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Abstract
A kind of electrorheological fluid equations, with the orientated convection terms

ut = div(a(x)|∇u|p(x)–2∇u) + �b(x) · ∇uq, (x, t) ∈ � × (0, T ),

is considered. It is supposed that a(x) > 0 when x ∈ �, a(x) = 0 when x ∈ ∂�. If there
is interaction between the diffusion coefficient a(x) and the convective coefficient �b,
the stability of the solutions can be proved without any boundary condition.
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1 Introduction and the main results
Consider the diffusion equation with an orientated convection term

ut = div
(
a(x)|∇u|p(x)–2∇u

)
+ �b(x) · ∇uq, (x, t) ∈ QT = � × (0, T). (1.1)

with the initial value

u(x, 0) = u0(x), x ∈ �, (1.2)

and the boundary value

u(x, t) = 0, (x, t) ∈ ∂� × (0, T). (1.3)

Here 1 < p(x) ∈ C(�), q ≥ 1, a(x) ∈ C1(�), �b = {bi}, bi(x) ∈ C1(�), � ⊂R
N is a bounded do-

main with a smooth boundary ∂�. Equation (1.1) arises in electrorheological fluids theory
[1]. If �b(x) = 0, a(x) = 1 for all x ∈ �, the existence and uniqueness results of Eq. (1.1) have
been widely researched, one may refer to [2–7] and the references therein. If p(x) = p, the
equations are known as non-Newtonian fluid equations, and have been studied by many
mathematicians, one may refer to [8] and the references therein. All these papers show that
the uniqueness and the stability of the solutions can be proved if the Dirichlet boundary
value condition (1.3) is imposed. In this paper, we will show that, if the diffusion coeffi-
cient a(x) is degenerate on the boundary and, moreover, there is interaction between the
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diffusion process and the convection process, then the stability of the solutions may be
established without any boundary value condition.

We denote

p+ = max
x∈�

p(x), p– = min
x∈�

p(x),

we assume that p– > 1, a(x) > 0 in �,

a(x) = 0, x ∈ ∂�. (1.4)

By this token, if �b(x) = 0, our previous papers [9–11] showed that the boundary value
condition (1.3) may be redundant, the uniqueness of the weak solutions can be proved only
depending on the initial value (1.2). Accordingly, in this paper, we will construct a suitable
test function to obtain the stability of the weak solutions independent of the boundary
value condition (1.3). We give the basic concepts and the main results now.

Lemma 1.1 If q1(x) and q2(x) are real functions with 1
q1(x) + 1

q2(x) = 1 and q1(x) > 1, then,
for any u ∈ Lq1(x)(�) and v ∈ Lq2(x)(�),

∣
∣∣∣

∫

�

uv dx
∣
∣∣∣ ≤ 2‖u‖Lq1(x)(�)‖v‖Lq2(x)(�).

Lemma 1.2

If ‖u‖Lp(x)(�) > 1, then ‖u‖p–
Lp(x)(�) ≤

∫

�

|u|p(x) dx ≤ ‖u‖p+
Lp(x)(�).

If ‖u‖Lp(x)(�) < 1, then ‖u‖p+
Lp(x)(�) ≤

∫

�

|u|p(x) dx ≤ ‖u‖p–
Lp(x)(�).

Lemma 1.1 and Lemma 1.2 can be found in [12].

Definition 1.3 If a nonnegative function u(x, t) satisfies

u ∈ L∞(QT ), ut ∈∈ Lp′
+
(
0, T ; W –1,p+ ′

(�)
)
,

a(x)|∇u|p(x) ∈ L∞(
0, T ; L1(�)

)
,

(1.5)

and, for any function g(s) ∈ C1(R), g(0) = 0, ϕ1 ∈ C1
0(�), ϕ2 ∈ L∞(0, T ; W 1,p(x)

loc (�)),

∫∫

QT

[
∂u
∂t

g(ϕ1ϕ2) + a(x)|∇u|p(x)–2∇u · ∇g(ϕ1ϕ2)

+ uq(bi
xi

g(ϕ1ϕ2) + bi(x)gxi (ϕ1ϕ2)
)]

dx dt = 0, (1.6)

then we say u(x, t) a solution of Eq. (1.1) with the initial value (1.2), and the initial value
(1.2) is satisfied in the sense

lim
t→0

∫

�

u(x, t)φ(x) dx =
∫

�

u0(x)φ(x) dx = 0, (1.7)

for any φ(x) ∈ C∞
0 (�).
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Here, p′
+ = p+

p+–1 , bi
xi

= ∂bi(x)
∂xi

, gxi = ∂g
∂xi

as usual. In this paper, the existence of the nonneg-
ative solution is proved firstly.

Theorem 1.4 If p– > 1, 1 ≤ q < p+,

0 ≤ u0 ∈ L∞(�), a(x)|∇u0|p(x) ∈ L1(�), i = 1, 2, . . . , N , (1.8)

then Eq. (1.1) with initial value (1.2) has a nonnegative weak solution u.

In particular, when a(x) = dα(x), d(x) = dist(x, ∂�) is the distance function from the
boundary, 0 < α < p– – 1 is a constant, similar to the proof of Theorem 1.1 in [13], we
can show that there is a constant γ ≥ 1 such that the weak solution u in Theorem 1.4
satisfies

∫

QT

|∇u|γ dx dt ≤ c. (1.9)

Similarly, if we impose some restrictions on a, we also can show (1.9) is true, then the
boundary value condition (1.3) is valid in the sense of the trace. However, in general, we
cannot define the trace of u on the boundary. Accordingly, instead of being interested in
the boundary value condition, we would pay a close attention on the stability of the weak
solutions without any boundary value condition. By the innovative definition of the weak
solution above, we can prove the following main results.

Theorem 1.5 If q ≥ 1, u and v are two nonnegative weak solutions of Eq. (1.1), and

∫

�

∣
∣∣
∣
bi(x)∇a(x)

a(x)

∣
∣∣
∣

2

dx < ∞,
∣∣bi(x)a– 1

p(x) (x)
∣∣ ≤ c, (1.10)

∫

�

a–(p(x)–1)(x) dx < ∞, (1.11)

then
∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

�

∣∣u0(x) – v0(x)
∣∣dx, a.e. t ∈ [0, T). (1.12)

Theorem 1.6 If q ≥ 1, u and v are two nonnegative weak solutions of Eq. (1.1),

∫

�

a– 1
p(x)–1 (x) dx < ∞, (1.13)

and

c
λ

(
λ

∫

�\�λ

|∇a|p(x) dx
) 1

p+ ≤ c, (1.14)

then the stability of the weak solutions is true in the sense of (1.12). Here �λ = {x ∈ � :
a(x) > λ}.

Remark 1.7 If 1 < p– ≤ p(x) ≤ p+ ≤ 2, then the condition (1.14) is satisfied.
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Theorem 1.8 If q ≥ 1, a(x) satisfies (1.13), and for small enough λ > 0, u(x, t) and v(x, t)
satisfy

1
λ

(∫

�\�λ

a(x)|∇u|p(x) dx
) 1

q+ ≤ c,
1
λ

(∫

�\�λ

a(x)|∇v|p(x) dx
) 1

q+ ≤ c, (1.15)

then the stability (1.12) is true. Here q(x) = p(x)
p(x)–1 , q+ = maxx∈� q(x).

In a word, the innovation of the definition of the weak solutions is that we use the test
function with the form ϕ1ϕ2 instead of the usual one ϕ to overcome the difficulty that the
weak solutions may lack the regularity to define the trace. The weak solutions the existence
of the weak solutions is proved by the usual parabolically regularized method. The stability
of the weak solutions are proved by choosing some special test functions.

2 The weak solutions dependent on the initial value
Consider the following approximate problem:

uεt – ε div
(|∇uε|p+–2∇uε

)
– div

(
a(x)|∇uε|p(x)–2∇uε

)
– �b(x) · ∇uq

ε

= 0, (x, t) ∈ QT , (2.1)

uε(x, t) = 0, (x, t) ∈ ∂� × (0, T), (2.2)

uε(x, 0) = uε,0(x), x ∈ �, (2.3)

where 0 ≤ uε,0 ∈ C∞
0 (�), |uε,0|L∞(�) ≤ |u0|L∞(�), a(x)|∇uε,0|p+ uniformly is convergent

to a(x)|∇u0(x)|p+ in L1(�). Then there is an unique nonnegative solution uε ∈ Lp+ (0, T ;
W 1,p+

0 (�)) [6].
By the maximum principle ([8], p. 150), we have

‖uε‖L∞(QT ) ≤ c. (2.4)

Since

∫∫

QT

∣∣uε
�b(x) · ∇uq

ε

∣∣dx dt = q
∫∫

QT

∣∣uq
ε
�b(x) · ∇uε

∣∣

≤ ε

2

∫∫

QT

|∇uε|p+ dx dt + c(ε),

by multiplying (2.1) with uε and integrating it over QT , we easily obtain

1
2

∫

�

u2
ε dx + ε

∫∫

QT

|∇uε|p+
dx dt +

∫∫

QT

a(x)|∇uε|p(x) dx dt ≤ c. (2.5)

For any �λ ⊂⊂ �, since p– = minx∈� p(x) > 1, by (2.5),

∫ T

0

∫

�λ

|∇uε|dx dt ≤ c
(∫ T

0

∫

�λ

|∇uε|p– dx dt
) 1

p– ≤ c(λ) (2.6)
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and

ε

∫∫

QT

|∇uε|p+ dx dt ≤ c. (2.7)

For any v ∈ Lp+ (0, T ; W 1,p+
0 (�)), ‖v‖Lp+ (0,T ;W 1,p+

0 (�)) = 1. We have

〈uεt , v〉 + ε

∫∫

QT

|∇uε|p+–2∇uε∇v dx dt

+
∫∫

QT

a(x)|∇νε|p(x)–2∇uε∇v dx dt

+
∫∫

QT

uq(bi
xi

(x)v + bi(x)vxi

)
dx dt. (2.8)

This formula makes sense because uε ∈ Lp+ (0, T ; W 1,p+
0 (�)) ∩ L∞(QT ).

By (2.8), using the Young inequality, we can show that

∣∣〈uεt , v〉∣∣ ≤ c
[
ε

∫∫

QT

|∇uε|p+ dx dt +
∫∫

QT

a(x)|∇uε|p(x) dx dt

+
∫∫

QT

(|v|p+ + |∇v|p+
)

dx dt + 1
]

≤ c,

then

‖uεt‖Lp′+ (0,T ;W –1,p′+ (�)) ≤ c, (2.9)

where p′
+ = p+

p+–1 .
Now, for any ϕ ∈ C1

0(�), 0 ≤ ϕ ≤ 1, for any v ∈ Lp+ (0, T ; W 1,p+
0 (�)),

〈
(ϕuε)t , v

〉
= 〈ϕuεt , v〉 = 〈uεt ,ϕv〉

= ε

∫∫

QT

|∇uε|p+–2∇uε∇(ϕv) dx dt

+
∫∫

QT

a(x)|∇uε|p(x)–2∇uε∇(ϕv)

+
∫∫

QT

uq(bi
xi

(x)vϕ + bi(x)(vϕ)xi

)
dx dt. (2.10)

Similarly, we can show that

∣
∣〈(ϕuε)t , v

〉∣∣ = 〈uεt ,ϕv〉

≤ c
[
ε

∫∫

QT

|∇uε|p+ dx dt +
∫∫

QT

a(x)|∇uε|p(x) dx dt

+
∫∫

QT

(|v|p+ + |∇v|p+
)

dx dt + 1
]

≤ c,

then

∥∥(ϕuε)t
∥∥

Lp′+ (0,T ;W –1,p′+ (�)) ≤ c. (2.11)
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For a fixed s such that s > N
2 + 1, one has Hs

0(�) ↪→ W 1,p+ (�). Consequently,
W –1,p′

+ (�) ↪→ H–s(�). As a result, we have

∥∥(ϕuε)t
∥∥

Lp′+ (0,T ;H–s(�)) ≤ c. (2.12)

At the same time, we have

∫∫

QT

∣
∣∇(ϕuε)

∣
∣p– dx dt ≤ c(ϕ)

(
1 +

∫ T

0

∫

�ϕ

|∇uε|p– dx dt
)

≤ c(ϕ),

where �ϕ = suppϕ. We give an explanation of this inequality. Since a(x) ∈ C1(�), a(x) > 0
when x ∈ �, for any ϕ(x) ∈ C1

0(�),

ϕ(x)
a(x)

≤ c(ϕ),

then
∫ T

0

∫

�ϕ

|∇uε|p– dx dt

=
∫ T

0

∫

�

ϕ(x)|∇uε|p– dx dt

=
∫ T

0

∫

�

ϕ(x)
a(x)

a(x)|∇uε|p– dx dt

≤ c(ϕ)
∫ T

0

∫

�

a(x)|∇uε|p– dx dt

≤ c(ϕ).

Thus we have

‖ϕuε‖Lp′+ (0,T ;W 1,p–
0 (�)) ≤ c. (2.13)

Noticing that W 1,p–
0 (�) ↪→ Lp– (�) ↪→ H–s(�), we can employ Aubin’s compactness theo-

rem in [12] to obtain ϕuε → ϕu strongly in Lp′
+ (0, T ; Lp– (�)). Thus ϕuε → ϕu a.e. in QT .

In particular, due to the arbitrariness of ϕ, uε → u a.e. in QT .
Now, by (2.7),

ε|∇uε|p+–2∇uε ⇀ 0, in L
p+

p+–1 (QT ).

By (2.4), (2.5), (2.6), there exists a function u and an n-dimensional vector function
−→
ζ =

(ζ1, . . . , ζn) satisfying

u ∈ L∞(QT ), |ζi| ∈ L
p(x)

p(x)–1 (QT ),

and

uε ⇀ u, weakly-star in L∞(QT ), uε → u, a.e. in QT ,
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uq
ε → uq, a.e. in QT ,

uεxi ⇀ uxi , in Lp(x)
loc (QT ),

a(x)|∇uε|p(x)–2∇uε ⇀
−→
ζ , in

{
L1(0, T ; L

p(x)
p(x)–1 (�)

)}N .

Moreover, we can prove that

∫∫

QT

a|∇u|p(x)–2∇u · ∇ϕ dx dt =
∫∫

QT

−→
ζ · ∇ϕ dx dt, (2.14)

for any given function ϕ ∈ C1
0(QT ).

Then, by (2.14), for any ϕ ∈ C1
0(QT ), we have

〈ut ,ϕ〉 +
∫∫

QT

[
a(x)|∇u|p(x)–2∇u∇ϕ + uq(bi(x)ϕxi + bi

xi
(x)ϕ

)]
dx dt = 0. (2.15)

If for any given t ∈ [0, T), denoting �ϕ = suppϕ, then we have

〈ut ,ϕ〉 +
∫ T

0

∫

�ϕ

[
a(x)|∇u|p(x)–2∇u∇ϕ + uq(bi(x)ϕxi + bi

xi
(x)ϕ

)]
dx dt = 0. (2.16)

Moreover, for any ϕ1 ∈ C1
0(QT ), ϕ2(x, t) ∈ L∞(0, T ; W 1,p(x)

loc (�)), we clearly have

g(ϕ1ϕ2) ∈ L∞(
0, T ; W 1,p(x)

0 (�ϕ1 )
)
.

Since C∞
0 (�ϕ1 ) is dense in W 1,p(x)

0 (�ϕ1 ), by taking a limit, we have

〈
ut , g(ϕ1ϕ2)

〉
+

∫ T

0

∫

�ϕ1

[
a(x)|∇u|p(x)–2∇u∇g(ϕ1ϕ2)

]
dx dt

+
∫ T

0

∫

�ϕ1

[
uq(bi(x)gxi (ϕ1ϕ2) + bi

xi
g(ϕ1ϕ2)

)]
dx dt

= 0, (2.17)

and so

〈
ut , g(ϕ1ϕ2)

〉
+

∫ T

0

∫

�

[
a(x)|∇u|p(x)–2∇u∇g(ϕ1ϕ2)

]
dx dt

+
∫ T

0

∫

�

[
uq(bi(x)gxi (ϕ1ϕ2) + bi

xi
g(ϕ1ϕ2)

)]
dx dt

= 0. (2.18)

Finally, the initial value condition in the sense of (1.7) can be proved (1.7) as in [2], then
u is a solution of Eq. (1.1) with the initial value (1.2) in the sense of Definition 1.3. Thus
we have Theorem 1.4.
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3 The proof of Theorem 1.5
Lemma 3.1 Let v ∈ Lp+ (0, T ; W 1,p+

0 (�)), vt ∈ Lp′
+ (0, T ; W –1,p+ ′ (�)). For any continuous

function h(s), H(s) =
∫ s

0 h(s) ds, a.e. t1, t2 ∈ [0, T),

∫ t2

t1

〈
vt , h(v)

〉
dt =

∫

�

(
H(v)(x, t2) – H(v)(x, t1)

)
dx. (3.1)

Lemma 3.1 is proved in the note [2].
It is well known that the BV function is defined as u ∈ BV (�) = {u ∈ L1(�) :

∫
�

|∇u|dx <
∞} = W 1,1(�). Moreover, C∞

0 (�) is dense in the space W 1,1
0 (�) = {u : u ∈ BV (�), u|∂� = 0},

accordingly, Lp0 (0, T ; W 1,p0

0 (�)) is dense in Lp0 (0, T ; W 1,1
0 (�)). Then we have the following.

Remark 3.2 Lemma 3.1 is still true for the function v ∈ Lp+ (0, T ; W 1,1
0 (�)), vt ∈ Lp′

+ (0, T ;
W –1,p+′ (�)).

Now, we begin to prove Theorem 1.4. For small η > 0, let

Sη(s) =
∫ s

0
hη(τ ) dτ , hη(s) =

2
η

(
1 –

|s|
η

)

+
.

Obviously, hη(s) ∈ C(R), Sη(s) is monotone increasing about η and

lim
η→0

Sη(s) = sgn s, lim
η→0

Hη(s) =
∫ s

0
Sη(τ ) dτ = |s|, (3.2)

moreover, one has

hη(s) ≥ 0,
∣∣shη(s)

∣∣ ≤ 1, lim
η→0

sS′
η(s) = 0. (3.3)

For two solutions u(x, t), v(x, t) of Eq. (1.1) with the initial values

u(x, 0) = u0(x), v(x, 0) = v0(x),

respectively, we can choose Sη(aβ (u – v)) as the test function, where β ≥ 1 is a constant.
Then

∫ t

0

∫

�

Sη

(
aβ (u – v)

)∂(u – v)
∂t

dx dt

+
∫ t

0

∫

�

aβ+1(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇(u – v)S′
η

(
aβ (u – v)

)
dx dt

+
∫ t

0

∫

�

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇aβ (u – v)S′
η

(
aβ(u – v)

)
dx dt

+
∫ t

0

∫

�

(
bi

xi
(x)

)(
uq – vq)Sη

(
aβ (u – v)

)
+ aβbi(x)

(
uq – vq)

· (u – v)xi S
′
η

(
aβ (u – v)

)
dx dt

+
∫ t

0

∫

�

bi(x)
(
uq – vq) · aβ

xi
(u – v)S′

η

(
aβ (u – v)

)
dx dt

= 0. (3.4)
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Let us analyze every term on the left hand side of (3.4). In the first place, since a(x) ≥ 0,
S′

η(s) ≥ 0, for the second term, one has

∫

�

aβ+1(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇(u – v)S′
η

(
aβ (u – v)

)
dx ≥ 0. (3.5)

For the third term, since |∇a(x)| ≤ c in �, we have

∣∣∣
∣

∫

�

aβ (u – v)S′
η

(
aβ (u – v)

)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)

dx
∣∣∣
∣

=
∣∣
∣∣

∫

{�:aβ |u–v|<η}
a– p(x)–1

p(x) aβ (u – v)S′
η

(
aβ (u – v)

)

· a
p(x)–1

p(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

)
dx

∣∣
∣∣

≤
(∫

{�:aβ |u–v|<η}

∣∣a– p(x)–1
p(x) aβ (u – v)S′

η

(
aβ (u – v)

)∣∣p(x) dx
) 1

p1

·
(∫

{�:aβ |u–v|<η}
a(x)

(|∇u|p(x) + |∇v|p(x))dx
) 1

p′
1 , (3.6)

where p1 is p+ or p– according to Lemma 1.2, p′(x) = p(x)
p(x)–1 , p′

1 = p′
+ or p′

– has a similar
meaning.

If {x ∈ � : u – v = 0} has zero measure, then

lim
η→0

∫

{�:aβ |u–v|<η}
a(x)

(|∇u|p(x) + |∇v|p(x))dx = 0. (3.7)

Since (1.11),

∫

�

a–(p(x)–1)(x) dx < ∞,

by the fact |aβ (u – v)S′
η(aβ(u – v))| ≤ c, it implies

∣
∣∣
∣

∫

{�:aβ |u–v|<η}

∣∣a– p(x)–1
p(x) aβ (u – v)S′

η

(
aβ (u – v)

)∣∣p(x) dx
∣
∣∣
∣ ≤ c, (3.8)

by (3.6), one has

lim
η→0

∣∣
∣∣

∫

�

aβ (u – v)S′
η

(
aβ (u – v)

)(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v
)

dx
∣∣
∣∣ = 0. (3.9)

If {x ∈ � : u – v = 0} has a positive measure, since

∫

{�:aβ |u–v|<η}

∣
∣a– p(x)–1

p(x) aβ (u – v)S′
η

(
aβ (u – v)

)∣∣p(x) dx

≤
∫

�

∣∣a– p(x)–1
p(x) aβ (u – v)S′

η

(
aβ (u – v)

)∣∣p(x) dx,
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and

∫

{�:aβ |u–v|<η}
a(x)

(|∇u|p(x) + |∇v|p(x))dx ≤
∫

�

a(x)
(|∇u|p(x) + |∇v|p(x))dx ≤ c,

according to the condition (1.11) and the fact |aβ (u – v)S′
η(aβ (u – v))| ≤ c, using the dom-

inated convergence theorem and Hölder inequality, by the last formula of (3.3), one has

lim
η→0

(∫

{�:aβ |u–v|<η}

∣∣a– p(x)–1
p(x) aβ (u – v)S′

η

(
aβ (u – v)

)∣∣p(x) dx
) 1

p1
= 0. (3.10)

Thus, from (3.6), (3.9) is true.
Moreover, since u, v ∈ L∞(QT ), by (1.10), using the dominated convergence theorem, we

have

lim
η→0

∣∣
∣∣

∫

�

bi(x)
(
uq – vq) · aβ

xi
(u – v)S′

η

(
aβ (u – v)

)
dx

∣∣
∣∣

≤ lim
η→0

∫

�

∣∣bi(x)
(
uq – vq)∣∣S′

η

(
aβ (u – v)

)
∣∣∣
∣a

β (u – v)
aβ

xi

aβ

∣∣∣
∣dx

≤ c lim
η→0

∫

�

∣∣S′
η

(
aβ (u – v)

)
aβ (u – v)

∣∣ |bi(x)∇a|
a

dx

≤ c lim
η→0

(∫

�

∣
∣S′

η

(
aβ (u – v)

)
aβ (u – v)

∣
∣dx

) 1
2
(∫

�

∣∣
∣∣
bi(x)∇a

a

∣∣
∣∣

2

dx
) 1

2

= 0. (3.11)

Since q ≥ 1,

∣
∣uq – vq∣∣ ≤ c|u – v|,

and by (1.10), |a– 1
p bi(x)| ≤ c,

∣
∣∣
∣

∫

�

bi(x)aβ(x)
(
uq – vq)Sη

′(aβ(u – v)
)
(u – v)xi dx

∣
∣∣
∣

≤ c
(∫

�

a(x)
(|∇u|p(x) + |∇v|p(x))dx

) 1
p1

·
(∫

�

∣∣a– 1
p(x) bi(x)

∣∣
p(x)

p(x)–1
∣∣aβ (x)(u – v)Sη

′(aβ (u – v)
)∣∣

p(x)
p(x)–1 dx

) 1
p′

1

≤ c
(∫

�

∣
∣a– 1

p bi(x)
∣
∣

p(x)
p(x)–1

∣
∣aβ (x)(u – v)Sη

′(aβ (u – v)
)∣∣

p(x)
p(x)–1 dx

) 1
p′

1 .

Therefore,

lim
η→0

∣∣
∣∣

∫

�

bi(x)
(
uq – vq)Sη

′(aβ (u – v)
)
(u – v)xi a

β(x) dx
∣∣
∣∣ = 0. (3.12)
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At the same time,

lim
η→0

∣∣
∣∣

∫

�

bi
xi

(x)
(
uq – vq)Sη

(
aβ (u – v)

)
dx

∣∣
∣∣ ≤ c

∫

�

|u – v|dx, (3.13)

obviously by the assumption of bi(x) ∈ C1(�).
Finally, for the first term on the left hand side of (3.4), by the monotone convergent

theorem, one has

lim
η→0

∫ t

0

∫

�

Sη

(
aβ (u – v)

)∂(u – v)
∂t

dx dt

=
∫ t

0

∫

�

sign
(
aβ (u – v)

)∂(u – v)
∂t

dx dt

= lim
η→0

∫ t

0

∫

�

Sη(u – v)
∂(u – v)

∂t
dx dt.

We can employ Remark 3.2 to deduce that

lim
η→0

∫ t

0

∫

�

Sη(u – v)
∂(u – v)

∂t
dx dt

= lim
η→0

∫ t

0

(
Hη(u – v)(t) – Hη(u0 – v0)

)
dt

=
∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx –

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx. (3.14)

Now, let η → 0 in (3.4). By (3.5), (3.9), (3.11), (3.12), (3.13) and (3.14) , one has

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

�

∣∣u0(x) – v0(x)
∣∣dx, ∀t ∈ [0, T).

4 The proofs of Theorem 1.6 and Theorem 1.8

Proof of Theorem 1.6 For a small positive constant λ > 0, denoting �λ = {x ∈ � : a(x) > λ}
as before, let

φλ(x) =

⎧
⎨

⎩
1, if x ∈ �λ,
1
λ

a(x), if x ∈ � \ �λ.
(4.1)

Now, by a process of limit, for g(s) = s, we can choose ϕ1 = φλ(x)χ[0,t], ϕ2 = Sη(u – v), and
integrate it over QT , accordingly,

∫ t

0

∫

�

φλ(x)Sη(u – v)
∂(u – v)

∂t
dx dt

+
∫ t

0

∫

�

φλ(x)a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

)

· ∇(u – v)S′
η(u – v) dx dt

+
∫ t

0

∫

�

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇φλ(x)Sη(u – v) dx dt
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+
∫ t

0

∫

�

(
uq – vq)[bi(x)

(
φλ(x)Sη(u – v)

)
xi

]
dx dt

+
∫ t

0

∫

�

(
uq – vq)[bi

xi
(x)φλ(x)Sη(u – v)

]
dx dt = 0. (4.2)

In the first place,

∫

�

φλ(x)a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇(u – v)S′
η(u – v) dx ≥ 0, (4.3)

is clear. For the third term,
∣
∣∣
∣

∫

�

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇φλ(x)Sη(u – v) dx
∣
∣∣
∣

≤
∫

�\�λ

a(x)
∣∣(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇φλ(x)Sη(u – v)
∣∣dx

≤
∫

�\�λ

a(x)
∣
∣(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

)∣∣
∣
∣∇φλ(x)

∣
∣dx

≤ c
λ

[∫

�\�λ

a(x)|∇u|p(x)–1|∇a|dx +
∫

�\�λ

a(x)|∇v|p(x)–1|∇a|dx
]

. (4.4)

By (1.14), i.e.

c
λ

(
λ

∫

�\�λ

|∇a|p(x) dx
) 1

p+ ≤ c,

using the Hölder inequality, by (4.4),

∣∣
∣∣

∫

�

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇φλ(x)Sη(u – v) dx
∣∣
∣∣

≤ c
λ

[∫

�\�λ

a(x)|∇u|p(x)–1|∇a|dx +
∫

�\�λ

a(x)|∇v|p(x)–1|∇a|dx
]

≤ c
λ

(∫

�\�λ

a|∇a|p(x) dx
) 1

p+
(∫

�\�λ

a(x)|∇u|p(x) dx
) 1

p′+

+
c
λ

(∫

�\�λ

a(x)|∇a|p(x) dx
) 1

p+
(∫

�\�λ

a(x)|∇v|p(x) dx
) 1

p′+

≤ c
(∫

�\�λ

a(x)|∇u|p(x) dx
) 1

p′+ + c
(∫

�\�λ

a(x)|∇v|p(x) dx
) 1

p+
. (4.5)

By (4.5), clearly,

lim
λ→0

∣
∣∣
∣

∫

�

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇φλ(x)Sη(u – v) dx
∣
∣∣
∣ = 0. (4.6)

As for the fourth term, by q ≥ 1, and the condition (1.13)

∫

�

a– 1
p(x)–1 (x) dx < c,
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using the last formula of (3.3) and the dominated convergence theorem, one has

lim
η→0

∣
∣∣∣

∫

�

φλbi(x)
(
uq – vq)S′

η(u – v)(u – v)xi dx
∣
∣∣∣

≤ c lim
η→0

(∫

�

∣
∣a– 1

p(x) S′
η(u – v)(u – v)

∣
∣

p(x)
p(x)–1 dx

) 1
p′

1
(∫

�

a(x)
(|∇u|p(x) + |∇v|p(x))dx

) 1
p1

= 0, (4.7)

where p1 = p+ or p– according to (ii) of Lemma 1.2, p′
1 has a similar meaning. We have

lim
λ→0

∣∣
∣∣

∫

�

φλxi b
i(x)

(
uq – vq)Sη(u – v) dx

∣∣
∣∣

≤ lim
λ→0

c
λ

∫

�\�λ

|∇a|dx

≤ lim
λ→0

c
λ

(∫

�\�λ

a(x)|∇a|p(x) dx
) 1

p1
(∫

�\�λ

a– 1
p(x)–1 (x) dx

) 1
p′+

= 0. (4.8)

By (4.7)–(4.8), for the fourth term on the left term in (4.2), one has

lim
η→0

∣
∣∣∣

∫

�

(
uq – vq)[bi(x)

(
φλ(x)Sη(u – v)

)
xi

]
dx

∣
∣∣∣ ≤ c

∫

�

|u – v|dx. (4.9)

Moreover, for the fifth term, one has

lim
η→0

∣∣
∣∣

∫

�

(
uq – vq)bi

xi
(x)φλ(x)Sη(u – v) dx

∣∣
∣∣ ≤ c

∫

�

|u – v|dx. (4.10)

Finally, for the first term, also by the monotone convergent theorem, and employing Re-
mark 3.2, one has

lim
η→0

lim
λ→0

∫ t

0

∫

�

φλ(x)Sη(u – v)
∂(u – v)

∂t
dx dt

=
∫

�

∣∣u(x, t) – v(x, t)
∣∣dx –

∫

�

∣∣u0(x) – v0(x)
∣∣dx. (4.11)

Now, after letting λ → 0, let η → 0 in (4.2). By (4.3), (4.6), (4.9), (4.10) and (4.11), using
the Gronwall inequality, we have

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

�

∣∣u0(x) – v0(x)
∣∣dx. �

Proof of Theorem 1.8 Similar to the proof of Theorem 1.5, we have (4.2) and (4.3). Since
u(x) and v(x) satisfy the condition(1.15), by (4.4), using the Hölder inequality,

∣
∣∣
∣

∫

�

a(x)
(|∇u|p(x)–2∇u – |∇v|p(x)–2∇v

) · ∇φλ(x)Sη(u – v) dx
∣
∣∣
∣

≤ c
λ

(∫

�\�λ

a|∇a|p(x) dx
) 1

p+
(∫

�\�λ

a(x)|∇u|p(x) dx
) 1

p′+



Zhan Boundary Value Problems  (2018) 2018:104 Page 14 of 15

+
c
λ

(∫

�\�λ

a(x)|∇a|p(x) dx
) 1

p+
(∫

�\�λ

a(x)|∇v|p(x) dx
) 1

p′+

≤ c
(∫

�\�λ

a|∇a|p(x) dx
) 1

p+
+ c

(∫

�\�λ

a(x)|∇a|p(x) dx
) 1

p+
, (4.12)

which goes to zero as λ → 0 since a(x) ∈ C1(�) satisfying (1.15), one has (4.6). Last but not
least, since

∫
�

a– 1
p(x)–1 (x) dx < ∞, similar to the proof of Theorem 1.5, one has (4.7)–(4.11),

and we know that the stability (1.12) is true. Theorem 1.8 is proved. �

5 Conclusion
The equations addressed arise in electrorheological fluids theory. Compared with the
known results [2, 3, 14], the novelty lies in that, if the diffusion coefficient is degenerate
on the boundary, the existence and the uniqueness of the weak solutions may be proved
independent of the boundary value condition. Moreover, how the convection term with
an oriented form affects the well-posedness of the solutions of the equation is studied.
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