, the coefficient βjm(t) is assumed to satisfy the following system of
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nonlinear ordinary equations of the first order:

(
iU ′

m + α(–�)sUm + g
(|Um|2)Um + iQUm + βUm – F , wj

)
= 0, (7.2)

where |Um|2 = |u1m|2 + |u2m|2, j = 1, 2, . . . , m, with the initial condition

(
Um(x, 0), wj(x)

)
=

(
U0(x), wj(x)

)
. (7.3)

It is obvious that

(
U ′

m(x, t), wj(x)
)

= β ′
jm(t),

(
Um(x, 0), wj(x)

)
= βjm(0),

and U0j(x) = (U0(x), wj(x)) (j = 1, 2, . . . , m) are coefficients in the approximate expansion
∑m

j=1 U0jwj(x) of function U0(x).
Let us prove that (7.2) has solution about the unknown function βjm(t). By using the

characteristic of normalized eigenfunction

(w1j, w1i) = (w2j, w2i) = 1, i = j;

(w1j, w1i) = (w2j, w2i)0 = 0, i �= j,

from (3.2) we get

0 =

(

i
m∑

j=1

β ′
jmw1j, w1j

)

– α

( m∑

j=1

βjm(–�)sw1j, w1j

)

+

(

g

(∣
∣∣
∣∣

m∑

j=1

βjmw1j

∣
∣∣
∣∣

2

+

∣
∣∣
∣∣

m∑

j=1

βjmw2j

∣
∣∣
∣∣

2) m∑

j=1

βjmw1j, w1j

)

+

(

ir
m∑

j=1

βjmw1j, w1i

)

+

(

β

m∑

j=1

βjmw1j, w1j

)

–
(
f (x), w1j

)

= i
∫

�

β ′
jm dx – α

∫

�

m∑

j=1

βjm(–�)sw1jw1j dx

+
∫

�

g

(∣
∣∣
∣∣

m∑

j=1

βjmw1j

∣
∣∣
∣∣

2

+

∣
∣∣
∣∣

m∑

j=1

βjmw2j

∣
∣∣
∣∣

2)

βjm dx

+ (ir + β)
∫

�

βjm dx –
∫

�

f (x)w1j dx

= i|�|β ′
jm + α

m∑

j=1

βjm

∫

�

(–�)
s
2 w1j(–�)

s
2 w1i dx

+ βjm

∫

�

g

(∣
∣∣
∣∣

m∑

j=1

βjmw1j

∣
∣∣
∣∣

2

+

∣
∣∣
∣∣

m∑

j=1

βjmw2j

∣
∣∣
∣∣

2)

dx

+ (ir + β)|�|βjm –
∫

�

f1(x)w1j dx. (7.4)
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That is,

0 = i|�|β ′
jm

+ α

m∑

j=1

βjm

∫

�

(–�)
s
2 w1j(–�)

s
2 w1i dx

+ βjm

∫

�

g

(∣
∣∣∣
∣

m∑

j=1

βjmw1j

∣
∣∣∣
∣

2

+

∣
∣∣∣
∣

m∑

j=1

βjmw2j

∣
∣∣∣
∣

2)

dx

+ (ir + β)|�|βjm –
∫

�

f1(x)w1j dx. (7.5)

And as to w2j, we have a similar conclusion

0 = i|�|β ′
jm + α

m∑

j=1

βjm

∫

�

(–�)
s
2 w2j(–�)

s
2 w2i dx

+ βjm

∫

�

g

(∣
∣∣
∣∣

m∑

j=1

βjmw1j

∣
∣∣
∣∣

2

+

∣
∣∣
∣∣

m∑

j=1

βjmw2j

∣
∣∣
∣∣

2)

dx

+ (ir + β)|�|βjm –
∫

�

f2(x)w2i dx. (7.6)

We know that (7.7) and (7.6) are the first order ordinary equations of unknown functions
βjm, j = 1, 2, . . . , m. If (7.7) and (7.6) have common solution, it must satisfy that

h(β1m,β2m, . . . ,βmm)

= α

m∑

j=1

βjm

∫

�

(–�)
s
2 w1j(–�)

s
2 w1i dx

+ βjm

∫

�

g

(∣
∣∣
∣∣

m∑

j=1

βjmw1j

∣
∣∣
∣∣

2

+

∣
∣∣
∣∣

m∑

j=1

βjmw2j

∣
∣∣
∣∣

2)

dx

+ (ir + β)|�|βjm –
∫

�

f1(x)w1j dx. (7.7)

It is locally Lipschitz continuous in H .
We set θ (t) = (β1m(t),β2m(t), . . . ,βmm(t)), θ̃ (t) = (β̃1m(t), β̃2m(t), . . . , β̃mm(t)), and Lipschitz

continuous functions h(θ (t)) are considered to satisfy

∣
∣h

(
θ (t)

)
– h

(
θ̃ (t)

)∣∣ ≤ C
∣
∣θ (t) – θ̃ (t)

∣
∣.

Then

h
(
θ (t)

)
= α

m∑

j=1

βjm(t)
∫

�

(–�)
s
2 w1m(–�)

s
2 w1i dx

+ βjm

∫

�

g

(∣∣
∣∣
∣

m∑

j=1

βjmw1j

∣∣
∣∣
∣

2

+

∣∣
∣∣
∣

m∑

j=1

βjmw2j

∣∣
∣∣
∣

2)

dx
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+ (ir + β)|�|βjm(t) –
∫

�

f1(x)w1i dx,

h
(
θ̃ (t)

)
= α

m∑

j=1

β̃jm(t)
∫

�

(–�)
s
2 w1m(–�)

s
2 w1i dx

+ β̃jm(t)
∫

�

g

(∣
∣∣
∣∣

m∑

j=1

β̃jm(t)w1j

∣
∣∣
∣∣

2

+
∣∣β̃jm(t)w2j

∣∣2
)

dx

+ (ir + β)|�|β̃jm(t) –
∫

�

f1(x)w1i dx,

and

h
(
θ (t)

)
– h

(
θ̃ (t)

)

= α

( m∑

j=1

βjm(t) –
m∑

j=1

β̃jm(t)

)∫

�

(–�)
s
2 w1m(–�)

s
2 w1i dx

+
(
βjm(t) – β̃jm(t)

)∫

�

g
(|Um|2)dx

+ (ir + β)|�|(βjm(t) – β̃jm(t)
)
.

Because of

∣∣θ (t) – θ̃ (t)
∣∣ =

m∑

j=1

|βjm – β̃jm|,

and

∣∣θ (t)
∣∣ =

√
β2

1m + β2
2m + · · · + β2

mm,

∣
∣θ̃ (t)

∣
∣ =

√
β̃2

1m + β̃2
2m + · · · + β̃2

mm,
∣
∣h

(
θ (t) – h

(
θ̃ (t)

))∣∣

≤ α

∣
∣∣
∣∣

m∑

j=1

βjm(t) –
m∑

j=1

β̃jm(t)

∣
∣∣
∣∣

∣
∣∣
∣

∫

�

(–�)
s
2 w1m(–�)

s
2 w1i dx

∣
∣∣
∣

+
∣∣βjm(t) – β̃jm(t)

∣∣
∫

�

g
(|Um|2)dx + (r + β)|�|∣∣βjm(t) – β̃jm(t)

∣∣

≤ α

m∑

j=1

|βjm – β̃jm|
∣
∣∣
∣

∫

�

(–�)
s
2 w1m(–�)

s
2 w1i dx

∣
∣∣
∣

+
m∑

j=1

|βjm – β̃jm|
∫

�

g
(|Um|2)dx + (r + β)|�|

m∑

j=1

|βjm – β̃jm|

= |θ – θ̃ |
(

α

∣
∣∣
∣

∫

�

(–�)
s
2 w1m(–�)

s
2 w1i dx

∣
∣∣
∣ +

∫

�

g
(|Um|2)dx + (r + β)|�|

)
.
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If
∫
�

g(|Um|2) dx ≤ M, {wj(x)}∞j=1 ∈ V , because of w1j, w1i, w2j, w2i ∈ V , and V → H is
compact, ‖wij‖2

V is bounded and ‖wij‖2
H also is bounded, then

α

∣
∣∣
∣∣

∫

�

(–�)
s
2 w1m

m∑

i=1

(–�)
s
2 w1i dx

∣
∣∣
∣∣
≤ N1

and

3
2

m∑

j=1

∫

�

|w1j|2 + |w2j|2 dx ≤ N2

leads to

∣∣h(θ ) – h(θ̃ )
∣∣ ≤ (

N1 + C′N2 + r|�| + β|�|)|θ – θ̃ |.

We finally get h(θ (t)) is a Lipschitz continuous function and know that the ordinary
differential equations (7.2) have common solutions for the unknown functions βjm(t),
j = 1, 2, . . . , m.

Theorem 7.1 For the given functions F , U0,

F ∈ H(�), U0 ∈ H(�) ∩ V (�).

If g(s) ≥ 0, G(s) =
∫ s

0 g(s) ds ≤ g(s)s and |g ′(s)| ≤ c0s (s ≥ 0), where c > 0, then there exists a
unique solution U(x, t) for problem (1.10)–(1.11), and it satisfies the condition

U ∈ L∞(
0, T ; H(�) ∩ V (�)

)
. (7.8)

Proof Under the condition above in this section, we continue to get the existence of the
solution of problem (1.10)–(1.11). Firstly, we multiply (7.2) by βjm(t) and make sum about j,

i
(
U ′

m, Um
)

+ α
(
(–�)sUm, Um

)
+

(
g
(|Um|2)Um, Um

)
+ i(QUm, Um) + (βUm, Um)

= (F , Um). (7.9)

It is similar to the process of (6.2), (6.4), from (6.5), we obtain

d
dt

‖Um‖2
H + γ ‖Um‖2

H ≤ 1
γ

‖F‖2
H ,

because of F ∈ H(�), ‖F‖2
H ≤ M1, and U0m ∈ H(�) ∩ V (�). For condition (7.3), by using

Gronwall’s inequality, we have a conclusion similar to (6.1)

∥
∥Um(t)

∥
∥2

H ≤ ∥
∥Um(x, 0)

∥
∥2

He–γ t +
‖F‖2

H
γ

(
1 – e–γ t),

then

lim sup
t→∞

‖Um‖2
H ≤ M1

γ 2 .

Therefore Um(t) is bounded in H .
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Secondly, we choose w′
j instead of wj in (7.2), then multiply (7.2) by β jm(t), to make sum

about j:

i
(
U ′

m, U ′
m
)

+ α
(
(–�)sUm, U ′

m
)

+
(
g
(|Um|2)Um, U ′

m
)

+ i
(
QUm, U ′

m
)

+ β
(
Um, U ′

m
)

=
(
F , U ′

m
)
,

and the real part of the equation above is

Reα
(
(–�)

s
2 Um, (–�)

s
2 U ′

m
)

+ Re
∫

�

g
(|Um|2)UmU ′

m dx

– Im
∫

�

ru1mu′
1m + σu2mu′

2m dx + Reβ
(
Um, U ′

m
)

= Re
(
F , U ′

m
)
. (7.10)

Return to see the real part of (7.9),

Im
(
Um, U ′

m
)

+
∥∥(–�)

s
2 Um

∥∥2
H +

∫

�

g
(|Um|2)|Um|2 dx + β‖Um‖2

H = Re(F , Um), (7.11)

where G(|Um|2) =
∫ |Um|2

0 g(s) ds. Combining (7.10) with (7.11), we finally get

1
2

d
dt

{
α
∥∥(–�)

s
2 Um

∥∥2
H +

∫

�

G
(|Um|2)dx + β‖Um‖2

H – 2 Re(F , Um)
}

+ γ

{
α
∥∥(–�)

s
2 Um

∥∥2
H +

∫

�

G
(|Um|2)dx + β‖Um‖2

H – 2 Re(F , Um)
}

≤ Re
∫

�

(r – 2γ )f1u1m + (σ – 2γ )f2u2m dx. (7.12)

Introducing a functional equation about (7.12)

η(Um) = β‖Um‖2
H + α

∥
∥(–�)

s
2 Um

∥
∥2

H +
∫

�

G
(|Um|2)dx – 2 Re(F , Um)

and rewriting (7.12) as

1
2

d
dt

η(Um) + δη(Um) ≤ 1
2

(δ + 2γ )
(‖Um‖2

H + ‖F‖2
H
)
,

we have

d
dt

η(U) + 2γ η(U) ≤ 2γ C′
∞.

Finally, we can get

lim sup
t→∞

η(Um) ≤ C′
∞

and

β‖Um‖2
H + α

∥
∥(–�)

s
2 Um

∥
∥2

H +
∫

�

G
(|Um|2)dx ≤ C′

∞ +
1
2

(
M1 +

M1

γ 2

)
.
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Because of β‖Um‖2
H ≥ 0,

∫
�

G(|Um|2) dx ≥ 0, we know that ‖(–�) s
2 Um‖2

H = ‖Um‖2
V , and

Um(t) is bounded in V .
Hence from the sequence {Um(x, t)} of approximate solutions, we can select a subse-

quence {Uμ(x, t)} and have a function U(x, t) ∈ L∞(0, T ; H) such that

Uμ(x, t) → U(x, t) in U(x, t) ∈ L∞(0, T ; H) weakly star, μ → ∞.

(–�)
s
2 Uμ(x, t) →(–�)

s
2 U(x, t) in U(x, t) ∈ L∞(0, T ; V ) weakly star and a.e.,μ → ∞.

g
(|Uμ|2)|Uμ|2 → g

(|U|2)|U|2 in U(x, t) ∈ L∞(
0, T ; L6(�)

)
weakly star, μ → ∞.

And

Uμ(x, t) → U(x, t) in U(x, t) ∈ L2(0, T ; H) weakly, μ → ∞.

(–�)
s
2 Uμ(x, t) → (–�)

s
2 U(x, t) in U(x, t) ∈ L2(0, T ; V ) weakly and a.e., μ → ∞.

g
(|Uμ|2)|Uμ|2 → g

(|U|2)|U|2 in U(x, t) ∈ L2(0, T ; L6(�)
)

weakly, μ → ∞.

From

(
iU ′

μ – α(–�)sUμ + GμUμ + iQUμ + βUμ – F , Uμ

)
= 0, (7.13)

hence the function U(x, t) satisfies equation (1.11) everywhere and the boundary ini-
tial conditions (1.10). So the existence of solution for problem (1.10)–(1.11) has been
proved. �

8 The uniqueness of solution
Let U1, U2 be solutions of (1.11) satisfying the conditions of Theorem 7.1. We have W =
U1 – U2 and W (0) = 0, we have

U2 = (u21, u22)T , |U2|2 = |u21|2 + |u22|2;

U1 = (u11, u12)T , |U1|2 = |u11|2 + |u12|2.

Then we obtain

iwt + α(–�)sW + iQw + βW = g
(|U2|2

)
U2 – g

(|U1|2
)
U1. (8.1)

Making a scalar product with (8.1) by vector W over �, then

i(Wt , W ) + α
(
(–�)sW , W

)
+ i(Qw, W ) + β(W , W )

=
(
g
(|U2|2

)
U2 – g

(|U1|2
)
U1, W

)
. (8.2)

Choose the imaginary part of (8.2)

1
2

d
dt

‖W‖2
H +

∫

�

r|W1|2 + σ |W2|2 dx = Im
∫

�

(
g
(|U2|2

)
U2 – g

(|U1|2
)
U1

)
W dx.
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Set γ = min(r,σ ),

1
2

d
dt

‖W‖2
H + γ ‖W‖2

H ≤ Im
∫

�

(
g
(|U2|2

)
U2 – g

(|U1|2
)
U1

)
W dx. (8.3)

Firstly we shall prove

∣∣g
(|U2|2

)
U2 – g

(|U1|2
)
U1

∣∣

≤ ∣
∣g

(|U2|2
)
(U2 – U1) +

(
g
(|U2|2

)
– g

(|U1|2
))

U1
∣
∣

≤ g
(|U2|2

)|U2 – U1| +
∣
∣g ′(θ |U1|2 + (1 – θ )|U2|2

)∣∣|U1||U2 – U1|
=

(
g
(|U2|2

)
+ |U1|g ′(θ |U1|2 + (1 – θ )|U2|2

))|U2 – U1|,

where 0 ≤ θ ≤ 1. Since � ⊂ R2, H1
0 (�) is embedding to L∞(�), and

‖U‖2
L∞(�)×L∞(�) ≤ C‖U‖2

V ,

by using Hölder’s inequality of the form

∫

�

|U1|
∣∣g ′∣∣dx ≤ ‖U1‖L∞(�)×L∞(�)‖g ′‖L1(�)×L1(�),

we get the deduce of (8.3)

1
2

d
dt

‖W‖2
H + γ ‖W‖2

H

≤
∫

�

∣
∣g

(|U2|2
)
U2 – g

(|U1|2
)
U1

∣
∣|W |dx

≤
∫

�

(
g
(|U2|2

)
+ |U1|g ′(θ |U1|2 + (1 – θ )|U2|2

))|U2 – U1||W |dx

≤
(

1 +
c0

2

)∫

�

(|U2|2 + |U1|2
)|W |2 dx

≤
(

1 +
c0

2

)
(‖U2‖2

L∞(�)×L∞(�) + ‖U1‖2
L∞(�)×L∞(�)

)∫

�

|W |2 dx

≤ 3c̃
2

(‖U2‖2
V + ‖U1‖2

V
)‖W‖2

H . (8.4)

From Sect. 6, we know that ‖U1‖2
V + ‖U2‖2

V is bounded. Rewrite (8.4) as follows:

1
2

d
dt

‖W‖2
H +

(
γ –

3c̃
2

‖U2‖2
V –

3c̃
2

‖U1‖2
V

)
‖W‖2

H ≤ 0.

Because of W (0) = 0, we finally get W = 0.

9 The global attractor
Furthermore, for every t ≥ 0, the mapping

S(t) : U0 → U(t)
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is continuous and bounded in H and V . It follows from the uniqueness of solution (1.10)–
(1.11) that the family {S(t)}t≥0 forms a semi-group:

S(t1 + t2) = S(t1)S(t2), t1, t2 ≥ 0, S(0) = I. (9.1)

Another important property is that the semi-group S(t) is compact on H for t > 0. That
is to say the image of S(t) of any bounded set in H is relatively compact in H . In order to
prove the existence of global attractors of problem (1.10)–(1.11), we need the following
result.

9.1 Absorbing ball in H
From Sect. 7,

∥
∥U(t)

∥
∥2

H ≤ ‖U0‖2
He–γ t +

‖F‖2
H

γ

(
1 – e–γ t), t ∈ (0, T), (9.2)

and

lim sup
t→∞

‖U‖2
H ≤ ρ2

0 , ρ2
0 =

M1

γ 2 . (9.3)

We know that B0 = BH (0,ρ0) is the absorbing set in H for the semi-group S(t), and

ρ2
0 ≥ M1

γ
. (9.4)

We infer from (9.2) that the balls B0 = BH(0,ρ0) of H with ρ ≥ ρ0 are positive invariants
for the semigroup S(t), and these balls are absorbing for any ρ > ρ0. We choose ρ ′

0 > ρ0 and
denote by B0 the ball BH(0,ρ ′

0). And the set B bounded in H is included in a ball B(0, R)
of H . It is easy to deduce from (9.2) that S(t)B ⊂ B0 for t ≥ t0(B,ρ ′

0), where

t0 =
1
γ

log
γ 2R2

γ 2ρ2
0 – c1

. (9.5)

We infer from (6.5) that integration in t, τ > 0 yields

γ

∫ t+τ

t
‖U‖2

H ds ≤ ‖U‖2
H +

M1τ

γ
.

With the use of (9.3) we conclude that

lim sup
t→∞

∫ t+τ

t
‖U‖2

H ds ≤ M1τ

γ 3 +
M1τ

γ 2 . (9.6)

In Sect. 7, we get the inequality

d
dt

η(U) + 2γ η(U) ≤ 2γ C∞ (9.7)

and

lim sup
t→∞

(
β‖U‖2

H + α
∥
∥(–�)

s
2 U

∥
∥2

H +
∫

�

G
(|U|2)dx – 2 Re(F , U)

)
≤ C∞.
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Integrating (9.7) between t and t + τ

lim sup
t→∞

{∫ t+τ

t
β
∥
∥U(s)

∥
∥2

H + α
∥
∥(–�)

s
2 U(s)

∥
∥2

H +
∥
∥U(s)

∥
∥4

L4(�) – 2 Re
(
F , U(s)

)
ds

+ β
∥
∥U(t + τ )

∥
∥2

H + α
∥
∥(–�)

s
2 U(t + τ )

∥
∥2

H +
∥
∥U(t + τ )

∥
∥4

L4(�) – 2 Re
(
F , U(t + τ )

)}

≤ 2γ C∞(1 + τ ),

we obtain

lim sup
t→∞

∫ t+τ

t

(
β
∥
∥U(s)

∥
∥2

H + α
∥
∥(–�)

s
2 U(s)

∥
∥2

H +
∫

�

G
(|U|2)dx

)
ds ≤ Cs.

9.2 Absorbing ball in V
We continue and show the existence of an absorbing set in V and the uniform compactness
of S(t). For that purpose, we know that

η(U) = β‖U‖2
H + α

∥∥(–�)
s
2 U

∥∥2
H +

∫

�

G
(|U|2)dx – 2 Re(F , U).

If F ∈ H ∩ V , we have

η(U) ≤ η(U0)e–2γ t + C∞
(
1 – e–2γ t),

then

lim sup
t→∞

(
β‖U‖2

H + α
∥∥(–�)

s
2 U

∥∥2
H +

∫

�

G
(|U|2)dx – 2 Re(F , U)

)
≤ C∞

and lim supt→∞ α‖(–�) s
2 U‖2

H ≤ ρ2
1 , ρ1 = C∞.

We recall that (‖U‖2 +‖(–�) s
2 U‖2)1/2 is the norm on V (= the H1(�) norm). Combining

(9.5), we obtain the existence of an absorbing set in V for S(t) and uniform compactness
property:

The operator S(t) is uniformly compact for t large. By this we mean that for every
bounded set B there exists t0, which may depend on B, such that

⋃

t≥t0

S(t)B

is relatively compact in H .
Indeed, if B is a bounded set of V , then it is also a bounded set of H ,

S(t)B ⊂ B0 for t ≥ t0(B, B0),

and then with (9.3)

S(t)B ⊂ B1 for t ≥ t0 + τ ,

where B1 is the ball of V centered at 0 of radius ρ1 > ρ0.
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The ball of V , B1 = BV (0,ρ1) centered at 0 of radius ρ1 is absorbing in V for the semi-
group S(t).

If U0 ∈ B, where B is only bounded in H , the above analysis still applies and

S(t)B ⊂ B1 for t ≥ t0(B) + τ .

Since B1 is bounded in V and the injection of V in H is compact, we conclude that
⋃

t≥t0+τ S(t)B is relatively compact in H .

Definition 9.1 The ω-limit set K of B

K =
⋂

τ>0

⋃

t>t0+τ

S(t)B,

where the closure is taken in H .

Therefore, from the a priori estimates, using Theorem I.1.1 in [32], the ω-limit set of
B, K = ω(B), is a global attractor. It is an infinite-dimensional dynamic system associated
with this evolution equation (1.11) supplemented by the Dirichlet boundary condition. K
attracts the bounded sets of H . This dynamic system possesses an attractor K which is
compact in H .
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