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Abstract
In this paper, we study the existence of affine-periodic solutions of nonlinear
impulsive differential equations. The affine-periodic solutions have the form
x(t + T ) = Qx(t) with some nonsingular matrix Q. We give a theorem on the existence
of the affine-periodic solutions, respectively, depending on wether det(I – Q) (I =
identity matrix) is equal to 0 or not.
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1 Introduction
The periodicity is a very important property in the study of the impulsive differential equa-
tions [1, 2]. However, not all natural phenomena can be described alone by periodicity.
Some differential equations often exhibit certain symmetries rather than periodicity. For
example, consider the system

ẋ = f (t, x), (1)

where f : R1 × Rn → Rn is continuous, and for some Q ∈ GLn(R) (general linear group),
satisfies the following affine symmetry:

f (t + T , x) = Qf
(
t, Q–1x

)
.

We call it a (Q, T)-affine-periodic system. For this (Q, T)-affine-periodic system, we are
concerned with the existence of (Q, T)-affine-periodic solutions x(t) with

x(t + T) = Qx(t), ∀t.

It should be pointed out that when Q = I (identity matrix) or Q = –I , the solutions are
just the pure periodic solutions or antiperiodic ones; when Q ∈ SOn (special orthogonal
group), the solutions correspond to the solutions with Q-rotating symmetry, particularly
to some special quasi-periodic solutions. So the interest to particular kinds of periodic
solutions that we are going to study is not purely theoretical. The antiperiodicity property
or some quasi-periodicity property, which is obviously a particular case of affine-periodic
solutions, has drawn wide attention from physicists and astronomers [3, 4].
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Recently, these conceptions and existence results of the solutions have been introduced
and proved by Li and his coauthors; see [5] for Levinson’s problem, [6] for Lyapunov func-
tion type theorems, [7] for averaging methods of affine-periodic solutions, and [8] for
some dissipative dynamical systems. The aim of this paper is to touch such a topic for
affine-periodic solutions of nonlinear impulsive differential equations.

The paper is organized as follows. We first change the affine-periodic solutions problem
to the boundary value problem in Sect. 2. In Sect. 3, when det(I – Q) �= 0, we give an unique
affine-periodic solution by using the Banach contraction mapping principle. Furthermore,
via the topological degree theory, we prove the existence of affine-periodic solutions for
nonlinear impulsive system when det(I – Q) = 0 in Sect. 4. We give two examples by nu-
merical simulation in Sect. 5.

2 Nonlinear impulsive differential system
In this paper, we investigate the following system:

ẋ = f (t, x), t �= tk , t ∈ R,

�x = Ik(x), t = tk , k ∈ Z.
(2)

The system satisfies the following hypotheses H:
(1) f (·) ∈ C(R × Rn, Rn) and f (t + T , x) = Qf (t, Q–1x) for some G ∈ SOn(R).
(2) Ik(·) ∈ C(Rn, Rn), tk < tk+1 (k ∈ Z).
(3) There exists q ∈ N such that Ik+q(x) = QIk(Q–1x) and tk+q = tk + T (k ∈ Z).
In system (2), the continuous part corresponds to a nonlinear (Q, T)-affine-periodic sys-

tem. The discrete component models the affine-periodic impulsive change of x(t).

Lemma 2.1 The existence of Q-affine-periodic solutions of equation (2) is equivalent to the
existence of the boundary value problem (2) with x(T) = Qx(0).

Proof Let x(t) be a solution of equation (2) defined on t ∈ [0, T]. Then

u(t) =

⎧
⎨

⎩
x(t), t ∈ (0, T],

Qjx(t – jT), t ∈ (jT , jT + T],
(3)

is a Q-affine-periodic solution of (2). Indeed, if t ∈ (jT , jT + T] and t �= tk , then t – jT ∈
(0, T], and

du(t)
dt

= Qj dx(t – jT)
dt

= Qjf
(
t – jT , x(t – jT)

)

= Qj · Q–jf
(
t, Qjx(t – jT)

)

= f
(
t, u(t)

)
, (4)
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and if tk ∈ (jT , jT + T], then tk–jq = tk – jT ∈ (0, T] and

�u(tk) = Qj�x(tk – jT)

= QjIk–jq
(
x(tk – jT)

)

= Qj · Q–jIk
(
Qjx(tk – jT)

)

= Ik
(
u(tk)

)
. (5)

Let x(t) be any solution of (2) with x(T) = Qx(0). Then x(t) has the form

x(t) = x(0) +
∫ t

0
f
(
s, x(s)

)
ds +

∑

0≤tk <t

Ik
(
x(tk)

)
.

Denote x(0) by x0. Then we have

(I – Q)x0 = –
[∫ T

0
f
(
s, x(s)

)
ds +

∑

0≤tk <T

Ik
(
x(tk)

)]
. (6)

�

3 Noncritial case

det(I – Q) �= 0.

In this case, (I – Q)–1 exists. Then

x0 = –(I – Q)–1
[∫ T

0
f
(
s, x(s)

)
ds +

∑

0≤tk <T

Ik
(
x(tk)

)]
. (7)

So, the existence of Q-affine-periodic solutions of equation (2) is equivalent to the exis-
tence of solutions of the following impulsive integral equation:

x(t) = –(I – Q)–1
[∫ T

0
f
(
s, x(s)

)
ds +

∑

0≤tk <T

Ik
(
x(tk)

)
]

+
∫ t

0
f
(
s, x(s)

)
ds +

∑

0≤tk <t

Ik
(
x(tk)

)
. (8)

Let

X =
{

x : [0, T] → Rn : x(t) is continuous on [0, T]
}

,

and define the norm ‖x‖ = supt∈[0,T] |x(t)|. It is easy to see that X is a Banach space
with norm ‖x‖. We also define the norm of the matrix ‖X(t)‖ = ‖(x1(t), x2(t), . . . , xn(t))‖ =
maxi=1,2,...,n ‖xi‖. Then we have the following theorem.

Theorem 3.1 Let a function p ∈ L([0, T], R+) and nonnegative constants αk (k = 1, 2, . . . , q)
be such that

∣∣f (t, y) – f (t, x)
∣∣ ≤ p(t)|y – x|, ∀t ∈ [0, T], x, y ∈ Rn,
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∣∣Ik(y) – Ik(x)
∣∣ ≤ ak|y – x|, αk ∈ R(k = 1, 2, . . . , q), x, y ∈ Rn,

and
(∫ T

0
p(s) ds +

q∑

k=1

ak

)

<
1

‖(I – Q)–1‖ + 1
.

Then system (2) has an unique Q-affine-periodic solution.

Proof Define

A
(
x(t)

)
= –(I – Q)–1

[∫ T

0
f
(
s, x(s)

)
ds +

∑

0≤tk <T

Ik
(
x(tk)

)]

+
∫ t

0
f
(
s, x(s)

)
ds +

∑

0≤tk <t

Ik
(
x(tk)

)
.

Then

∣
∣A

(
y(t)

)
– A

(
x(t)

)∣∣

=
∣∣
∣∣–(I – Q)–1

[∫ T

0

(
f
(
s, y(s)

)
– f

(
s, x(s)

))
ds +

∑

0≤tk <T

(Ik
(
y(tk) – Ik

(
x(tk)

))]

+
∫ t

0

(
f
(
s, y(s)

)
– f

(
s, x(s)

))
ds +

∑

0≤tk <t

(
Ik

(
y(tk)

)
– Ik

(
x(tk)

))
∣
∣∣
∣

≤ ∥
∥(I – Q)–1∥∥

(∫ T

0
p(s) ds +

q∑

k=1

ak

)

|y – x|

+

(∫ t

0
p(s) ds +

q,
∑

k=1

ak

)

|y – x|

≤ (∥∥(I – Q)–1∥∥ + 1
)
(∫ T

0
p(s) ds +

q∑

k=1

ak

)

|y – x|. (9)

So, if (
∫ T

0 p(s) ds+
∑q

k=1 ak) < 1
‖(I–Q)–1‖+1 , then by the Banach contraction mapping principle

system (2) has a unique Q-affine-periodic solution. �

4 Critial case

det(I – Q) = 0.

To investigate the existence of solutions of system (2), the following auxiliary equation
is often considered:

ẋ = λf (t, x), t �= tk , t ∈ R,

�x = λIk(x), t = tk , k ∈ Z.
(10)

Then we give the following existence theorem for (Q,T)-affine-periodic solutions by using
the topological degree theory [6, 7, 9–11].
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Theorem 4.1 Let D ⊂ Rn be a bounded open set. Assume that the following hypotheses
hold for system (10):

(H1) For each λ ∈ (0, 1], every Q-affine-periodic solution x(t) of system (10) satisfies

x(t) /∈ ∂D for all t;

(H2) the Brouwer degree,

deg
(
g, D ∩ Ker(I – Q), 0

) �= 0 if Ker(I – Q) �= 0,

where

g(a) =
1
T

[∫ T

0
Pf (s, a) ds +

∑

0≤tk <T

PIk
(
x(tk)

)]
,

with an orthogonal projection P : Rn → Ker(I – Q).
Then system (2) has at least one Q-affine-periodic solution x∗(t) ∈ D for all t.

Proof Consider the auxiliary equation (10) with the boundary value condition x(T) =
Qx(t), where λ ∈ (0, 1]. Let x(t) be any solution of (10) with x(T) = Qx(0). Then

(I – Q)x0

= –λ

[∫ T

0
f
(
s, x(s)

)
ds +

∑

0≤tk <T

Ik
(
x(tk)

)]
. (11)

In this case, (I – Q)–1 does not exist. By coordinate transformation, without loss of gen-
erality, we can just let

Q =

(
I 0
0 Q1

)

, (12)

where (I – Q1)–1 exists. Here Q = Q1 ⊕ I .
Let P : Rn → Ker(I – Q) be the orthogonal projection. Then

(I – Q)x0 = (I – Q)
(
x0

ker + x0
⊥
)

= –λ

[∫ T

0
f
(
s, x(s)

)
ds +

∑

0≤tk <T

Ik
(
x(tk)

)]

= –λ

[∫ T

0
Pf

(
s, x(s)

)
ds +

∑

0≤tk <T

PIk
(
x(tk)

)
]

– λ

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)]
, (13)

where x0
ker ∈ Ker(I – Q), x0

⊥ ∈ Im(I – Q) and x0 = x0
ker + x0

⊥.
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Let Lp = (I – Q)|Im(I–Q). It is easy to see that L–1
p exists. Thus equation (13) is equivalent

to

(I – Q)x0
ker = –λ

[∫ T

0
Pf

(
s, x(s)

)
ds +

∑

0≤tk <T

PIk
(
x(tk)

)
]

= 0,

(I – Q)x0
⊥ = –λ

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)]
.

Thus we have

x0
⊥ = λL–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)]
.

For x ∈ X such that x(t) ∈ D for all t ∈ [0, T], we define the operator T(x0
ker, x,λ) by

T
(
x0

ker, x,λ
)

=

⎛

⎜
⎝

x0
ker + 1

T [
∫ T

0 Pf (s, x(s)) ds +
∑

0≤tk <T PIk(x(tk))]
x0

ker – λL–1
p [

∫ T
0 (I – P)f (s, x(s)) ds +

∑
0≤tk <T (I – P)Ik(x(tk))]

+ λ[
∫ t

0 f (s, x(s)) ds +
∑

0≤tk <t Ik(x(tk))]

⎞

⎟
⎠ , (14)

where λ ∈ [0, 1]. We claim that each fixed point x of T in X is a solution of (10) with x(T) =
Qx(0).

In fact, if x is a fixed point of T, we have

(
x0

ker

x(t)

)

=

⎛

⎜
⎝

x0
ker + 1

T [
∫ T

0 Pf (s, x(s)) ds +
∑

0≤tk<T PIk(x(tk))]
x0

ker – λL–1
p [

∫ T
0 (I – P)f (s, x(s)) ds +

∑
0≤tk <T (I – P)Ik(x(tk))]

+ λ[
∫ t

0 f (s, x(s)) ds +
∑

0≤tk <t Ik(x(tk))]

⎞

⎟
⎠ .

Thus

1
T

[∫ T

0
Pf

(
s, x(s)

)
ds +

∑

0≤tk <T

PIk
(
x(tk)

)
]

= 0, (15)

x(t) = x0
ker – λL–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)]

+ λ

[∫ t

0
f
(
s, x(s)

)
ds +

∑

0≤tk <t

Ik
(
x(tk)

)
]

. (16)

By equation (16) we know that

x0 = x0
ker – λL–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)]
.
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According to (I – Q)x0
ker = 0, we have

Qx0 = Qx0
ker – λQL–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)
]

= x0
ker – λQL–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)]
.

Since equation (15) holds, we have

(I – Q)L–1
p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)
]

=
[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk<T

(I – P)Ik
(
x(tk)

)]

=
[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk<T

(I – P)Ik
(
x(tk)

)]

+
[∫ T

0
Pf

(
s, x(s)

)
ds +

∑

0≤tk <T

PIk
(
x(tk)

)
]

=
∫ T

0
f
(
s, x(s)

)
ds +

∑

0≤tk <T

Ik
(
x(tk)

)
.

Thus

λQL–1
p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)
]

= λL–1
p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)
]

– λ

[∫ T

0
f
(
s, x(s)

)
ds +

∑

0≤tk <T

Ik
(
x(tk)

)]
.

Then

Qx0 = x0
ker – λQL–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk<T

(I – P)Ik
(
x(tk)

)
]

= x0
ker – λL–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)]

+ λ

[∫ T

0
f
(
s, x(s)

)
ds +

∑

0≤tk <T

Ik
(
x(tk)

)]
= x(T). (17)

By equations (16) and (17), equation (11) holds. Thus,

x0
⊥ = –λL–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)]
.
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Then,

x(t) = x0
ker – λL–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)
]

+ λ

[∫ t

0
f
(
s, x(s)

)
ds +

∑

0≤tk <t

I
(
x(tk)

)]

= x0
ker + x0

⊥ + λ

[∫ t

0
f
(
s, x(s)

)
ds +

∑

0≤tk <t

Ik
(
x(tk)

)
]

= x0 + λ

[∫ t

0
f
(
s, x(s)

)
ds +

∑

0≤tk <t

Ik
(
x(tk)

)]
.

This means that the fixed point x is a solution of (10) with x(T) = Qx(0).
Now, we need to prove the existence of the fixed point of T. Take a constant M such that

M > supt∈[0,T],x∈D |f (t, x)|, and let

Xλ =
{

x ∈ X :
∣∣∣
∣
x(t) – x(r)

t – r

∣∣∣
∣ ≤ λM for all t, r ∈ (tk , tk+1], t �= r

}
.

Then, it is easy to make a retraction αλ : X → Xλ.
Define an operator T̂(x0

ker, x,λ) by

T̂
(
x0

ker, x,λ
)

=

⎛

⎜
⎝

x0
ker + 1

T [
∫ T

0 Pf (s,αλ ◦ x(s)) ds +
∑

0≤tk <T PIk(αλ ◦ x(tk))]
αλ ◦ x0

ker – λL–1
p [

∫ T
0 (I – P)f (s,αλ ◦ x(s)) ds +

∑
0≤tk <T (I – P)Ik(αλ ◦ x(tk))]

+ λ[
∫ t

0 f (s,αλ ◦ x(s)) ds +
∑

0≤tk <t Ik(αλ ◦ x(tk))]

⎞

⎟
⎠ .

(18)

Since P : Rn → Ker(I – Q), it is easy to see that

1
T

[∫ T

0
Pf

(
s, x(s)

)
ds +

∑

0≤tk <T

PIk
(
x(tk)

)] ∈ Ker(I – Q).

Also,

1
T

[∫ T

0
Pf

(
s,αλ ◦ x(s)

)
ds +

∑

0≤tk <T

PIk
(
αλ ◦ x(tk)

)
]

∈ Ker(I – Q).

Let us consider the homotopy

H
(
x0

ker, x,λ
)

= T̂
(
x0

ker, x,λ
)
, (19)

(
x0

ker, x,λ
) ∈ (

D ∩ Ker(I – Q) × D̃ × [0, 1]
)
, (20)

where D̃ = {x ∈ X : x(t) ∈ D for all t ∈ [0, T]}.
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We claim that

0 /∈ (id – H)(∂
((

D ∩ Ker(I – Q) × D̃
) × [0, 1]

)
. (21)

Suppose, on the contrary, that there exists (̂x0
ker, x̂, λ̂) ∈ ∂((D ∩ Ker(I – Q) × D̃) × [0, 1]

such that (id – H)(̂x0
ker, x̂, λ̂) = 0. Since x̂0

ker ∈ ∂D is contradictory to (H1) and since ∂(D ∩
Ker(I – Q)) ⊂ ∂D, we have that x̂0

ker /∈ ∂(D ∩ Ker(I – Q)). In other words, x̂ ∈ ∂D. Then (21)
can be proved as follows.

(i) When λ̂ = 0, by the definition of the set Xλ we have

X0 =
{

x ∈ X :
∣
∣∣
∣
x(t) – x(r)

t – r

∣
∣∣
∣ ≤ 0 for all t, r ∈ (tk , tk+1], t �= r

}
.

Hence α0 ◦ x(t) ≡ α0 ◦ x(tk+1) for all t ∈ (tk , tk+1]. Since (id – H)(̂x0
ker, x̂, 0) = 0, we have

(
x̂0

ker

x̂(t)

)

=

(
x̂0

ker + 1
T [

∫ T
0 Pf (s,αλ ◦ x(s)) ds +

∑
0≤tk <T PIk(αλ ◦ x(tk))]

α0 ◦ x̂0
ker

)

. (22)

This means that x̂(t) ≡ x̂(0) for all t ∈ [0, T]. Taking x̂(t) = p, we have α0 ◦ x̂0
ker = x̂(t) = p.

Consequently,

1
T

[∫ T

0
Pf

(
s,αλ ◦ x(s)

)
ds +

∑

0≤tk <T

PIk
(
αλ ◦ x(tk)

)]
= 0,

and this is equivalent to g(p) = 0 by the definition of g(a). Notice that x̂ ∈ ∂D̃ and D̃ = {x ∈
D for all t ∈ [0, T]}. Then there exists t0 ∈ [0, T] such that x̂(t)0 ∈ ∂D. Since x̂(t) ≡ p for all
t ∈ [0, T], we obtain that p ∈ ∂D. Thus, we have p ∈ ∂D and g(p) = 0. It is contradictory to
(H2) because the Brouwer degree deg(g, D, 0) �= 0.

(ii) When λ̂ ∈ (0, 1], as 0 = (id – H)(̂x0
ker, x̂, λ̂), we have

(
x̂0

ker

x̂(t)

)

=

⎛

⎜⎜
⎝

x̂0
ker + 1

T [
∫ T

0 Pf (s,αλ̂ ◦ x(s)) ds +
∑

0≤tk <T PIk(αλ̂ ◦ x(tk))]

αλ̂ ◦ x0
ker – λ̂L–1

p [
∫ T

0 (I – P)f (s,αλ̂ ◦ x(s)) ds +
∑

0≤tk <T (I – P)Ik(αλ̂ ◦ x(tk))]

+ λ̂[
∫ t

0 f (s,αλ̂ ◦ x(s)) ds +
∑

0≤tk <t Ik(αλ̂ ◦ x(tk))]

⎞

⎟⎟
⎠ .

Thus

1
T

[∫ T

0
Pf

(
s,αλ̂ ◦ x(s)

)
ds +

∑

0≤tk <T

PIk
(
αλ̂ ◦ x(tk)

)
]

= 0

and

x̂(t) = αλ̂ ◦ x0
ker – λ̂L–1

p

[∫ T

0
(I – P)f

(
s,αλ̂ ◦ x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
αλ̂ ◦ x(tk)

)
]

+ λ̂

[∫ t

0
f
(
s,αλ̂ ◦ x(s)

)
ds +

∑

0≤tk<t

Ik
(
αλ̂ ◦ x(tk)

)]
. (23)
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Note that

∣∣
∣∣
x(t) – x(r)

t – r

∣∣
∣∣

=
1

|t – r|
∣
∣∣
∣̂λ

∫ t

0
f
(
s,αλ̂ ◦ x̂(s)

)
ds – λ̂

∫ r

0
f
(
s,αλ̂ ◦ x̂(s)

)
ds

∣
∣∣
∣

=
1

|t – r|
∣∣
∣∣̂λ

∫ t

r
f
(
s,αλ̂ ◦ x̂(s)

)
ds

∣∣
∣∣

≤ λM.

By the definition of Xλ we obtain x̂ ∈ Xλ̂, which means that αλ̂ ◦ x̂ = x̂. Now we can
rewrite equation (23) as

x̂(t) = x0
ker – λ̂L–1

p

[∫ T

0
(I – P)f

(
s, x(s)

)
ds +

∑

0≤tk <T

(I – P)Ik
(
x(tk)

)]

+ λ̂

[∫ t

0
f
(
s, x(s)

)
ds +

∑

0≤tk <t

Ik
(
x(tk)

)
]

.

By a similar discussion of equation (16) we can prove that x̂(t) is a solution of equation
(10). By hypothesis (H1) we know that x̂(t) /∈ ∂D̃ for any t ∈ [0, T]. This is a contradiction
to x̂ ∈ ∂D̃.

By (i) and (ii) we obtain that

0 /∈ (id – H)
(
∂
((

D ∩ Ker(I – Q)
) × D̃

) × [0, 1]
)
.

Therefore, by the homotopy invariance and the theory of Brouwer degree we have

deg
(
id – H

(
x0

ker, ·, 1
)
,
(
D ∩ Ker(I – Q)

) × D̃, 0
)

= deg
(
id – H

(
x0

ker, ·, 0
)
,
(
D ∩ Ker(I – Q)

) × D̃, 0
)

= deg
(
g, D ∩ Ker(I – Q), 0

) �= 0.

This means that there exists x̂∗ ∈ D̃ such that

(
x̂0

∗ker

x̂∗(t)

)

= T̂
(
x̂0

∗ker, x̂∗(t), 1
)
. (24)

Similarly to the proof in (ii), we get x̂∗ ∈ Xλ. Then

T̂
(
x̂0

∗ker, x̂∗(t), 1
)

= T
(
x̂0

∗ker, x̂∗(t), 1
)
. (25)

By equations (24) and (25) we obtain that x̂∗ is a fixed point of T in X. Thus, x̂∗ is a solution
of system (2) with boundary value condition x(T) = Qx(0). �
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5 Numerical simulation
Example 1 Consider the system

ẋ = –|x|2x + (sinπ t, cosπ t)T , t �= N ,

�x =
(

1
e

– 1
)

x, t = N .
(26)

Set

Q =

(
–1 0
0 –1

)

.

In this example, Q = –I . System (26) has an antiperiodic solution (see Fig. 1).

Example 2 Consider the system

ẋ = –|x|2x + (sin t, cos t, 1)T , t �= N ,

�x =
(

1
e

– 1
)

x, t = N .
(27)

Figure 1 The antiperiodic solution of system (26). The green line is the trajectory of x(t) for t ∈ (0, 1], the red
line corresponds to the trajectory of Qx(t) for t ∈ (0, 1]
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Figure 2 The (Q, T )-affine-periodic solution of system (27). The black line is the trajectory of x(t) for t ∈ (0, 1],
the red line corresponds to the trajectory of Qx(t) for t ∈ (0, 1], and the green line corresponds to the
trajectory of Q2x(t) for t ∈ (0, 1]. It is easy to see that x(t) is a quasi-periodic solution of system (27)

Set

Q =

⎛

⎜
⎝

cos(2π – 1) – sin(2π – 1) 0
sin(2π – 1) cos(2π – 1) 0

0 0 1

⎞

⎟
⎠ .

Similarly to Example 1, system (26) has a (Q, 1)-affine-periodic solution., which is a
quasi-periodic solution (see Fig. 2).
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