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Abstract
This paper is concerned with a competition and cooperation system with multiple
constant delays relating to economic enterprise. The stability of the unique positive
equilibrium is investigated and the existence of Hopf bifurcations is demonstrated by
analysing the associated characteristic equation. Furthermore, the explicit formulae
determining the stability and the direction of periodic solutions bifurcating from Hopf
bifurcations are obtained by applying centre manifold theory and the normal form
method. Finally, special attention is paid to some numerical simulations in order to
support the theoretical predictions.
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1 Introduction
Delay differential equations (DDEs) which involve delays and change in time [1, 2] ex-
hibit considerably more complex dynamical behaviour than ordinary differential equa-
tions (ODEs), since the delays could cause a stable equilibrium to become unstable and
fluctuate. Many complicated and large-scale systems in nature and society can be mod-
elled as DDEs due to their flexibility and generality for representing virtually any natu-
ral and man-made structure. Research of the dynamical behaviour of DDEs has received
much attention in interdisciplinary subjects, including natural sciences [3–6], engineering
[7, 8], life sciences [9] and others [10–16]. In recent decades, scientists have focused on the
stability and bifurcation phenomena of the continuous-time autonomous predator–prey
system with multiple delays (see, for example, [17–22]). In fact, there is a strong relation-
ship between how species co-evolve in nature and how different enterprises co-exist in
societal economics, leading to significant research into the delayed competition and co-
operation model for business enterprises [23–25], which are governed by the following
system of ODEs:

⎧
⎨

⎩

ẋ1(t) = r1x1(t)(1 – x1(t)
K1

– α(x2(t)–c2)2

K2
),

ẋ2(t) = r2x2(t)(1 – x2(t)
K2

+ β(x1(t)–c1)2

K1
),

(1.1)

where x1(t), x2(t) denote the output of enterprise x1 and enterprise x2 at time t, respec-
tively, (x1(t), x2(t)) ∈ R

1 ×R
1; ri (i = 1, 2) represents the intrinsic growth rate for the output
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of the two enterprises; Ki (i = 1, 2) is a measure of the load capacity of the two enterprises
in an unrestricted natural market; α, β are the coefficients of competition of enterprise x1

and x2, respectively; ci (i = 1, 2) denotes the initial production of them. All the parameters
assume strictly positive values.

Let a1 = r1
K1

, a2 = r2
K2

, b1 = αr1
K2

, b2 = βr2
K1

, di = ri – aici, ∀i = 1, 2, u(t) = x1(t) – c1,
v(t) = x2(t) – c2. System (1.1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

du(t)
dt = (u(t) + c1)(d1 – a1u(t) – b1v2(t)),

dv(t)
dt = (v(t) + c2)(d2 – a2v(t) + b2u2(t)),

u(0) > 0, v(0) > 0,

(1.2)

where (u(t), v(t)) ∈R
1 ×R

1.
Taking into account the influence of the prior history of the enterprises, authors have

introduced a time delay, τ , to the feedback in model (1.2) [26], which is a more realistic
approach for understanding competition and cooperation dynamics. Delays can induce
oscillations and periodic solutions through bifurcations as the delay is increased. There-
fore, it is interesting to investigate the following delayed model:

⎧
⎨

⎩

ẏ1(t) = (y1(t) + c1)(d1 – a1y1(t – τ1) – b1y2
2(t – τ2)),

ẏ2(t) = (y2(t) + c2)(d2 – a2y2(t – τ1) + b2y2
1(t – τ3)),

(1.3)

where yi(t) (i = 1, 2) denotes the output of two enterprises at time t, ai, bi (i = 1, 2) de-
note the intraspecific competition rate and interspecific effect rate between them, where
ai, bi, ci, di (i = 1, 2) are positive constants. τ1 denotes the interior delays of themselves,
τi (i = 2, 3) denotes the exterior delays between each other, and τi (i = 1, 2, 3) is non-
negative constant delays.

We define R+ ≡ {x ∈ R : x ≥ 0}, intR+ ≡ {x ∈ R : x > 0}, τ̂ = max{τ1, τ2, τ3}. Denote by
C([–τ̂ , 0],R+) the infinite dimensional Banach space of continuous functions from the in-
terval [–τ̂ , 0] into R+, equipped with the uniform norm. We assume that the initial data
for model (1.3) is taken from

X = C
(
[–τ̂ , 0],R+

) × C
(
[–τ̂ , 0],R+

)
. (1.4)

The variables y1(t) and y2(t) in model (1.3) belong to X for t ∈ [–τ̂ , 0].
By [1] (Theorem 2.1 and 2.3, Chap. 2, p. 41), solutions of system (1.3) with the initial

value in C exist and are unique for all t > 0.
Liao [23] assumed τi (i = 1, 2, 3) = τ and Li [24] considered τ1 = 0, regarding τ and τ2 + τ3

as the bifurcation parameters, respectively. They investigated the existence of the unique
positive equilibrium and proved that the Hopf bifurcation can occur as the bifurcation
parameter crosses some critical value, and studied the direction of Hopf bifurcation and
stability of the periodic solutions. In [27], Liao considered τ2 = τ3 �= τ1, analysed the sta-
bility of the positive equilibrium and the existence of local Hopf bifurcation and provided
some numerical simulations. However, they did not give the underlying description of the
bifurcated periodic solution.
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In the more realistic competition and cooperation model, the interior delays exist (i.e.
τ1 �= 0) and the exterior delays are not necessarily equal (i.e. τ2 �= τ3). Based on these obser-
vations, we studied the system of (1.3) that could better describe the real system behaviour.
Compared with the models from the literature [23, 27], the dynamical behaviour of system
(1.3) is more complicated than the above models.

In this paper, we have taken the delay τ1 := τ2 + τ3 as the bifurcation parameter and show
that when τ1 passes through the critical values, the positive equilibrium loses its stability
and a Hopf bifurcation occurs. Furthermore, we give details of the bifurcation values that
describe the direction of the Hopf bifurcation and the stability of the bifurcated periodic
solution using centre manifold theory and the normal form method introduced by Hassard
et al. [28]. Finally, some numerical simulations and conclusions are given to illustrate the
theoretical predictions.

2 The existence and the property of the local Hopf bifurcation
In this section, we give the following results about the existence and stability of the positive
equilibrium of system (1.3).

Proposition 1 For system (1.3), assume that a2, b1, d1, d2 are positive constants such that
(H1) a2

2d1 > b1d2
2

holds, then the system has a unique positive equilibrium E∗ = (y∗
1, y∗

2). Furthermore, when
system (1.3) has no delay, i.e. τi (i = 1, 2, 3) = 0, then E∗ is globally asymptotically stable.

Proof For system (1.3), assumption (H1) is the parameter condition which ensures the
existence of the positive equilibrium E∗. The proof for the existence of E∗ is similar to that
in [23], we omit it here.

We now prove the global asymptotic stability. When τi (i = 1, 2, 3) = 0, system (1.3) is
reduced to the ODE system (1.1). Defining Dulac function as B(x1, x2) = 1

x1x2
, and

D =
∂{ 1

x1x2
[r1x1(t)(1 – x1(t)

K1
– α(x2(t)–c2)2

K2
)]}

∂x1
+

∂{ 1
x1x2

[r2x2(t)(1 – x2(t)
K2

+ β(x1(t)–c1)2

K1
)]}

∂x2

= –
r1

K1x2
–

r2

x1K2
,

we easily get D < 0 in the intR2
+ = {(x1, x2) : x1 > 0, x2 > 0} space. By [29] (Theorem 4.1.2,

Chap. 4, p. 72), it follows from Dulac’s principle that the system has no closed path curve.
So E∗ is globally asymptotically stable when system (1.3) has no delay and also when the
non-negative delays are sufficiently small. �

If a pair of complex roots with negative real parts and non-zero imaginary parts cross the
imaginary axis as τ increases, this potentially results in Hopf bifurcation and the positive
equilibrium E∗ loses stability. Now we discuss the existence of a local Hopf bifurcation
occurring at E∗. Let u1(t) = y1(t) – y∗

1, u2(t) = y2(t) – y∗
2, then system (1.3) becomes

⎧
⎨

⎩

u̇1(t) = (u1(t) + y∗
1 + c1)[–a1u1(t – τ1) – b1u2

2(t – τ2) – 2b1y∗
2u2(t – τ2)],

u̇2(t) = (u2(t) + y∗
2 + c1)[–a2u2(t – τ1) + b2u1

2(t – τ3) + 2b2y∗
2u1(t – τ3)],

(2.1)
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the linearization of system (2.1) at E∗ is

⎧
⎨

⎩

u̇1(t) = –a1(y∗
1 + c1)u1(t – τ1) – 2b1y∗

2(y∗
1 + c1)u2(t – τ2),

u̇2(t) = 2b2y∗
2(y∗

2 + c1)u1(t – τ3) – a2(y∗
2 + c1)u2(t – τ1),

(2.2)

and the associated characteristic equation of (2.2) is

∣
∣
∣
∣
∣

λ + a1
(
y∗

1 + c1
)
e–λτ1 2b1y∗

2
(
y∗

1 + c1
)
e–λτ2

–2b2y∗
2
(
y∗

2 + c1
)
e–λτ3 λ + a2

(
y∗

2 + c1
)
e–λτ1

∣
∣
∣
∣
∣

= 0.

For the above characteristic equation, it is hard to do the complete analysis for the dis-
tribution of the roots, so we assume that

(H2) τ2 + τ3 = τ1

holds, and τ1 � τ .
Hence, the characteristic equation is equivalent to

λ2 + e–λτ (pλ + q) + re–2λτ = 0, (2.3)

where p = a1(y∗
1 + c1) + a2(y∗

2 + c1), q = 4b1b2(y∗
2)2(y∗

1 + c1)(y∗
2 + c1), r = a1a2(y∗

1 + c1)(y∗
2 + c1).

Since the characteristic equation (2.3) has the same form as equation (2.4) in [30], so by
Theorem 2.5 in [30], we can get the following result, which presents the conditions for a
Hopf bifurcation to occur in system (1.3).

Proposition 2 Suppose that (H1) and (H2) hold. Then

τ
j
k = 1/ωk

[
arccos q/

(
ω2

k – r
)

+ 2jπ
]
, k = 1, 2, 3, 4, j = 0, 1, 2, . . .

are Hopf bifurcation values at E∗, where iωk (k = 1, 2, 3, 4) are the roots of (2.3). And E∗ is
locally asymptotically stable for τ ∈ [0, τ 0

1 ] and unstable where τ > τ 0
1 .

Remark 1 The characteristic equation (2.3) has some pairs of purely imaginary roots
denoted by λ = ±iωk with τ = τ

j
k under the condition of (H1), (H2). Define τ 0 = τ 0

k0
=

min1≤k≤4{τ 0
k }, ω0 = ωk0 , where k0 ∈ {1, 2, 3, 4}. Then τ 0 is the first value of τ such that (2.3)

has purely imaginary roots. For convenience, we denote τ
j
k by τ j (j = 0, 1, 2, . . .) for fixed

k ∈ {1, 2, 3, 4}.

Remark 2 Let λ(τ ) = α(τ ) ± iω(τ ) be the roots of (2.3) near τ = τ j satisfying α(τ j) = 0,
ω(τ j) = ω0 (j = 0, 1, 2, . . .). By the theory of DDEs, for ∀τ

j
k , ∃ε > 0 s.t. λ(τ ) in |τ – τ

j
k| < ε

about τ is continuous and differentiable. The transversality condition d Reλ(τ )
dτ

|τ=τj > 0 is
satisfied (more details are provided in [30]).

In the previous part, it was shown that system (2.1) undergoes a Hopf bifurcation un-
der certain conditions. Here we will derive explicit formulae determining the direction
of the Hopf bifurcation and the stability of the periodic solutions bifurcating from E∗ at
τ j (j = 0, 1, 2, . . .), by employing centre manifold theory and the normal form method. For
convenience, denote τ j by τ̃ and τ = τ̃ + μ, μ ∈ R, then μ = 0 is the Hopf bifurcation value
for system (1.3), where τ̃ = τ̃2 + τ̃3, τ = τ̃2 + τ̃3 +μ. Without loss of generality, assume τ̃2 < τ̃3.
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The discussion will be divided into five steps as follows.
Step 1. Transform system (2.1) into the abstract ODE.
System (2.1) can locally be represented as the following DDE in C = C([–τ̃ , 0], R2):

u̇(t) = Lμ(ut) + F(μ, ut), (2.4)

where u(t) = (u1(t), u2(t))T , ut(θ ) = u(t + θ ), Lμ : C → R is a bounded linear operator and
F : R × C → R is continuous and differentiable with

Lμφ = (̃τ + μ)

(
–a1(y∗

1 + c1)φ1(–τ1) + 2b1y∗
2(y∗

1 + c1)φ2(–τ2)
2b2y∗

2(y∗
2 + c1)φ1(–τ3) – a2(y∗

2 + c1)φ2(–τ1)

)

,

and

F(μ,φ) = (̃τ + μ)

×
(

–a1φ1(0)φ1(–τ1) – b1φ1(0)φ2
2 (–τ2) – 2b1y∗

2φ1(0)φ2(–τ2) – b1(y∗
1 + c1)φ2

2 (–τ2)
–a2φ2(0)φ2(–τ1) + b2φ2(0)φ1

2 (–τ3) + 2b2y∗
2φ2(0)φ1(–τ3) + b2(y∗

2 + c1)φ2
1 (–τ3)

)

,

where φ = (φ1(θ ),φ2(θ )) ∈ C.
By the Riesz representation theorem, there exists a 2 × 2 matrix whose elements are a

bounded variation function η(θ ,μ) in θ ∈ [–τ̃ , 0] such that

Lμφ =
∫ 0

–τ̃

dη(θ ,μ)φ(θ ), φ ∈ C,

where η(θ ,μ) can be chosen as

η(θ ,μ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(̃τ + μ)(M + N + P), θ ∈ [–τ̃2, 0),

(̃τ + μ)(M + N), θ ∈ (–τ̃3, –τ̃2),

(̃τ + μ)M, θ ∈ (–τ̃ , –τ̃3],

0, θ = –τ̃ ,

with

M =

(
–a1(y∗

1 + c1) 0
0 –a2(y∗

2 + c1)

)

, N =

(
0 –2b1y∗

2(y∗
1 + c1)

0 0

)

,

P =

(
0 0

2b2y∗
2(y∗

2 + c1) 0

)

.

For φ ∈ C, let

A(μ)φ(θ ) =

⎧
⎨

⎩

dφ(θ )/dθ , θ ∈ [–τ̃ , 0),
∫ 0

–τ̃
dη(μ, θ )φ(θ ), θ = 0,

R(μ)φ(θ ) =

⎧
⎨

⎩

0, θ ∈ [–τ̃ , 0),

F(μ,φ), θ = 0,
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then system (2.4) is equivalent to the following abstract operator equation:

u̇(t) = A(μ)ut + R(μ)ut . (2.5)

Step 2. Calculate the eigenfunctions of A = A(0) and the adjoint operator A∗ correspond-
ing to iω0τ̃ and –iω0τ̃ .

For ψ ∈ C([0, τ̃ ], (C2)∗), where (C2)∗ is the two-dimensional complex space of row vec-
tors, we define the adjoint operator A∗ of A

A∗ψ(s) =

⎧
⎨

⎩

–dψ(s)/ds, s ∈ (0, τ̃ ],
∫ 0

–τ̃
dηT (μ, t)ψ(–t), s = 0,

and the bilinear form is given by

〈
ψ(s),φ(θ )

〉
= ψ(0)φ(0) –

∫ 0

–τ̃

∫ θ

ξ=0
ψ

T (ξ – θ ) dη(θ )φ(ξ ) dξ ,

where η(θ ) = η(θ , 0). Then A = A(0) and A∗(0) are adjoint operators.
By [27], ±iω0τ̃ are eigenvalues of A(0), so they are also eigenvalues of A∗(0). Suppose

that q(θ ) = (1,α)T eiω0θ is the eigenfunction of A(0) corresponding to the eigenvalue iω0τ̃

and q∗(s) = G(β , 1)eiω0s is the eigenfunction of A∗ corresponding to the eigenvalue –iω0τ̃ ,
where

α = –
[
–iω0 + a2

(
y∗

2 + c1
)
iω0e–iω0 τ̃

]
/2b1y∗

2
(
y∗

1 + c1
)
e–iω0 τ̃ ,

β = –
[
iω0 + a1

(
y∗

1 + c1
)
iω0e–iω0 τ̃

]
/2b1y∗

2
(
y∗

1 + c1
)
e–iω0 τ̃ ,

G =
{
β + α – 2αβb1y∗

2
(
y∗

1 + c1
)
τ̃2eiω0 τ̃2 + 2αβb2y∗

2
(
y∗

2 + c1
)
τ̃3eiω0 τ̃3

+
[
–βa1

(
y∗

1 + c1
)

– α2
(
y∗

2 + c1
)]

τ̃eiω0 τ̃
}–1,

which assures that 〈q∗(s), q(θ )〉 = 1, 〈q∗(s), q(θ )〉 = 0.
Step 3. Obtain the reduced system on the centre manifold.
In this part, we will use the same notations as in [28] and compute the coordinates to

describe the centre manifold C0 at μ = 0 (a local centre manifold is in general not unique,
and the dimension of local centre manifold is 2). Let ut ∈ C be the solution of system (2.5)
when μ = 0, and define

z(t) =
〈
q∗, ut

〉
, W (t, θ ) = ut(θ ) – z(t)q(θ ) – z(t)q(θ ), (2.6)

where z and z are local coordinates for the centre manifold C0 in the direction of q∗ and q∗.
On the centre manifold C0, we have W (t, θ ) = W (z(t), z(t), θ ), where

W (z, z, θ ) = W20(θ )z2/2 + W11(θ )zz + W02(θ )z2/2 + · · · . (2.7)

The existence of a centre manifold enables us to reduce (2.5) to an ODE on C0. Note that
W is real if ut is real, we consider only real solutions. For solution ut ∈ C0 of system (2.5)
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at μ = 0,

ż(t) =
〈
q∗, u̇t

〉
=

〈
q∗, A(ut) + R(ut)

〉
=

〈
A∗(q∗), ut

〉
+

〈
q∗, R(ut)

〉

= iω0τ̃z(t) + q∗(0) · f
(
0, W (z, z, θ ) + 2 Re

{
z(t)q(θ )

})

= iω0τ̃z(t) + q∗(0) · f (0, ut), (2.8)

with

q∗(0) · f (0, ut) � g(z, z).

Rewriting (2.8), we obtain that the reduced system on C0 is described by

ż(t) = iω0τ̃z(t) + g(z, z), (2.9)

where

g(z, z) = g20(θ )z2/2 + g11(θ )zz + g02(θ )z2/2 + g21(θ )z2z/2 + · · · . (2.10)

We will mainly discuss equation (2.9) in the following part.
Step 4. Obtain the values of g20, g11, g02, g21 in (2.10).
In this part, we calculate the coefficients W20(θ ), W11(θ ), W02(θ ), . . . and substitute them

in (2.8) to get the reduced system (2.9) on C0.
It follows from (2.6) that

ut(θ ) = u(t + θ ) = W (t, θ ) + 2 Re
{

z(t), q(θ )
}

= W20(θ )z2/2 + W11(θ )zz + W02(θ )z2/2 + (1,α)T eiω0 τ̃ θ z

+ (1,α)T e–iω0 τ̃ θ z + · · · .

And we have

u1(t) = z + z + W (1)(t, 0), u2(t) = zα + zα + W (2)(t, 0),

u1(t – τ̃ ) = ze–iω0 τ̃ + zeiω0 τ̃ + W (1)(–τ̃ ),

u2(t – τ̃ ) = zαe–iω0 τ̃ + zαeiω0 τ̃ + W (2)(–τ̃ ),

u2(t – τ̃2) = zαe–iω0 τ̃2 + zαeiω0 τ̃2 + W (2)(–τ̃2),

u1(t – τ̃3) = ze–iω0 τ̃3 + zeiω0 τ̃3 + W (1)(–τ̃3),

u2(t – τ̃3) = zαe–iω0 τ̃3 + zαeiω0 τ̃3 + W (2)(–τ̃3).

(2.11)

It follows that together with F(μ,φ) we get

f (0, ut) = τ̃

(
–a1u1(t)u1(t – τ̃ ) – b1u1(t)u2

2(t – τ̃2) – 2b1y∗
2u1(t)u2(t – τ̃2) – b1(y∗

1 + c1)u2
2(t – τ̃2)

–a2u2(t)u2(t – τ̃ ) + b2u2(t)u1
2(t – τ̃3) + 2b2y∗

2u2(t)u1(t – τ̃3) + b2(y∗
2 + c1)u2

1(t – τ̃3)

)

.

(2.12)
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Substituting (2.11) into (2.12), then this substitution into (2.8), and comparing the coeffi-
cients with (2.10), we obtain

g20 = 2τ̃G
{
β
[
–a1e–iω0 τ̃ – 2b1y∗

2αe–iω0 τ̃2 – b1
(
y∗

1 + c1
)
α2e–2iω0 τ̃2

]

– a2α
2e–iω0 τ̃ + 2b2y∗

2αe–iω0 τ̃3 + b2
(
y∗

2 + c1
)
e–2iω0 τ̃

}
,

g11 = τ̃G
{
β
[
–a1

(
eiω0 τ̃ + e–iω0 τ̃

)
– 2b1y∗

2
(
αeiω0 τ̃ + αe–iω0 τ̃

)
– 2b1

(
y∗

1 + c1
)
αα

]

– a2αα
(
eiω0 τ̃ + e–iω0 τ̃

)
+ 2b2y∗

2
(
αeiω0 τ̃3 + αe–iω0 τ̃3

)
+ 2b2

(
y∗

2 + c1
)}

,

g02 = 2τ̃G
{
β
[
–a1eiω0 τ̃ – 2b1y∗

2αeiω0 τ̃ – b1
(
y∗

1 + c1
)
α2e2iω0 τ̃

]
– a2α

2eiω0 τ̃

+ 2b2y∗
2αeiω0 τ̃ + b2

(
y∗

2 + c1
)}

,

g21 = τ̃G
{
β
[
–a1

(
W (1)

11 (–τ̃ ) + W (1)
20 (–τ̃ )/2 + e–iω0 τ̃ W (1)

11 (0) + eiω0 τ̃ W (1)
20 (0)/2

)

– b1
(
2αα + α2e2iω0 τ̃2

)
– 2b1y∗

2
(
W (2)

11 (–τ̃ ) + W (2)
20 (–τ̃ )/2 + αe–iω0 τ̃ W (1)

11 (0)

+ αeiω0 τ̃ W (1)
20 (0)/2

)
– b1

(
y∗

1 + c1
)(

αe–iω0 τ̃ W (2)
11 (–τ̃ ) + αeiω0 τ̃ W (2)

20 (–τ̃ )/2
)]

– a2
(
αW (2)

11 (–τ̃ ) + αW (2)
20 (–τ̃ )/2 + αe–iω0 τ̃ W (2)

11 (0) + αeiω0 τ̃ W (2)
20 (0)/2

)

+ b2
(
2α + e–2iω0 τ̃

)
+ 2b2y∗

2
[
αW (1)

11 (–τ̃ ) + W (1)
20 (–τ̃ )/2 + e–iω0 τ̃ W (1)

11 (0)

+ eiω0 τ̃ W (1)
20 (0)

]
+ b2

(
y∗

2 + c1
)[

2e–iω0 τ̃ W (1)
11 (–τ̃3) + eiω0 τ̃ W (1)

20 (–τ̃3)
]}

.

(2.13)

Since there are W20(θ ) and W11(θ ) in g21, we still need to compute them.
From (2.5) and (2.6), we have

Ẇ = u̇t – żq – żq =

⎧
⎨

⎩

AW – 2 Re{gq(θ )}, θ ∈ [–1, 0),

AW – 2 Re{gq(0)} + f0, θ = 0,
(2.14)

where

f0 = fz2 z2/2 + fzzzz + fz2 z2/2 + fz2zz2z/2 · · · .

On the other hand, near the origin, on the centre manifold C0, according to (2.7), we obtain

Ẇ = Wzż + Wzż =
[
W20(θ )z + W11(θ )z

]
ż +

[
W11(θ )z + W02(θ )z

]
ż

=
[
W20(θ )z + W11(θ )z

](
iω0z + g(z, z)

)

+
[
W11(θ )z + W02(θ )z

](
g(z, z) – iω0z

)
+ · · · . (2.15)

Substituting (2.7) into the right-hand side of (2.14), equating terms of z2

2 and zz of (2.14)
with (2.15), we obtain

(2iω0I – A)W20(θ ) =

⎧
⎨

⎩

–g20q(θ ) – g02q(θ ), θ ∈ [–τ̃ , 0),

–g20q(0) – g02q(0) + fz2 , θ = 0,
(2.16)

–AW11(θ ) =

⎧
⎨

⎩

–g11q(θ ) – g11q(θ ), θ ∈ [–τ̃ , 0),

–g11q(0) – g11q(0) + fzz, θ = 0.
(2.17)
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According to the definition of A and from (2.16), (2.17) for θ ∈ [–τ̃ , 0), we get

Ẇ20(θ ) = 2iω0W20(θ ) + g20q(θ ) + g02q(θ ),

Ẇ11(θ ) = g11q(θ ) + g11q(θ ).

Solving for W20(θ ) and W11(θ ), we obtain

W20(θ ) = ig20/ω0 · q(0)eiω0θ + ig02/3ω0 · q(0)e–iω0θ + E1e2iω0θ , (2.18)

W20(θ ) = –ig11/ω0 · q(0)eiω0θ + ig11/ω0 · q(0)e–iω0θ + E2, (2.19)

where E1 = (E(1)
1 , E(2)

1 )T ∈ R2 and E2 = (E(1)
2 , E(2)

2 )T ∈ R2 are constant vectors.
In what follows we shall seek appropriate E1 and E2 in (2.18) and (2.19), respectively.

According to the definition of A and (2.16), (2.17) for θ = 0, we have

∫ 0

–τ̃

dη(θ )W20(θ ) = 2iω0W20(0) + g20q(0) + g02q(0) – fz2 , (2.20)

∫ 0

–τ̃

dη(θ )W11(θ ) = g11q(0) + g11q(0) – fzz, (2.21)

where η(θ ) = η(0, θ ) and

fz2 =

(
–a1e–iω0 τ̃ – 2b1y∗

2αe–iω0 τ̃2 – b1(y∗
1 + c1)α2e–2iω0 τ̃2

–a2α
2e–iω0 τ̃ + 2b2y∗

2αe–iω0 τ̃3 + b2(y∗
2 + c1)e–2iω0 τ̃

)

,

fzz =

(
–a1(eiω0 τ̃ + e–iω0 τ̃ ) – 2b1y∗

2(αeiω0 τ̃ + αe–iω0 τ̃ ) – 2b1(y∗
1 + c1)αα

–a2αα(eiω0 τ̃ + e–iω0 τ̃ ) + 2b2y∗
2(αeiω0 τ̃3 + αe–iω0 τ̃3 ) + 2b2(y∗

2 + c1)

)

.

Substituting (2.18) into (2.20), we obtain

(

2iω0I –
∫ 0

–τ̃

e2iω0θ dη(θ )
)

E1 = fz2 ,

that is
(

2iω0 + a1(y∗
1 + c1)e–iω0 τ̃ 2b1y∗

2(y∗
1 + c1)e–iω0 τ̃2

–2b2y∗
2(y∗

2 + c1)e–iω0 τ̃3 2iω0 + a2(y∗
2 + c1)e–iω0 τ̃

)

E1 = fz2 . (2.22)

Similarly, substituting (2.19) into (2.21), we get

∫ 0

–τ̃

dη(θ )E2 = fzz,

that is
(

a1(y∗
1 + c1)e–iω0 τ̃ 2b1y∗

2(y∗
1 + c1)e–iω0 τ̃2

–2b2y∗
2(y∗

2 + c1)e–iω0 τ̃3 a2(y∗
2 + c1)e–iω0 τ̃

)

E2 = fzz. (2.23)

We have obtained the values of E1 and E2 as (2.22) and (2.23) and, ultimately, the reduced
system (2.9).
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Step 5. Obtain the key values μ2, β2, T2 to determine the property of the Hopf bifurcation.
As with the calculation of the ODE Hopf bifurcation parameter and as in [28], accord-

ing to the analysis above and the expressions of g20, g11, g02 and g21, we can compute the
following values:

c1(0) = i/2ω0τ̃
(
g11g20 – 2|g11|2 – |g02|2/3

)
+ g21/2,

μ2 = – Re
{

c1(0)
}

/α′(̃τ ),

β2 = 2 Re
{

c1(0)
}

,

T2 = –
[
Im

{
c1(0)

}
+ μ2ω

′ (̃τ )
]
/ω0,

(2.24)

where λ(τ ) = α(τ ) ± iω(τ ) is the characteristic root of (2.3), which is a continuous differ-
entiable family. α′ (̃τ ) and ω′ (̃τ ) can be obtained by taking the derivative of the two sides
of (2.3) and taking values at τ̃ .

These formulae give a description of the Hopf bifurcation periodic solution of system
(1.3) at τ = τ j (j = 0, 1, 2, . . .) on the centre manifold. Thus, we can obtain the following
results according to the discussion about properties of Hopf bifurcating periodic solutions
of dynamical system in [30].

Proposition 3 Assume that (H1) and (H2) hold. Then
(i) μ2 determines the direction of the Hopf bifurcation. If μ2 > 0 (μ2 < 0), then the Hopf

bifurcation is supercritical (subcritical);
(ii) β2 determines the stability of the bifurcating periodic solutions. If β2 < 0 (β2 > 0),

then bifurcating periodic solution is stable (unstable);
(iii) T2 determines the period of the bifurcating periodic solutions. If T2 > 0 (T2 < 0), then

periods of the periodic solutions increase (decrease).

3 Numerical simulations and conclusions
In this section, we shall give some numerical simulations to support the theoretical anal-
ysis discussed in the previous section. We also present our conclusions and limitations of
the analysis.

Firstly, we study the following specific model:

⎧
⎨

⎩

ẏ1(t) = (y1(t) + 1)(0.6 – 0.2y1(t – τ ) – 0.4y2
2(t – τ /3)),

ẏ2(t) = (y2(t) + 1)(0.4 – 0.6y2(t – τ ) + 0.2y2
1(t – 2τ /3)),

(3.1)

with initial values (y1(t), y2(t)) = (0.2, 0.2), which satisfies (H1), (H2). By computing, E∗ =
(1, 1) and by [30], h(z) = z4 – 2.56z3 + 0.3584z2 – 2.1627z – 0.3244 = 0, which has only one
positive root z = 2.7341, get ω = 1.6535, τ 0 = 0.5847. By Proposition 2, we find that E∗

is asymptotically stable when 0 ≤ τ < τ 0 = 0.5847, as Figs. 1(a)–(d) illustrate, and E∗ is
unstable when τ > τ 0 = 0.5847, as shown in Figs. 2(a)–(d) which are generated by dde23
[31], a Matlab tool that integrates DDEs.

According to the above numerical simulations and from an economic viewpoint, we
conclude that a critical duration time of the two enterprise outputs exists. When the du-
ration time is less than the critical delay, the cooperation between the two enterprises is
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Figure 1 The trajectory graph of system (3.1) with τ1 = 0.56, τ2 = 0.56/3, τ3 = 1.12/3 in (a) the t–y1 plane and
in (b) the t–y2 plane. The phase graph of system (3.1) with τ1 = 0.56, τ2 = 0.56/3, τ3 = 1.12/3 in (c) the y1–y2
plane and in (d) the t–y1–y2 plane

Figure 2 The trajectory graph of system (3.1) with τ1 = 0.6, τ2 = 0.6/3, τ3 = 1.2/3 in (a) the t–y1 plane and in
(b) the t–y2 plane. The phase graph of system (3.1) with τ1 = 0.6, τ2 = 0.6/3, τ3 = 1.2/3 in (c) the y1–y2 plane
and in (d) the t–y1–y2 plane

very effective; though the competition between them exists, they can coexist and have de-
veloped over a long time. Alternatively, when the competition between the two enterprises
is much stronger than their effective cooperation, the result will ultimately force a merger
or a closure by one of the enterprises. Therefore, entrepreneurs must have a shrewd under-
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standing of market forces and economic laws in order to maintain a viable and successful
enterprise.

However, here we have only considered the problem of a local Hopf bifurcation and
do not give the conditions ensuring the existence of a global Hopf bifurcation for large
values of the delay. Furthermore, we do not consider systems with a spatial variable, which
is the diffusive model subject to a suitable boundary condition. We intend to make the
comparison between the two models, and find what is the influence on the dynamical
behaviour with different delays and diffusive terms [32–38], and then illustrate with the
theoretical predictions. Lastly, our problem is only restricted to the theoretical analysis of
such economical phenomena. It may be timely and necessary to make field investigations
and experimental studies for real-world scenarios, and this is left for further study.
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