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Abstract
A global estimate in the framework of weighted Lorentz spaces is reached for the
gradient of weak solution to a class of nonlinear elliptic obstacle problems with
partially regular nonlinearities in a bounded Reifenberg flat domain. We mainly
assume that the nonlinearities are merely measurable in one spatial variable and have
small BMO seminorms in the remaining variables and that the underlying domain is
flat in the sense of Reifenberg. As an application, we also present a global Lorentz
estimate for the gradients of weak solutions to Dirichlet problems of relevant
nonlinear elliptic equations under controlled growth in Reifenberg domains based on
the bootstrap argument.
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1 Introduction
The main goal of this paper is finding the minimal regular nonlinearities to study a global
estimate in weighted Lorentz spaces for the gradient of weak solution to a nonlinear elliptic
obstacle problem over a bounded nonsmooth domain. Let � be a bounded nonsmooth do-
main of Rd≥2 to be specified later. For a given obstacle � ∈ W 1,2(�) with � ≤ 0 a.e. on ∂�,
we denote the set of admissible functions by

A =
{
φ ∈ W 1,2

0 (�) : φ ≥ � a.e. in �
}

.

For u ∈A, we focus on considering the following variational inequalities:

ˆ
�

a(Du, x) · D(φ – u) dx ≥
ˆ

�

f · D(φ – u) dx for all φ ∈A, (1.1)

where the inhomogeneous term f is a given vector-valued function in L2(�;Rd), and the
nonlinearities a(ξ , x) : Rd ×� →R

d are, as usual, so-called Carathéodory functions satis-
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fying the following conditions:

⎧
⎨

⎩
a(ξ , x) measurable in x ∈ � for all ξ ∈R

d,

a(ξ , x) differentiable in ξ ∈R
d for almost all x ∈ �.

We call such a function u ∈A weak solution to the variational inequalities (1.1). To ensure
the solvability in L2(�) to (1.1), it is quite necessary to impose additional assumptions on
the given datum.

(H1) (ellipticity and growth) There exist two constants 0 < λ ≤ � < ∞ such that

⎧
⎨

⎩
〈Dξ a(ξ , x)η · η〉 ≥ λ|η|2,

|a(ξ , x)| + |ξ ||Dξ a(ξ , x)| ≤ �|ξ |
(1.2)

for a.e. x ∈ � and ξ ,η ∈R
d .

It is clear that relations (1.2) immediately yield the following monotonicity conditions:

a(0, x) = 0 and
〈
a(ξ , x) – a(η, x), ξ – η

〉 ≥ λ|ξ – η|2. (1.3)

With the nonlinearities satisfying (1.2), by way of classical estimate we make sure that
there exists a unique weak solution u ∈A to the variational inequality (1.1) with the usual
L2 estimate

‖Du‖L2(�) ≤ C
(‖f‖L2(�) + ‖D�‖L2(�)

)
, (1.4)

where the constant C is independent of u, f ,� , and �; see Lemma 2.1 in [6]. In this paper,
we are interested in the Calderón–Zygmund-type theory in the scale of weighted Lorentz
spaces regrading the variational inequality (1.1) by imposing some minimal regular as-
sumptions on the given datum. More precisely, we are interested in finding small partially
BMO requirements on the nonlinearities and Reifenberg flat geometric structure of the
domain to ensure the Calderón–Zygmund estimate for the gradient of weak solution in
the weighted Lorentz spaces L(p,q)

ω (�), which essentially shows that

‖Du‖L(p,q)
ω (�) ≤ C

(‖f‖L(p,q)
ω (�) + ‖D�‖L(p,q)

ω (�)

)
(1.5)

for ω ∈ Ap/2, 2 < p < ∞ and 0 < q ≤ ∞, where the constant C is independent of u, f , and � .
A key ingredient under consideration concerning the nonlinearities a(ξ , x), apart from

C1 in ξ is that we also require them to be small BMO of codimension one with respect
to the spatial variable x, which means that, in a neighborhood of each point in �, there
is a local coordinate system such that a(ξ , x) is only measurable in one direction and has
small bounded mean oscillation in the remaining (n – 1) orthogonal directions. In fact,
this was first introduced by Kim and Krylov [21], and later employed by Dong and Kim
[11–13] and Byun and Wang [8] in the study of weighted Lp theory for divergence and
nondivergence of linear elliptic and parabolic equations/systems. It has actually proved to
be a sort of minimal regular requirement imposed on the leading coefficients of the el-
liptic operator to ensure a satisfactory Calderón–Zygmund theory for all p > 1. Here, we
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would also like to point out that Byun and Palagachev [8] derived a global weighted W 1,p-
estimate for 2 < p < ∞ to Dirichlet problems of linear elliptic equations in Reifenberg flat
domains, provided that the coefficients are vanishing of codimension one (also called small
partially BMO) based on a different geometric approach instead of the pointwise estimates
of sharp functions from Dong, Kim and Krylov’s papers. Furthermore, we also remarked
that Byun et al. have employed their argument to derive Lp estimates to Dirichlet problems
of quasilinear principal coefficients aij(x, u) (see [9]) and nonlinearities a(x, Du) (see [7])
with small partially BMO “coefficients” in x-variables. Very recently, Erhardt [14] obtained
a local Calderón–Zygmund estimate for localizable solutions of parabolic obstacle prob-
lems with nonstandard growth, and Liang and Zheng [22]showed the W 1,γ (·)-regularity
for nonlinear nonuniformly elliptic equations with small BMO coefficients.

As a refined version of Lebesgue spaces, Lorentz spaces are a two-parameter scale of
spaces [3, 24]. The regularity in Lorentz spaces concerning partial differential equations
was originated from Talenti’s work [28] based on symmetrization. Since then, there is a
lot of papers to study the Lorentz regularity of various problems of PDEs; see some re-
cent references in [2, 4, 5, 23], and we also refer the reader to Xiao [32], who character-
ized a nonnegative Radon measure μ on R

d to produce a continuous map Iα from the
Lorentz space L(p,1) to the Lebesgue space Lp

μ. We would like to mention that Baroni [4, 5]
showed the Lorentz estimates for evolutionary p-Laplacian systems and obstacle parabolic
p-Laplacian, respectively, by using the large-M-inequality principle introduced by Acerbi
and Mingione [1]. Meanwhile, Mengesha and Phuc [23] and Zhang and Zhou [33] attained
gradient estimates in weighted Lorentz spaces for quasilinear elliptic p-Laplacian and p(x)-
Laplacian equations based on a rather different geometrical approach used in [8], respec-
tively. Tian and Zheng [29, 30] very recently derived a globally weighted Lorentz estimate
and a variable Lorentz estimate to linear elliptic problems over Reifenberg flat domains
under the assumptions of partially BMO coefficients, respectively. In addition, Zhang and
Zheng [34] studied weighted Lorentz estimates of the Hessian of strong solution for non-
divergent linear elliptic equations with partially BMO coefficients. We notice that in these
papers concerning nonlinear problems mentioned, an important regular assumption on
the “nonlinearity coefficients” is VMO or small BMO in all x beyond the settings of linear
PDEs.

Motivated by recent progress [7, 9] in particular involved in partially regular coefficients
to nonlinear problems, in the present paper, we essentially want to study the Lorentz es-
timates (1.5) to the variational inequalities (1.1) and relevant nonlinear elliptic equations
with controlled growth under the minimal assumption with partially regular nonlineari-
ties a(ξ , x). More precisely, we assume that there is no regular requirement on the nonlin-
earities a(ξ , x) with respect to the variable x1, which implies that the nonlinearities a(ξ , x)
might have jumps along the x1 variable, whereas the nonlinearities a(ξ , x) are controlled
in terms of small BMO, such as small multipliers of the Heaviside step function, along
the remaining variables. Of course, our consideration is a natural outgrowth of Byun and
Kim’s paper [7] concerning the Calderón–Zygmund estimate for nonlinear elliptic prob-
lems with measurable nonlinearities. Here we would like to mention that this is a kind of
minimal regular requirement on the “coefficients” even for the settings of linear equations
in accordance with the famous counterexample by Ural’tseva [31], who constructed an
example of an equation in R

d (d ≥ 3) with the coefficients depending only on the first two
coordinates, so that we get that there is no unique solvability in Sobolev spaces W 1,p for
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any p > 1. Its particular interest under consideration is due to a subtle link with applica-
tion to medium composite materials [20]. Also, these are closely related to some important
problems arising in modeling of deformations in composite materials, in the mechanics
of membranes and films of simple nonhomogeneous materials that form linear laminated
medium [26].

Before stating main results, let us recall some basic concepts and facts. In the context,
let us denote a type point by x = (x1, . . . , xd) = (x1, x′) ∈R

d with x′ = (x2, . . . , xd). Set

Br(x) =
{

y ∈R
d : |x – y| < r

}
, B′

r
(
x′) =

{
y′ ∈R

d–1 :
∣∣x′ – y′∣∣ < r

}
,

and a typical cylinder

Qr(x) = (x1 – r, x1 + r) × B′
r
(
x′).

For convenience, we sometimes write Br = Br(0) and B′
r = B′

r(0′). We denote the average of
f on Qr with r > 0 by

 
Qr

f (x) dx =
1

|Qr|
ˆ

Qr

f (x) dx,

where |Qr| is the d-dimensional Lebesgue measure of Qr , and we also denote the (d – 1)-
dimensional average with respect to x′ by

f̄B′
r (x1) =

 
B′

r

f
(
x1, x′)dx′ =

1
|B′

r|
ˆ

B′
r

f
(
x1, x′)dx′

with |B′
r| as the (d – 1)-dimensional Lebesgue measure of B′

r . We are now in a position
to impose an additional partially regular assumption on the nonlinearities a(ξ , x) just like
in [7]. For this, we recall the function β(a, Qr)(x) on Qr with r > 0 defined by

β(a, Qr)(x) = sup
ξ∈Rd\{0}

|a(ξ , x) – āB′
r (ξ , x1)|

|ξ | .

Assumption 1.1 We say that (a(ξ , x),�) is (δ, R0)-vanishing of codimension one if for
every point x0 ∈ �, there exists a constant R0 > 0 such that, for any 0 < r ≤ R0 with

dist(x0, ∂�) = min
z∈∂�

dist(x0, z) >
√

2r,

there exists a coordinate system depending only on x0 and r, whose variables are still de-
noted by x, such that, in the new coordinate system with x0 as the origin,

 
Qr

∣∣β(a, Qr)(x)
∣∣2 dx ≤ δ2;

whereas, for x0 ∈ � with

dist(x0, ∂�) = min
z∈∂�

dist(x0, z) = dist(x0, z0) ≤ √
2r,
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where z0 ∈ ∂�, there exists a coordinate system depending on x0 and 0 < r < R0 such that,
in the new coordinate system with z0 as the origin,

Q3r ∩ {x1 ≥ 3δr} ⊂ Q3r ∩ � ⊂ Q3r ∩ {x1 ≥ –3δr} (1.6)

and
 

Q3r

∣∣β(a, Q3r)(x)
∣∣2 dx ≤ δ2, (1.7)

where a(x, ξ ) is zero extended from Q3r ∩� to Q3r , and the parameter δ > 0 will be specified
later.

Here we point out that the boundary geometric structure (1.6) implies that � is a (δ, R)-
Reifenberg flat domain. It is also obvious that this is an A-type domain with the relations

sup
0<r≤R

sup
y∈�

|Br(y)|
|Br(y) ∩ �| ≤

(
2

1 – δ

)n

≤
(

16
7

)n

(1.8)

for 0 < δ < 1
8 by a scaling transformation [10].

Considering that our estimates are concerned with the weighted Lorentz spaces, it is
necessary to recall some basic definitions involved in weight functions and Lorentz spaces.

Definition 1.2 For 1 < s < ∞, a nonnegative function ω(x) ∈ L1
loc(Rd) is called a weight in

Muckenhoupt class As, denoted by ω ∈ As, if

[ω]s = sup
B

( 
B
ω(x) dx

)( 
B
ω

–1
s–1 (x) dx

)s–1

< ∞, (1.9)

where the supremum is taken over all balls B ⊂R
d , and the constant [ω]s is referred to be

the As constant of ω.

For a given measurable set E ⊂R
d and weight ω, we set

ω(E) =
ˆ

E
ω(x) dx.

Definition 1.3 Let E be an open subset inR
d , and let ω be a weight function. The weighted

Lorentz space L(p,q)
ω (E) with p ∈ [1, +∞) and q ∈ (0, +∞) is the set of measurable functions

g : E →R
d such that

‖g‖L(p,q)
ω (E) :=

(
p
ˆ ∞

0

(
γ pω

({
x ∈ E :

∣∣g(x)
∣∣ > γ

})) q
p dγ

γ

) 1
q

< +∞.

For q = ∞, the space L(p,∞)
ω (E) is the classical Marcinkiewicz space with quasinorm

‖g‖L(p,∞)
ω (E) := sup

γ >0

(
γ pω

({
x ∈ E :

∣∣g(x)
∣∣ > γ

})) 1
p < +∞.



Tian et al. Boundary Value Problems  (2018) 2018:115 Page 6 of 29

It is rather clear that if p = q, then the Lorentz space L(p,p)
ω (E) is nothing but the usual

weighted Lebesgue space Lp
ω(E), which is equivalently defined by

‖g‖Lp
ω(E) =

(ˆ
E

∣∣g(x)
∣∣p

ω(x) dx
) 1

p
< +∞;

more specifically, if ω(x) = 1, then ω(E) =
´

E dx = |E|, which implies

L(p,q)
ω (E) = L(p,q)(E) and Lp

ω(E) = Lp(E). (1.10)

We are now ready to summarize our main result.

Theorem 1.4 Let ω ∈ Ap/2 be a weight function with 2 < p < ∞. For 0 < q ≤ ∞ and R0 >
0, there exists a positive constant δ = δ(d, p, q,λ,�, [ω]p/2) such that (a(ξ , x),�) satisfies
(δ, R0)-vanishing of codimension one (Assumption 1.1). If |f| and |D�| ∈ L(p,q)

ω (�), then,
for a weak solution u ∈ A of variational inequalities (1.1) satisfying (H1), we have |Du| ∈
L(p,q)

ω (�) with the estimate

‖Du‖L(p,q)
ω (�) ≤ C

(‖f‖L(p,q)
ω (�) + ‖D�‖L(p,q)

ω (�)

)
, (1.11)

where the constant C is independent of u, f , and � .

As a consequence of Theorem 1.4, by taking a special weight we also get the following
Lorentz–Morrey estimate for the gradient of weak solution to variational inequalities (1.1).
Let us recall the so-called Lorentz–Morrey spaces Lp,q;θ (E) for 1 < p < ∞, 0 < q ≤ ∞, and
0 < θ ≤ d. We say that g(x) ∈ L(p,q)(E) belongs to Lp,q;θ (E) if for δ = diam(E), we have

‖g‖Lp,q;θ (E) := sup
z∈E,0<r<δ

r
θ–d

p ‖g‖L(p,q)(Br(z)∩E) < +∞.

Clearly, Lp,q;θ (E) ⊂ L(p,q)(E) for all θ ∈ (0, d]. For p = q, the space Lp,q;θ (E) is the usual
Morrey space Lp;θ (E); see [15, 16].

Corollary 1.5 For 2 < p < ∞, 0 < q ≤ ∞, 0 < θ ≤ d, and R0 > 0, there exists a positive con-
stant δ = δ(d, p, q, θ ,λ,�) such that (a(ξ , x),�) satisfies (δ, R0)-vanishing of codimension one
(Assumption 1.1). If |f| and |D�| ∈ Lp,q;θ (�), then, for weak solution u ∈ A of variational
inequalities (1.1) satisfying (H1), we have |Du| ∈Lp,q;θ (�) with the estimate

‖Du‖Lp,q;θ (�) ≤ C
(‖f‖Lp,q;θ (�) + ‖D�‖Lp,q;θ (�)

)
, (1.12)

where the constant C is independent of u, f , and � .

Finally, as an application of main Theorem 1.4, we further present a global Lorentz es-
timate to the following Dirichlet problem for nonlinear elliptic equations with controlled
growth under very weak assumptions on given datum. Let us consider the Dirichlet prob-
lem

⎧
⎨

⎩
– div(a(Du, x)) = B(Du, x) in �,

u = 0 on ∂�,
(1.13)
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where the nonlinearities a(ξ , x): Rd × � → R
d satisfy the hypothesis (1.2), and B(ξ , x):

R
d × � →R satisfies the following controlled growth condition:
(H2) (controlled growth) There exist a constant μ > 0 and a nonnegative function

ψ ∈ L(p,q)(�) (1.14)

with p ≥ 2d
d+2 and 0 < q ≤ ∞ such that

∣∣B(ξ , x)
∣∣ ≤ μ

(
ψ(x) + |ξ | d+2

d
)

(1.15)

for a.e. x ∈ � and all ξ ∈ R
d , where inequality (1.15) is usually said to be the controlled

growth.
This problem is inspired by the following achievements on this topic. It is well known

that nonlinear PDEs with controlled growth were always very important research subjects
coming from variational problems [17, 18]. Regarding the setting with discontinuous co-
efficients, Zheng and Feng [35] showed an optimal Hölder regularity of weak solutions to
quasilinear elliptic systems under controlled growth with VMO coefficients. Later, Dong
and Kim [12] obtained an Lp estimate for quasilinear elliptic equations under controlled
growth with coefficients satisfying VMO in spatial variables. Also, Byun and Palagachev
derived a refined Morrey regularity for the gradient of weak solution to a quasilinear el-
liptic equation with lower-order term of Riccati type under the assumption of partially
BMO nonlinearity in x (small BMO in the remainders except an independent variable, say
x1), and very recently they also dealt with the Sobolev–Morrey estimate for general quasi-
linear equations of p-Laplacian type with BMO nonlinearities in all x under controlled
growth. Here, our aim under consideration is to attain a global Lorentz gradient estimate
to problem (1.13) over Reifenberg flat domain under a very weak regular Assumption 1.1,
based on an elaborate bootstrap argument, which implies that

ψ ∈ L(p,q)(�) �⇒ Du ∈ L(p∗ ,q)(�)

with

p∗ =

⎧
⎨

⎩

dp
d–p ≥ 2 if p < d,

any number > p if p ≥ d.
(1.16)

More precisely, we have the following:

Theorem 1.6 Let u ∈ W 1,2
0 (�) be a weak solution to Dirichlet problem (1.13) with non-

linear structural conditions (H1) and (H2) and R0 > 0. There exists a positive constant
δ = δ(d, p, q,λ,�,μ) such that if (a(ξ , x),�) satisfies (δ, R0)-vanishing of codimension one as
in Assumption 1.1, then we have that the gradient Du belongs to an appropriate Lorentz
space:

Du ∈ L(p∗ ,q)(�)

for any p ≥ 2d
d+2 and 0 < q ≤ ∞.
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Here, we would like to point out that there is no usual restriction with p > d
2 to Dirichlet

problem (1.13) since we do not employ the boundedness of weak solution of (1.13). In
fact, this makes the weak solution of (1.13) possibly unbounded since it is invalid for the
De Giorgi–Moser–Nash iterating argument in p ≤ d

2 . Finally, we complete the proof by
enhancing the index of gradient integrability of weak solution to the linearized problem
in accordance with a successive application of the bootstrapping argument. Also, we would
remark that in the particular case p = q, Theorem 1.6 is just a classical Calderón–Zygmund
property of (1.13) also in the framework of Lebesgue scales as in [12].

The remainder of this paper is organized as follows. We denote by C(d,μ,�, . . .) and
Ni(d,μ,�, ∂�, . . .) for i = 1, 2, . . . universal constants depending only on prescribed quan-
tities and possibly varying from line to line. We recall some usual auxiliary results in the
next section. In Sect. 3, we show local interior and boundary estimates of the gradient
to weak solution of the reference problem to variational inequality (1.1). We prove main
Theorem 1.4 and Corollary 1.5 in Sect. 4. Finally, we give a proof of Theorem 1.6 regarding
the Dirichlet problem (1.13) with controlled growth in Sect. 5.

2 Preliminaries
This section mainly presents some usual preliminary facts. We begin with recalling the
following invariance properties of variational inequality (1.1) under scaling, translation,
and normalization. It is obvious that we get them similarly to Lemma 3.1 in [7] since we
only add the restriction on the obstacle function.

Lemma 2.1 For all M, τ > 0, we define the normalization by

aτ
M(ξ , x) :=

a(Mξ , τx + x0)
M

, uτ
M(x) =

u(τx + x0)
τM

,

fτ
M(x) =

f(τx + x0)
M

, �τ
M(x) =

�(τx + x0)
τM

and

�τ =
{

(x – x0)/τ : x ∈ �
}

, Aτ
M =

{
φ ∈ W 1,2

0
(
�τ

)
: φ ≥ �τ

M a.e. in x ∈ �τ
}

.

Then
(i) If u ∈A is a weak solution of

ˆ
�

a(Du, x) · D(φ – u) dx ≥
ˆ

�

f · D(φ – u) dx,

then uτ
M ∈Aτ

M is also a weak solution of

ˆ
�τ

aτ
M

(
Duτ

M, x
) · D

(
φ – uτ

M
)

dx ≥
ˆ

�τ

fτ
M · D

(
φ – uτ

M
)

dx.

(ii) If (a(ξ , x),�) is (δ, R0)-vanishing of codimension one, then (aτ
M(ξ , x),�τ ) is

(δ, R0/τ )-vanishing of codimension one. Moreover, aτ
M(ξ , x) satisfies (1.2) for the same

constants λ and �.
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The following doubling-type property of the As weights is a useful way to the transfor-
mation between the Lebesgue measure and weight measure As; see [8, 27].

Lemma 2.2 Let ω ∈ As with 1 < s < ∞. Then there exist positive constants C and σ ∈ (0, 1),
depending only on d, s, and [ω]s, such that

1
C

( |E|
|B|

)s

≤ ω(E)
ω(B)

≤ C
( |E|

|B|
)σ

for any ball B and measurable subset E ⊂ B.

Next, we present a summary of embedding relations involving the Lorentz spaces that
will be useful in the proofs; see [23, Proposition 3.9], [4, Sect. 3.2], and [19, Sects. 1.1 and
1.4].

Proposition 2.3 Let E be a bounded measurable subset of Rd , and let ω be an As weight
for 1 < s < ∞. Then:

(i) If 0 < q2 ≤ ∞ and 1 < p1 < p2 < ∞, then L(p2,q2)
ω (E) ⊂ Lp1

ω (E) and

‖g‖Lp1
ω (E) ≤ C(p1, p2, q2)ω(E)

1
p1

– 1
p2 ‖g‖

L(p2,q2)
ω (E)

. (2.1)

(ii) If 1 < p < ∞ and 0 < q1 < q2 ≤ ∞, then L(p,q1)
ω (E) ⊂ L(p,q2)

ω (E) ⊂ L(p,∞)
ω (E) and

‖g‖
L(p,q2)
ω (E)

≤ C(p, q1, q2)‖g‖
L(p,q1)
ω (E)

. (2.2)

(iii) If |g|σ ∈ L(p,q)
ω (E) for some 0 < σ < ∞, then g ∈ L(σp,σq)

ω (E) with the estimate

∥∥|g|σ ∥∥
L(p,q)
ω (E) = ‖g‖σ

L(σp,σq)
ω (E)

.

(iv) If f , g ∈ L(p,q)
ω (E), then f + g ∈ L(p,q)

ω (E) with the estimate

‖f + g‖L(p,q)
ω (E) ≤ C(p, q)

(‖f ‖L(p,q)
ω (E) + ‖g‖L(p,q)

ω (E)

)
.

Consequently, for a weight ω ∈ As with 1 < s < ∞, if 1 < p < ∞ and 0 < q ≤ ∞, then, for
any bounded domain E, by Proposition 2.3 we have

L(p,q)
ω (E) ⊂ L(p,∞)

ω (E) ⊂ Lp–ε
ω (E) ⊂ L1(E)

for any ε > 0 such that p – ε > 1.
It is an important tool for us to describe an elementary characterization of functions in

the scale of weighted Lorentz spaces based on the level set of a distributional function;
see [23, Lemma 3.12]. For completeness, here we briefly prove it by the classical measure
theory, which is similar to the idea of proof in [23, Lemma 3.12].

Lemma 2.4 Suppose that ω is an As weight for some 1 < s < ∞ and g is a nonnegative
measurable function in a bounded domain E ⊂R

d . Let θ > 0 and T > 1 be constants. Then,
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for 1 ≤ p < ∞ and 0 < q < ∞, we have

g(x) ∈ L(p,q)
ω (E) ⇐⇒ S :=

∑

k≥1

Tkqω
({

x ∈ E :
∣∣g(x)

∣∣ > θTk}) q
p < +∞

and

C–1S ≤ ∥∥g(x)
∥∥q

L(p,q)
ω (E)

≤ C
(
ω(E)

q
p + S

)
, (2.3)

where C > 0 is a constant depending only on θ , T , p, and q. Analogously, for 1 < p < ∞ and
q = ∞, we have

C–1L ≤ ∥∥g(x)
∥∥

L(p,∞)
ω (E) ≤ C

(
ω(E)

1
p + L

)
, (2.4)

where

L := sup
k≥1

Tkω
({

x ∈ E :
∣∣g(x)

∣∣ > θTk}) 1
p .

Proof We begin with the case 0 < q < ∞. Let θ > 0 and T > 1. From the definition of the
weighted Lorentz spaces we have

‖g‖q
L(p,q)
ω (E)

= p
ˆ θT

0

(
αpω

({
x ∈ E :

∣∣g(x)
∣∣ > α

})) q
p dα

α

+ p
ˆ ∞

θT

(
αpω

({
x ∈ E :

∣∣g(x)
∣∣ > α

})) q
p dα

α

:= I1 + I2.

To estimate I1, we get

I1 ≤ ω(E)
q
p p

ˆ θT

0
αq–1 dα ≤ p

q
(θT)qω(E)

q
p .

To estimate I2, we get

I2 = p
ˆ ∞

θT
αq–1ω

({
x ∈ E :

∣∣g(x)
∣∣ > α

}) q
p dα

= p
∑

k≥1

ˆ θTk+1

θTk
αq–1ω

({
x ∈ E :

∣∣g(x)
∣∣ > α

}) q
p dα

≤ p
q

∑

k≥1

ω
({

x ∈ E :
∣∣g(x)

∣∣ > θTk}) q
p
(
θTk)q(Tq – 1

)

=
p
q
θq(Tq – 1

)∑

k≥1

Tkqω
({

x ∈ E :
∣∣g(x)

∣∣ > θTk}) q
p

:=
p
q
θq(Tq – 1

)
S.
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Now, putting the estimates of I1 and I2 together, we deduce

‖g‖q
L(p,q)
ω (E)

≤ C
(
ω(E)

q
p + S

)
, (2.5)

where C depends only on q, p, θ , and T . Conversely, we observe that

p
ˆ θTk

θTk–1
αq–1ω

({
x ∈ E :

∣∣g(x)
∣∣ > α

}) q
p dα

≥ p
q
ω

({
x ∈ E :

∣∣g(x)
∣∣ > θTk}) q

p
(
θTk)q

(
1 –

1
Tq

)

=
p
q
θq

(
1 –

1
Tq

)
Tkqω

({
x ∈ E :

∣∣g(x)
∣∣ > θTk}) q

p .

Therefore, by summing up with k ≥ 1 we have

p
q
θq

(
1 –

1
Tq

)∑

k≥1

Tkqω
({

x ∈ E :
∣∣g(x)

∣∣ > θTk}) q
p

≤
∑

k≥1

p
ˆ θTk

θTk–1
αq–1ω

({
x ∈ E :

∣∣g(x)
∣∣ > α

}) q
p dα

= p
ˆ ∞

θ

(
αpω

({
x ∈ E :

∣∣g(x)
∣∣ > α

})) q
p dα

α

≤ p
ˆ ∞

0

(
αpω

({
x ∈ E :

∣∣g(x)
∣∣ > α

})) q
p dα

α
= ‖g‖q

L(p,q)
ω (E)

,

which implies

‖g‖q
L(p,q)
ω (E)

≥ CS. (2.6)

Putting estimates (2.5) and (2.6) together yields (2.3).
On the other hand, we see that (2.4) also holds for the case q = ∞ by a similar argument

as in the case 0 < q < ∞, which completes the proof. �

Our argument also rests on the classical Hardy–Littlewood maximal function. For a
function f ∈ L1

loc(Rd), the Hardy–Littlewood maximal function of f is defined by

Mf (x) = sup
r>0

 
Br(x)

∣∣f (y)
∣∣dy. (2.7)

If f is not defined outside a bounded domain E, then

MEf = M(f χE)

for the standard characteristic function χ on E.
Finally, for the relation between the boundedness of Hardy–Littlewood maximal op-

erator M in the weighted Lorentz spaces and the Muckenhoupt class Ap, see [23,
Lemma 3.11].
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Theorem 2.5 Let ω ∈ Ap, 1 < p < ∞. For any 0 < q ≤ ∞, there exists a positive constant
C = C(d, p, q, [ω]p) such that

‖Mf ‖L(p,q)
ω (Rd) ≤ C‖f ‖L(p,q)

ω (Rd) (2.8)

for all f ∈ L(p,q)
ω (Rd). Conversely, if (2.8) holds for all f ∈ L(p,q)

ω (Rd), then ω is an Ap weight.

3 Approximating the reference problems
In this section, we collect some related facts which are used to approximate weak solution
of the variational inequalities (1.1). The following lemma presents a comparison princi-
ple, which is needed later to ensure that each of the solution satisfies the admissible test
functions for the variational inequalities with the same obstacle condition.

Lemma 3.1 Let E ⊂R
d be a bounded domain. Suppose that � and w ∈ W 1,2(E) satisfy

⎧
⎨

⎩
– div(a(D� , x)) ≤ – div(a(Dw, x)) in E,

� ≤ w on ∂E,
(3.1)

where (1.2) is in force. Then, we have � ≤ w a.e. on E.

Proof We first rewrite the inequality of (3.1) in the sense of distributions:

ˆ
E

(
a(D� , x) – a(Dw, x)

)
Dϕ dx ≤ 0, (3.2)

where ϕ ∈ W 1,2
0 (E) and ϕ(x) ≥ 0 for a.e. x ∈ E. As usual, let us denote f + := max{f , 0}. Note

that � ≤ w on the boundary ∂E. Then the function ϕ = (� – w)+ ∈ W 1,2
0 (E) is admissible

in (3.2), and so we obtain
ˆ

E

(
a(D� , x) – a(Dw, x)

)
D

(
(� – w)+)

dx ≤ 0,

which implies

ˆ
E∩{�>w}

(
a(D� , x) – a(Dw, x)

)
D(� – w) dx ≤ 0.

Considering the monotonicity (1.3) of the vector field a, it infers that the integral on the
left-hand side is nonnegative. Indeed, since (� – w)+ = 0, we have a.e. that D((� – w)+) = 0,
whereas on the set where (� – w)+ �= 0, we can use (1.3) to obtain

ˆ
E∩{�>w}

∣∣D(� – w)
∣∣2 dx ≤ 1

λ

ˆ
E∩{�>w}

(
a(D� , x) – a(Dw, x)

)
D(� – w) dx ≤ 0,

which yields

ˆ
E

∣∣D
(
(� – w)+)∣∣2 dx ≤ 0.

This allows us to obtain � ≤ w a.e. on E. �
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3.1 Interior estimates
We start with an interior estimate to variational inequalities (1.1). To this end, without
loss of generality, by a normalized argument of Lemma 2.1 we let

Q6 ⊂ � (3.3)

and assume that
 

Q6

∣∣β(a; Q6)(x)
∣∣2 dx ≤ δ2 and

 
Q6

(
|Du|2 +

1
δ2

(|f|2 + |D�|2)
)

dx ≤ 1, (3.4)

where δ is a constant to be determined later. Under the assumptions (3.3) and (3.4), we
compare u ∈A to a weak solution k ∈ W 1,2(Q6) of

⎧
⎨

⎩
– div(a(Dk, x)) = – div(a(D� , x)) in Q6,

k = u on ∂Q6.
(3.5)

Lemma 3.2 Let u ∈ A be a weak solution to variational inequalities (1.1), and let k ∈
W 1,2(Q6) be a weak solution of (3.5). Under assumptions (3.3) and (3.4), we have

 
Q6

∣∣D(u – k)
∣∣2 dx ≤ Cδ2, (3.6)

where C = C(λ,�) is a positive constant.

Proof By recalling Lemma 3.1, let k = u ≥ � a.e. on ∂Q6, then k ≥ � a.e. in Q6. We extend
k to �\Q6 by u so that k ∈A and k – u = 0 in �\Q6. Then, from the variation inequalities
(1.1) with φ = k it follows that

ˆ
Q6

a(Du, x) · D(k – u) dx ≥
ˆ

Q6

f · D(k – u) dx. (3.7)

Let us put (3.7) and (3.5) together and take ϕ = k – u ∈ W 1,2
0 (Q6) as a test function. Then

we obtain
ˆ

Q6

(
a(Dk, x) – a(Du, x)

) · D(k – u) dx ≤
ˆ

Q6

(
a(D� , x) – f

) · D(k – u) dx. (3.8)

Monotonicity condition (1.3) yields

λ

ˆ
Q6

∣∣D(k – u)
∣∣2 dx ≤

ˆ
Q6

(
a(Dk, x) – a(Du, x)

) · D(k – u) dx.

Thanks to the structural growth (1.2) and Young’s inequality, we have

ˆ
Q6

(
a(D� , x) – f

) · D(k – u) dx

≤ λ

2

ˆ
Q6

∣∣D(k – u)
∣∣2 dx + C(λ)

ˆ
Q6

(
�2|D�|2 + |f|2)dx.
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By combining the last two estimates with (3.8) it follows that

 
Q6

∣∣D(k – u)
∣∣2 dx ≤ C(λ,�)

 
Q6

(|D�|2 + |f|2)dx ≤ C(λ,�)δ2, (3.9)

where the last inequality is due to assumption (3.4) and completes this proof. �

Let us take F = a(D� , x). By the growth (1.2) and a priori assumption (3.4) we get

 
Q6

|F|2 dx =
 

Q6

∣∣a(D� , x)
∣∣2 dx ≤

 
Q6

�2|D�|2 dx ≤ �2δ2 = δ̄2

with δ̄ = �δ. Next, we consider the local limiting problem

⎧
⎨

⎩
– div(ā(Dv, x1)) = 0 in Q4,

v = k on ∂Q4.
(3.10)

Employing assumption (3.4) and the standard L2 estimates (3.5) in (3.10), we deduce

 
Q4

|Dv|2 dx ≤ C
 

Q4

|Dk|2 dx ≤ C
 

Q6

|Dk|2 dx ≤ C
 

Q6

|Du|2 dx ≤ C. (3.11)

Then, a sufficient regularity to a weak solution of limiting problem (3.10) was derived by
the following interior W 1,∞-estimate; see Lemma 4.6 in [7].

Lemma 3.3 Let v ∈ W 1,2(Q4) be a weak solution of problem (3.10). Then there exists a
positive constant N1 = N1(d,λ,�) such that

‖Dv‖L∞(Q2) ≤ N1. (3.12)

In what follows, we also need an approximating lemma; see [7, Sect. 5].

Lemma 3.4 Let k ∈ W 1,2(Q5) be a weak solution of (3.5) with F = a(D� , x), and let
v ∈ W 1,2(Q4) be a weak solution of (3.10). Then, under assumptions (3.3) and (3.4) and
Assumption 1.1, we have

 
Q4

∣∣D(k – v)
∣∣2 dx ≤ Cδσ1 (3.13)

for some σ1 = σ1(d,λ,�) > 0 and C = C(λ,�).

With Lemmas 3.2 and 3.4 in hand, we immediately conclude the following interior com-
parison estimate.

Lemma 3.5 Let u ∈ A be a weak solution to the variational inequalities (1.1), and let v ∈
W 1,2(Q4) be a weak solution of (3.10). For any 0 < ε < 1, there exists a positive constant δ

satisfying Assumption 1.1. Then, under assumptions (3.3) and (3.4), we have

 
Q4

∣
∣D(u – v)

∣
∣2 dx ≤ ε2. (3.14)
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Proof Note that

 
Q4

∣∣D(u – v)
∣∣2 dx ≤ 2

( 
Q4

∣∣D(u – k)
∣∣2 dx +

 
Q4

∣∣D(k – v)
∣∣2 dx

)
.

Putting it into Lemmas 3.2 and 3.4, we obtain

 
Q4

∣∣D(u – v)
∣∣2 dx ≤ C

(
δ2 + δσ1

)
.

Finally, taking δ small enough so that C(δ2 + δσ1 ) < ε2 leads to the conclusion (3.14). �

3.2 Boundary estimates
We are now in a position to study local boundary estimates for variational inequalities
(1.1). For this, let us denote

�r = � ∩ Qr , ∂�r = (Qr ∩ ∂�) ∪ (∂Qr ∩ �).

Since (a(ξ , x),�) is (δ, R0)-vanishing of codimension one as in Assumption 1.1, without
loss of generality, we let

Q+
6 ⊂ �6 ⊂ Q6 ∩ {x : x1 > –12δ} (3.15)

and
 

�6

∣∣β(a;�6)(x)
∣∣2 dx ≤ δ2. (3.16)

Similarly, by a normalized argument of Lemma 2.1, we further assume

 
�6

(
|Du|2 +

1
δ2

(|f|2 + |D�|2)
)

dx ≤ 1, (3.17)

where δ > 0 is a small constant to be determined later. Under assumptions (3.15)–(3.17),
we compare u ∈A to a weak solution k ∈ W 1,2(�6) of

⎧
⎨

⎩
– div(a(Dk, x)) = – div(a(D� , x)) in �6,

k = u on ∂�6.
(3.18)

Here our argument follows the line of the proof of interior estimate just as in Lemma 3.2,
and we easily get the following local boundary estimate.

Lemma 3.6 Let u ∈A be a weak solution to variational inequalities (1.1). Under assump-
tions (3.15)–(3.17), there exists a weak solution k ∈ W 1,2(�6) of (3.18) satisfying

 
�6

∣∣D(u – k)
∣∣2 dx ≤ Cδ2,

where C = C(λ,�).
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Additionally, letting F = a(D� , x), we get

 
�6

|F|2 dx =
 

�6

∣∣a(D� , x)
∣∣2 dx ≤

 
�6

�2|D�|2 dx ≤ �2δ2 = δ̄2

with δ̄ = �δ.
Consider a limiting problem in accordance with (3.15):

⎧
⎨

⎩
– div(ā(Dv, x1)) = 0 in Q+

4 ,

v = 0 on Q4 ∩ {x1 = 0}.
(3.19)

Also, we use the boundary W 1,∞-regularity for a weak solution of problem (3.19) from
Byun et al. [7]. We extend v from Q+

4 to �4 by zero extension and get that v = 0 on Q4 ∩{x1 =
0} in the trace sense; for details, see Lemma 5.9 in [7] and the references therein.

Lemma 3.7 Let k ∈ W 1,2(�6) be a weak solution of (3.18) with F = a(D� , x). For any 0 <
ε1 < 1, we can choose a small positive constant δ such that Assumption 1.1 holds. Then,
under assumptions (3.15)–(3.17), there exists a weak solution v ∈ W 1,2(Q+

4 ) of (3.19) with

 
�4

∣∣D(k – v̄)
∣∣2 dx ≤ ε2

1, ‖Dv̄‖L∞(�2) ≤ N2,

where v̄ is zero extension of v from Q+
4 to �4, and the constant N2 = N2(d,λ,�).

By a transitive action according to Lemmas 3.6 and 3.7, the boundary comparison esti-
mate and Lipschitz boundedness for a weak solution of the limiting problem (3.19) are
immediate conclusions.

Lemma 3.8 Let u ∈ A be a weak solution to the variational inequalities (1.1). For any
0 < ε < 1, we can choose a positive constant δ making Assumption 1.1 true. Then, under
assumptions (3.15)–(3.17), there exists a weak solution v ∈ W 1,2(Q+

4 ) of (3.19) such that

 
�4

∣∣D(u – v̄)
∣∣2 dx ≤ ε2, ‖Dv̄‖L∞(�2) ≤ N2, (3.20)

where v̄ is zero extension of v from Q+
4 to �4, and N2 = N2(d,λ,�) as in Lemma 3.7.

Proof Note that

 
�4

∣∣D(u – v̄)
∣∣2 dx ≤ 2

( 
�4

∣∣D(u – k)
∣∣2 dx +

 
�4

∣∣D(k – v̄)
∣∣2 dx

)
.

Putting it into Lemmas 3.6 and 3.7, we obtain

 
�4

∣
∣D(u – v̄)

∣
∣2 dx ≤ C

(
δ2 + ε2

1
)
.

Finally, we take δ and ε1 small enough to arrive at the conclusion (3.20). �
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4 Proofs of Theorem 1.4 and Corollary 1.5
In this section, we are mainly devoted to proving the global weighted Lorentz estimate
and Lorentz–Morrey estimate for the gradients of weak solution to variational inequalities
(1.1). To this end, let us first introduce the following two level sets. For any ν > 0, we set

C(ν) :=
{

x ∈ � :
(
M

(|Du|2)) 1
2 > ν

}
,

D(ν) :=
{

x ∈ � :
(
M

(|Du|2)) 1
2 > ν

} ∪
{

x ∈ � :
1
δ

(M
(|f|2 + |D�|2) 1

2 > ν

}
.

Theorem 4.1 Let ω ∈ As with s > 1, and let u ∈ A be a weak solution of variational in-
equalities (1.1). For any ε > 0, there exists a positive constant δ such that (a(ξ , x),�) satisfy
(δ, R0)-vanishing of codimension one as in Assumption 1.1. Then, for any y ∈ � and small
r > 0, there exists a constant T > 1 such that if

ω
(
Qr(y) ∩ C(T)

) ≥ εω
(
Qr(y)

)
, (4.1)

then we have �r(y) ⊂ D(1).

Proof For fixed y ∈ � and r > 0, we divide the proof into two possible cases.
Case 1 (interior estimate). If Q8r(y) ⊂ �, then we argue it by contradiction. Suppose that

Qr(y) satisfies condition (4.1), but the conclusion is false, which implies that there exists a
point x0 ∈ Qr(y) such that, for any ρ > 0, we have

 
Qρ (x0)

(|f|2 + |D�|2)dx ≤ δ2,
 

Qρ (x0)
|Du|2 dx ≤ 1. (4.2)

Then, since Q6r(y) ⊂ Q7r(x0) ⊂ Q8r(y) ⊂ �, setting ρ = 7r it yields that

 
Q6r (y)

(|f|2 + |D�|2)dx ≤
(

7
6

)d  
Q7r (x0)

(|f|2 + |D�|2)dx ≤
(

7
6

)d

δ2 (4.3)

and

 
Q6r (y)

|Du|2 dx ≤
(

7
6

)d  
Q7r (x0)

|Du|2 dx ≤
(

7
6

)d

. (4.4)

We use of Lemmas 3.3 and 3.5 with a suitable scaling and normalization argument, for
example, by taking

ũ(x) =
u(rx)

r
√

( 7
6 )d

, f̃(x) =
f(rx)
√

( 7
6 )d

and �̃(x) =
�(rx)

r
√

( 7
6 )d

,

which implies that there exists a constant N1 such that, for any ε1 > 0, we can select a
constant δ satisfying (4.3) and (4.4). Then, after scaling back there exists a weak solution
v ∈ W 1,2(Q4r(y)) of

– div
(
ā(Dv, x1)

)
= 0 in Q4r(y) (4.5)
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with
 

Q4r (y)

∣∣D(u – v)
∣∣2 dx ≤ ε2

1 and ‖Dv‖L∞(Q2r(y)) ≤ N1.

Denoting T1 = max{2N1, 2d} > 1, this yields

∣∣{x ∈ Qr(y) :
(
M

(|Du|2)) 1
2 > T1

}∣∣ ≤ ∣∣{x ∈ Q2r(y) : M
(∣∣D(u – v)

∣∣2) > N2
1
}∣∣,

which implies that

∣∣{x ∈ Qr(y) :
(
M

(|Du|2)) 1
2 > T1

}∣∣ <
C

N2
1

ˆ
Q4r (y)

∣∣D(u – v)
∣∣2 dx ≤ C

∣∣Q4r(y)
∣∣ε2

1

= ε2
∣∣Qr(y)

∣∣,

where we take ε2 = C4dε2
1 in the last inequality. Applying Lemma 2.2 to this formula, we

obtain that, for some δ > 0 and C > 0,

ω
({

x ∈ Qr(y) :
(
M

(|Du|2)) 1
2 > T1

})
< Cεδ

2ω
(
Qr(y)

)
= εω

(
Qr(y)

)
, (4.6)

which contradicts with (4.1).
Case 2 (boundary estimate). Let Q8r(y) � �. In this case, there exists a boundary point

y0 ∈ ∂� such that y0 ∈ Q8r(y). As in the interior estimate, we also argue it by contradiction.
Suppose that �r(y) satisfies condition (4.1) such that the conclusion is false, which implies
that there is a point x0 ∈ �r(y) such that

 
�ρ (x0)

(|f|2 + |D�|2)dx ≤ δ2,
 

�ρ (x0)
|Du|2 dx ≤ 1 (4.7)

for any ρ > 0. Note that (a(ξ , x),�) is (δ, R0)-vanishing of codimension one as in Assump-
tion 1.1 and y0 ∈ ∂� ∩ Q8r(y). There exists a new coordinate system depending only on
y0 and r, whose variables we denote by z, such that, in this new coordinate system, the
origin is o := y0 + δ�n0 for some small δ > 0 and an inward unit normal �n0 to ∂� at y0. In the
z-coordinate system, we rewrite y = z0, x0 = z1 and have that

Q+
42r ⊂ �42r ⊂ Q42r ∩ {z1 > –84rδ} (4.8)

and
 

Q42r

∣∣β(a; Q42r)(x)
∣∣2 dx ≤ δ2. (4.9)

According to the A-type property of Reifenberg domain mentioned in (1.8) and (4.7) by
taking ρ = 42r and x0 = z1, this infers that

 
�32r

(|f|2 + |D�|2)dx ≤ C
(

42
32

)d  
�42r (z1)

(|f|2 + |D�|2)dx ≤ C
(

42
32

)d

δ2 (4.10)
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and

 
�32r

|Du|2 dx ≤ C
(

42
32

)d  
�42r (z1)

|Du|2 dx ≤ C
(

42
32

)d

. (4.11)

On the basis of a suitable scaling and normalization argument and inequalities (4.8)–
(4.11), we can check that the hypotheses of Lemma 3.8 are true. Let T2 = max{2N2, 2d} > 1.
By Lemma 3.8 and a similar argument as in the proof of interior estimate we have

ω
({

x ∈ �9r :
(
M

(|Du|2)) 1
2 > T2

})
< ε3ω(�r),

and from �r(y) ⊂ �9r it follows that

ω
({

x ∈ �r(y) :
(
M

(|Du|2)) 1
2 > T2

})
< Cε3ω

(
�r(y)

)
= εω

(
�r(y)

)
(4.12)

for ε = Cε3, where the constant C depends only on d, σ , and [ω]s. This contradicts
with (4.1).

Finally, we put estimates (4.6) and (4.12) together and write T = max{T1, T2} > 1, which
completes the proof. �

Proof of Theorem 1.4 We are ready to prove Theorem 1.4 in two steps.
Step 1. First, we prove that

‖Du‖L(p,q)
ω (�) ≤ C (4.13)

under the constraint

1
δ

(‖f‖L(p,q)
ω (�) + ‖D�‖L(p,q)

ω (�)

) ≤ 1, (4.14)

where the constant δ > 0 will be specified later.
We first claim that L(p,q)

ω (�) ⊂ L2(�) with ω ∈ Ap/2 for p > 2. Indeed, since ω ∈ Ap/2,
by using the inverse Hölder inequality to Marcinkiewicz weight function, we may choose
small σ > 0 such that (p – σ )/2 > p/2 which results in ω ∈ A p–σ

2
and [ω] p–σ

2
≤ C[ω]p/2; also

see Lemma 3.6 in [23]. Then we use embedding inequalities in Proposition 2.3 to obtain

‖f‖L2(�) ≤
(ˆ

�

|f|p–σ ω(x) dx
) 1

p–σ
(ˆ

�

ω
–2

p–σ–2 dx
) p–σ–2

2(p–σ )

≤ ‖f‖L(p,∞)
ω (�)

(
ω(�)

) 1
p–σ – 1

p

(ˆ
�

ω
–2

p–σ–2 dx
) p–σ–2

2(p–σ )

≤ C[ω]
1

p–σ
p–σ

2

(
ω(�)

)– 1
p |�| 1

2 ‖f‖L(p,q)
ω (�)

≤ C
(
ω(�)

)– 1
p |�| 1

2 δ,

where the last inequality comes from (4.14). By a similar argument to this estimate we have

‖D�‖L2(�) ≤ C
(
ω(�)

)– 1
p |�| 1

2 δ,
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Therefore, by the standard L2-estimate (1.4) it follows that

∣∣C(T)
∣∣ ≤ C

T2

ˆ
�

|Du|2 dx ≤ C
T2

ˆ
�

(|f|2 + |D�|2)dx

≤ C|�|
T2(ω(�))

2
p
δ2,

which implies that, for any ε1 > 0 there exists small δ > 0 such that

∣∣C(T)
∣∣ ≤ ε1|Q1|.

According to the relation between the weight measure and Lebesgue measure in Lem-
ma 2.2, we obtain that, for some σ > 0 and C > 0,

ω
(
C(T)

) ≤ Cεσ
1 ω(Q1) = ε2ω(Q1) (4.15)

with ε2 = Cεσ
1 . Thanks to Theorem 4.1 and the modified Vitali covering lemma ([8,

Lemma 5.4]), we get

ω
(
C(T)

) ≤ γ2ε2ω
(
D(1)

)

for some γ2 = γ2(d, p, [ω]p/2). Recalling the definition of sets of C(ν) and D(ν), for any ν > 0
we have

ω
({

x ∈ � :
(
M

(|Du|2)) 1
2 > T

})

≤ ε3ω(
{

x ∈ � :
(
M

(|Du|2)) 1
2 > 1

} ∪
{

x ∈ � :
1
δ

(
M

(|f|2 + |D�|2) 1
2 > 1

})

≤ ε3
(
ω

({
x ∈ � :

(
M

(|Du|2)) 1
2 > 1

})
+ ω

({
x ∈ � :

(
M

(|f|2 + |D�|2)) 1
2 > δ

}))

with ε3 = γ2ε2. Note that (a + b)β ≤ C(aβ + bβ ) for β , a, b > 0 with C = max{1, 2β–1}, which
yields

ω
({

x ∈ � :
(
M

(|Du|2)) 1
2 > T

}) q
p

≤ Cε
q/p
3

(
ω

({
x ∈ � :

(
M

(|Du|2)) 1
2 > 1

}) q
p

+ ω
({

x ∈ � :
(
M

(|f|2 + |D�|2)) 1
2 > δ

}) q
p
)
.

We iterate this estimate with finite times k ≥ 2 to find

ω
({

x ∈ � :
(
M

(|Du|2)) 1
2 > Tk}) q

p

≤ εkω
({

x ∈ � :
(
M

(|Du|2)) 1
2 > 1

}) q
p

+
k∑

i=1

εiω
({

x ∈ � :
(
M

(|f|2 + |D�|2)) 1
2 > δTk–i}) q

p ,



Tian et al. Boundary Value Problems  (2018) 2018:115 Page 21 of 29

where ε = Cε
q/p
3 . Putting Lemma 2.4, Theorem 2.5, and Proposition 2.3 together, for 2 <

p < ∞ and 0 < q < ∞, we obtain that

∥∥(
M

(|Du|2)) 1
2
∥∥q

L(p,q)
ω (�)

≤ C
(

ω(�)
q
p +

∑

k≥1

Tkqω
({

x ∈ � :
(
M

(|Du|2)) 1
2 > Tk}) q

p

)

≤ Cω(�)
q
p

(
1 +

∑

k≥1

(
Tqε

)k
)

+ C
∑

i≥1

(
Tqε

)i
∞∑

k=i

T (k–i)qω
({

x ∈ � :
(
M

(|f|2 + |D�|2)) 1
2 > δTk–i}) q

p

≤ Cω(�)
q
p

(
1 +

∑

k≥1

(
Tqε

)k
)

+ C
∑

i≥1

(
Tqε

)i∥∥(
M

(|f|2 + |D�|2)) 1
2
∥∥q

L(p,q)
ω (�)

≤ Cω(�)
q
p

(
1 +

∑

k≥1

(
Tqε

)k
)

+ C
∑

i≥1

(
Tqε

)i(‖f‖q
L(p,q)
ω (�)

+ ‖D�‖q
L(p,q)
ω (�)

)

≤ Cω(�)
q
p

(
1 +

∑

k≥1

(
Tqε

)k
)

+ Cδq
∑

i≥1

(
Tqε

)i.

Now taking ε > 0 sufficiently small so that Tqε < 1, we conclude that

‖Du‖q
L(p,q)
ω (�)

≤ ∥∥(
M

(|Du|2)) 1
2
∥∥q

L(p,q)
ω (�)

≤ C. (4.16)

On the other hand, we employ a similar argument to the proof procedure of (4.16) and
obtain the estimate

‖Du‖L(p,∞)
ω (�) ≤ C.

Putting the two estimates together, we complete the proof of the gradient estimate (4.13).
Step 2. Define

ũ =
δu

‖f‖L(p,q)
ω (�) + ‖D�‖L(p,q)

ω (�)
,

f̃ =
δf

‖f‖L(p,q)
ω (�) + ‖D�‖L(p,q)

ω (�)
and �̃ =

δ�

‖f‖L(p,q)
ω (�) + ‖D�‖L(p,q)

ω (�)
.

It is easy to check that

1
δ

(‖̃f‖L(p,q)
ω (�) + ‖D�̃‖L(p,q)

ω (�)

) ≤ 1.

Then we obtain

‖Dũ‖L(p,q)
ω (�) ≤ C,
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which implies

‖Du‖L(p,q)
ω (�) ≤ C

(‖f‖L(p,q)
ω (�) + ‖D�‖L(p,q)

ω (�)

)
(4.17)

for any ω ∈ Ap/2, 2 < p < ∞, and 0 < q ≤ ∞. This completes the proof. �

As a special setting, we take ω(x) = 1 and �(x) = 0 a.e. x ∈ �. Theorem 1.4 leads to
a global Lorentz estimate for the gradients of weak solution to the following Dirichlet
problem (1.1), which is useful in the coming section:

⎧
⎨

⎩
div(a(Du, x)) = div f in �,

u = 0 on ∂�.
(4.18)

Corollary 4.2 For 2 < p < ∞, 0 < q ≤ ∞, and R0 > 0, there exists a positive constant
δ = δ(d, p, q,λ,�) such that (a(ξ , x),�) satisfies (δ, R0)-vanishing of codimension one as in
Assumption 1.1. If f ∈ L(p,q)(�), then, for each weak solution u ∈ W 1,2

0 (�) of Dirichlet prob-
lem (4.18) with (H1), we have Du ∈ L(p,q)(�) with the estimate

‖Du‖L(p,q)(�) ≤ C‖f‖L(p,q)(�), (4.19)

where the constant C is independent of u and f .

Proof of Corollary 1.5 First, we extend each of weak solution u, the given datum f and
� by a zero extension outside �, respectively. Let us now take a special weight function
ω(x) = (M(χBρ (y)))σ for y ∈ �, 0 < ρ ≤ diam(�), and σ ∈ ( d–θ

d , 1). In accordance with the
definition of As weight, we get that ω(x) ∈ A1 ⊂ As for 1 < s < ∞. Then, by Theorem 1.4
we have

‖Du‖q
L(p,q)(Bρ (y)∩�) = p

ˆ ∞

0

(
αp

ˆ
{x∈Bρ (y)∩�:|Du|>α}

dx
) q

p dα

α

≤ p
ˆ ∞

0

(
αp

ˆ
{x∈�:|Du|>α}

(
M(χBρ (y))

)σ dx
) q

p dα

α

= p
ˆ ∞

0

(
αpω

({
x ∈ � : |Du| > α

})) q
p dα

α

= ‖Du‖q
L(p,q)
ω (�)

≤ C
(‖f‖q

L(p,q)
ω (�)

+ ‖D�‖L(p,q)
ω (�)

)
. (4.20)

Thanks to special weight function ω(x) = (M(χBρ (y)))σ , it suffices to prove the following
inequalities

‖f‖L(p,q)
ω (�) ≤ Cρ

(d–θ )
p ‖f‖Lp,q;θ (�) and ‖D�‖L(p,q)

ω (�) ≤ Cρ
(d–θ )

p ‖D�‖Lp,q;θ (�). (4.21)

In fact, we employ the dyadic decomposition R
d = B2ρ(y) ∪ (

⋃∞
k=1 B2k+1ρ(y)\B2kρ(y)) and

get

‖f‖q
L(p,q)
ω (Rd)

= p
ˆ ∞

0

(
αpω

({
x ∈R

d : |f| > α
})) q

p dα

α
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= p
ˆ ∞

0

(
αp

ˆ
{x∈Rd :|f|>α}

ω(x) dx
) q

p dα

α

= p
ˆ ∞

0

(

αp

(ˆ
B2ρ (y)

χ{|f|>α}
(
M(χBρ (y))

)σ dx

+
∞∑

k=1

ˆ
B2k+1ρ

(y)\B2kρ
(y)

χ{|f|>α}
(
M(χBρ (y))

)σ dx

)) q
p dα

α

≤ C

(

p
ˆ ∞

0

(
αp

ˆ
{x∈B2ρ (y):|f|>α}

(
M(χBρ (y))

)σ dx
) q

p dα

α

+ p
ˆ ∞

0

(

αp
∞∑

k=1

ˆ
{x∈B2k+1ρ

(y)\B2kρ
(y)):|f|>α}

(
M(χBρ (y))

)σ dx

) q
p dα

α

)

:= C(I0 + I1), (4.22)

where C = max{2 q
p –1, 1}. To estimate I0, by considering (M(χBρ (y)))σ ≤ 1 a.e. x ∈R

d we get

I0 ≤ p
ˆ ∞

0

(
αp

ˆ
{x∈B2ρ (y):|f|>α}

dx
) q

p dα

α

= p
ˆ ∞

0

(
αp∣∣{x ∈ B2ρ(y) : |f| > α

}∣∣)
q
p dα

α

= ‖f‖q
L(p,q)(B2ρ (y)) ≤ ρ

(d–θ )q
p ‖f‖q

Lp,q;θ (�).

To estimate I1, note that x ∈ B2k+1ρ(y)\B2kρ(y) and r > 2k+1ρ –ρ > 2kρ . Then Br(x)∩Bρ(y) �=
∅ for all k ≥ 1, and we deduce

(|χBρ (y)|
)

Br (x) =
 

Br (x)
|χBρ (y)|dz =

|Br(x) ∩ Bρ(y)|
|Br(x)| ≤ 1

2kd ,

which yields

I1 ≤ p
ˆ ∞

0

(

αp
∞∑

k=1

1
2kdσ

ˆ
{x∈B2k+1ρ

(y)\B2kρ
(y)):|f|>α}

dx

) q
p dα

α

≤ p
ˆ ∞

0

(

αp
∞∑

k=1

1
2kdσ

∣∣{x ∈ B2k+1ρ(y) : |f| > α
}∣∣

) q
p dα

α
. (4.23)

We further separately consider the cases q > p and 0 < q ≤ p.
Case 1. When q > p, Minkowski’s integral inequality allows us to get the estimate

from (4.23):

I1 ≤
(

p
∞∑

k=1

1
2kdσ

(ˆ ∞

0

(
αp∣∣{x ∈ B2k+1ρ(y) : |f| > α

}∣∣)
q
p dα

α

) p
q
) q

p

≤ C

( ∞∑

k=1

1
2kdσ

‖f‖p
L(p,q)(B2k+1ρ

(y))

) q
p
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≤ C

( ∞∑

k=1

1
2kdσ

(
2k+1ρ

)d–θ‖f‖p
Lp,q;θ (B2k+1ρ

(y))

) q
p

≤ C‖f‖q
Lp,q;θ (�)

( ∞∑

k=1

2k(d–θ–dσ )2d–θρd–θ

) q
p

,

where C = p
q
p –1. Since σ ∈ ( d–θ

d , 1), we get d – θ – dσ < 0 and I1 ≤ Cρ
(d–θ )q

p ‖f‖q
Lp,q;θ (�).

Case 2. When 0 < q ≤ p, we begin with an elementary inequality (
∑∞

k=1 ak)
q
p ≤ ∑∞

k=1 a
q
p
k

for all nonnegative sequences {ai}. Putting it into the right-hand side of (4.23), we get

I1 ≤
∞∑

k=1

(
1

2kdσ

) q
p

p
ˆ ∞

0

(
αp∣∣{x ∈ B2k+1ρ(y) : |f| > α

}∣∣)
q
p dα

α

=
∞∑

k=1

(
1

2kdσ

) q
p
‖f‖q

L(p,q)(B2k+1ρ
(y))

≤
∞∑

k=1

(
1

2kdσ

) q
p (

2k+1ρ
) (d–θ )q

p ‖f‖q
Lp,q;θ (B2k+1ρ

(y))

=
∞∑

k=1

2k(d–θ–dσ ) q
p 2

(d–θ )q
p ρ

(d–θ )q
p ‖f‖q

Lp,q;θ (�).

The remainder is similar to the argument of Case 1, and we have

I1 ≤ Cρ
(d–θ )q

p ‖f‖q
Lp,q;θ (�).

Inserting I0 and I1 into (4.22), we get (4.21). As in the proof of (4.21), we also obtain

‖D�‖L(p,q)
ω (�) ≤ Cρ

(d–θ )
p ‖D�‖Lp,q;θ (�). (4.24)

Finally, putting (4.21) into (4.20), by a finite covering principle on a bounded domain �

we get

‖Du‖Lp,q;θ (�) ≤ C
(‖f‖Lp,q;θ (�) + ‖D�‖Lp,q;θ (�)

)
, (4.25)

which completes the proof. �

Finally, we immediately conclude from estimate (4.25) a higher integrability of the gra-
dient and even Hölder continuity for a weak solution for variational inequalities (1.1) with
appropriate high values of p, q, and θ . More precisely, we have the following:

Corollary 4.3 Under the hypotheses of Corollary 1.5 with p = q ∈ (2,∞), let u ∈ A be a
weak solution to the nonlinear variational inequalities (1.1). Then we have:

(i) u ∈L
dp

d–p ; dθ
d–p (�) ⊂Lp;θ+p(�) if p + θ < d;

(ii) u ∈Lp′ ;θ ′ (�) for any p′ < ∞ and any 0 < θ ′ < d if p + θ = d;
(iii) u ∈ C0,1– d–θ

p (�) if p + θ > d.
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We should mention that global Hölder regularity for weak solution with the same expo-
nent as above was obtained for linear elliptic equations [8] with measurable coefficients in
a bounded Reifenberg domain. In contrast, Corollary 4.3 shows a global Hölder regular-
ity for weak solution to nonlinear variational inequalities with measurable nonlinearities
over a bounded Reifenberg domain.

5 Proof of Theorem 1.6
In this section, we focus on proving the global Lorentz estimate for the gradient of weak
solution to Dirichlet problem (1.13) with controlled growth. Now let us return to hypothe-
ses (H1) and (H2). By taking into account the ellipticity (1.2), the controlled growth (1.15),
and ψ ∈ L(p,q)(�) for p ≥ 2d

d+2 and q > 0, a higher integrability for the gradient of weak
solution to (1.13) holds by the reverse Hölder inequality from the Gehring–Giaquinta–
Modica lemma (cf. [17, Proposition 1.1, Chapter V]). Here, we would like to point out that
the higher integrability is global since the Reifenberg flat domain is a A-type domain (see
(1.8)) based on Ladyzhenskaya and Ural’tseva’s work, which implies that a reverse Hölder
inequality automatically holds for the Reifenberg flat domain. In summary, we have the
following:

Lemma 5.1 Let u ∈ W 1,2
0 (�) be a weak solution to Dirichlet problem (1.13) in a Reifenberg

flat domain with (H1) and (H2). If ψ ∈ L(p,q)(�) for p ≥ 2d
d+2 and q > 0, then there exists an

exponent p0 > 2 such that Du ∈ Lp0 (�) and

‖Du‖Lp0 (�) ≤ C, (5.1)

where p0 depends on d, p, q,λ,�,μ, |�|, whereas the constant C depends only on ‖Du‖L2(�)

and ‖ψ‖L(p,q)(�).

It is well known that, for f ∈ Lp(E) with p > 1 defined in a bounded domain E of Rd , there
exists a vector field F ∈ Lp∗ (E) such that

f (x) = div F(x) a.e. x ∈ E and ‖F‖Lp∗ (E) ≤ C‖f ‖Lp(E); (5.2)

for instance, see [25, Lemma 3.1]. Following a very similar argument to [25, Lemma 3.1],
we also obtain that, for a give function in weighted Lorentz space, it is written as the di-
vergence of a suitable weighted Lorentz regular vector field. More precisely, we have the
following:

Lemma 5.2 For p ∈ (1,∞) and q ∈ (0,∞], let f ∈ L(p,q)(E) defined in a bounded domain E
of Rd . There exists a vector field F ∈ L(p∗ ,q)(E) such that

f (x) = div F(x) a.e. x ∈ E with ‖F‖L(p∗ ,q)(E) ≤ C‖f ‖L(p,q)(E),

where C = C(d, p, q, |E|).

Proof Indeed, let us extend f (x) as zero outside E and set

N f (x) =
ˆ

E
�(x – y)f (y) dy
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be the Newtonian potential of f with the fundamental solution �(x–y) of Laplace operator
in R

d . By using the sharp gradient regularity in Lorentz spaces (cf. [24, Theorem 13]) it is
clear that �(N f (x)) = f (x) a.e. x ∈ E and

f ∈ L(p,q)(E) �⇒ D
(
N f (x)

) ∈ L(p∗ ,q)(E).

Denote

F(x) := D
(
N f (x)

)
,

which implies that f (x) = div(grad(N f (x))) = div F(x) a.e. x ∈ E. The proof is complete. �

Proof of Theorem 1.6 Set

f (x) := –B(x, Du) a.e. x ∈ �. (5.3)

Thanks to a higher gradient integrability from Lemma 5.1, we get

|Du| ∈ Lp0 (�) ≡ L(p0,p0)(�) for some p0 > 2.

Let us set m0 = p0+2
2 and obtain 2 < m0 < p0. It follows from Proposition 2.3 that

|Du| ∈ L(p0,p0)(�) ⊂ L(m0, d+2
d q)(�)

for any q ∈ (0,∞], which is equivalent to

|Du| d+2
d ∈ L( dm0

d+2 ,q)(�). (5.4)

Noting that ψ ∈ L(p,q)(�) in (1.14), it is clear that f (x) ∈ L(min{ dm0
d+2 ,p},q)(�) as a consequence

of (5.3) and (H2). Then, we use Lemma 5.2 to show that there exists a vector field

F ∈ L(min{( dm0
d+2 )∗ ,p∗},q)(�)

with f (x) = div F(x) a.e. x ∈ �. Then, the Dirichlet problem (1.13) can be written as

⎧
⎨

⎩
div a(x, Du) = div F(x) in �,

u = 0 on ∂�.
(5.5)

By Corollary 4.2 we have

|Du| ∈ L(min{( dm0
d+2 )∗ ,p∗},q)(�). (5.6)

If ( dm0
d+2 )∗ ≥ p∗ or dm0

d+2 ≥ d, then it immediately completes the proof of Theorem 1.6. There-
fore, the remainder essential situation is to consider

p1 :=
(

dm0

d + 2

)∗
< p∗ and

dm0

d + 2
< d. (5.7)



Tian et al. Boundary Value Problems  (2018) 2018:115 Page 27 of 29

A straightforward calculation based on the Sobolev conjugate of dm0
d+2 gives

p1 =
dm0

d + 2 – m0
> m0

because of m0 > 2, which, as a consequence of (5.6) and (5.7), reads

|Du| ∈ L(p1,q)(�).

Again, we set m1 = p1+m0
2 and obtain m0 < m1 < p1. By Lemma 2.3 we have

|Du| ∈ L(p1,q)(�) ⊂ L(m1, d+2
d q)(�).

To proceed just as before successively, we derive

2 < m0 < m1 < · · · < mk < · · · for k = 0, 1, 2, . . . .

Keeping Lemma 5.2 in mind, we iterate the procedure finitely many times until

pk :=
(

dmk–1

d + 2

)∗
≥ p∗ or

dmk–1

d + 2
≥ d. (5.8)

A calculation implies that there exists a large enough integer k such that (5.8) holds. In-
deed, by defining

τ =
d + 1 – m0/2
d + 2 – m0

(5.9)

we know that τ > 1 due to m0 > 2. Therefore this yields

mk =
pk + mk–1

2
=

1
2

(
d

d + 2 – mk–1
+ 1

)
mk–1

>
1
2

(
d

d + 2 – m0
+ 1

)
mk–1 = τmk–1,

and a successive procedure yields

mk > τmk–1 > · · · > τ km0 > 2τ k for all k = 0, 1, 2, . . . , (5.10)

which implies

mk −→ ∞ as k → ∞

because of τ > 1. Finally, by (5.8) we have

|Du| ∈ L(p∗ ,q)(�)

for p ≥ 2d
d+2 and q ∈ (0,∞]. This completes the proof of Theorem 1.6. �
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