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Abstract
Using the fixed point theorem, we study the existence and multiplicity of positive
periodic solutions for the second order differential equations

{
ẍ + a(t)x = f (x),

x(0) = x(T ), ẋ(0) = ẋ(T ).

For given nonnegative constants 0 < β1 < β2 < · · · < βN , the function f may be
singular at x = βi .
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1 Introduction
We say that the differential equation

ẍ + a(t)x = λf (t, x) + e(t) (1.1)

is singular if the nonlinear term f is singular, which means that a vector-valued function
f is only defined on R×R

N \ � with � ⊂R
N being nonempty and for any x0 ∈ �,

lim
x→x0

f (t, x) = +∞, uniformly in t ∈R.

During the last two decades, the existence of nontrivial periodic solutions of (1.1) has been
studied by many researchers in nonsingular case as well as singular case. Usually, the proof
is based on either the method of upper and lower solutions [2, 10, 15], fixed point theorems
[6, 7, 17–19], alternative principle of Leray–Schauder [4, 11], or topological degree theory
[23, 24]. To our attention, Wang in [22] studied the existence, multiplicity, and nonexis-
tence results for positive solutions of the singular periodic boundary value problem (1.1)
in terms of different values of λ ∈ R. But most of these papers are concerned with singu-
larity at x = x0. Later, a similar idea is used to study the singular periodic systems with two
parameters,

⎧⎨
⎩ü + a1(t)u = λb1(t)f1(u, v),

v̈ + a2(t)v = μb2(t)f2(u, v),
(1.2)
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where (λ,μ) ∈R
2
+ \ {0, 0}. One nice result proved in [20] is that there exist three nonempty

subsets of R2
+ \ {0, 0} : �,�1,�2 such that R2

+ \ {0, 0} = � ∪ �1 ∪ �2 and (1.2) has at least
two positive periodic solutions for (λ,μ) ∈ �1, one positive periodic solution for (λ,μ) ∈
�, and no positive periodic solutions for (λ,μ) ∈ �2. Note that in this paper the word
“singularity” is understood in a more general way because we only need that f1 is singular
at the whole line x-axis and f2 is singular at the whole line y-axis. The proof is based on
the following vector version of Krasnosel’skii’s fixed point theorem [14]. In addition, there
are many papers concerned with the existence and multiplicity of radial solutions of the
elliptic equations with the regular or singular nonlinearities. We refer the readers to [1, 3,
5, 8, 12, 13, 16, 21].

Motivated by these recent developments, in this paper, we investigate the existence and
multiplicity of T-periodic solutions of the following problem:

⎧⎨
⎩ẍ + a(t)x = f (x),

x(0) = x(T), ẋ(0) = ẋ(T),
(1.3)

where the function f may be singular at x = βi (i = 1, . . . , N ). For convenience, we give the
following notations:

a∗ = min
t∈[0,T]

a(t), a∗ = max
t∈[0,T]

a(t),

f ∗(r) = max
{

f (x) : θr ≤ x ≤ r
}

, where r > 0, θ ∈ (0, 1).

For ν = 0 or ν = +∞, there exist nonnegative constants f ν defined as

f ν = lim
x→ν

f (x)
x

.

The main results can be expressed as follows.

Theorem 1.1 Assume that the function f satisfies the following conditions:
(A) f may be singular at x = βi (i = 1, . . . , N ) and continuous on

(0,β1, ), (β1,β2), . . . , (βN–1,βN ), (βN , +∞);

(B) For any interval (βi,βi+1), i = 1, . . . , N – 1,

(i) f (x) – a∗βi ≥ 0, for x ∈ (βi,βi+1),

(ii) there exists R̄i ∈ (βi,βi+1) such that

max
x∈[θ R̄i+(1–θ )βi ,R̄i]

f (x) <
R̄i – βi

MT
+ a∗βi.

Then (1.3) has at least (2N – 2) positive periodic solutions.

Theorem 1.2 Assume that (A) and (B) hold. In addition, the function f satisfies the fol-
lowing condition:
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(C) There exists R̄ > βN such that

(i) f (x) – a∗βN ≥ 0, for x ∈ (βN , R̄),

(ii) max
x∈[θ R̄+(1–θ )βN ,R̄]

f (x) <
R̄ – βN

MT
+ a∗βn.

Then (1.3) has at least (2N – 1) positive periodic solutions.

Theorem 1.3 Assume that (A) and (B) hold. In addition, the function f satisfies the fol-
lowing condition:

(D) There exists r̄ ∈ (0,β1) such that f ∗(r̄) < r̄
MT .

Then (1.3) has at least (2N – 1) positive periodic solutions.

Corollary 1.4 Assume that (A) and (B) hold. If f 0 = 0, then (1.3) has at least (2N – 1)
positive periodic solutions.

Theorem 1.5 Assume that (A), (B), and (D) hold. If f 0 = +∞, then (1.3) has at least (2N)
positive periodic solutions.

Theorem 1.6 Assume that (A), (B), (C), and (D) hold. Then (1.3) has at least (2N) positive
periodic solutions.

Theorem 1.7 Assume that (A) and (B) hold. In addition, the function f satisfies the fol-
lowing condition:

(E) There exists R̂ > βN
θ

such that

(i) f (x) – a∗βN ≥ 0, for x ∈ (βN , R̂),

(ii) max
x∈[θ R̂,R̂]

f (x) <
R̄

MT
+ min

{
a∗ –

1
MT

, 0
}
βN .

If f ∞ = +∞, then (1.3) has at least (2N) positive periodic solutions.

Theorem 1.8 Assume that (A), (B), (C), and (D) hold. If f 0 = +∞, then (1.3) has at least
(2N + 1) positive periodic solutions.

Theorem 1.9 Assume that (A), (B), (D), and (E) hold. If f ∞ = +∞, then (1.3) has at least
(2N + 1) positive periodic solutions.

Theorem 1.10 Assume that (A), (B), (D), and (E) hold. If f 0 = +∞ and f ∞ = +∞, then
(1.3) has at least (2N + 2) positive periodic solutions.

2 Preliminary
The function a satisfies the following assumption:

(H) The function a is continuous, positive, T-periodic and the linear equation
ẍ + a(t)x = 0 has a positive Green’s function G(t, s), i.e.,

G(t, s) > 0 for all (t, s) ∈ [0, T] × [0, T],

m = min
0≤s,t≤T

G(t, s) > 0, M = max
0≤s,t≤T

G(t, s), θ = m/M ∈ (0, 1).
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From (H), it is clear that a function x(t) is a T-periodic solution of (1.3) if and only if

x(t) =
∫ T

0
G(t, s)f

(
x(s)

)
ds.

Define the operator A : K → E by

Ax(t) =
∫ T

0
G(t, s)f

(
x(s)

)
ds, 0 ≤ t ≤ T .

Let E denote the Banach space C[0, T] with the usual max-norm and define a subcone K
by

K =
{

x(t) ∈ C[0, T] : x(t) ≥ θ‖x‖}.

For r > 0, let

Kr :=
{

x(t) ∈ K :
∥∥x(t)

∥∥ < r
}

,

∂Kr :=
{

x(t) ∈ K :
∥∥x(t)

∥∥ = r
}

.

Therefore, the solution of (1.3) is equivalent to the fixed point of the operator A. The
discussion is based on the following well-known fixed point theorem.

Lemma 2.1 ([9, Theorem 2.3.4]) Let E be a Banach space and K ⊂ E be a cone in E.
Assume that �1, �2 are open subsets of E with 0 ∈ �1, �1 ⊂ �2, and let T : K ∩ (�2 \�1) →
K be a completely continuous operator such that either

(i) ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�1 and ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�2; or
(ii) ‖Tu‖ ≥ ‖u‖, u ∈ K ∩ ∂�1 and ‖Tu‖ ≤ ‖u‖, u ∈ K ∩ ∂�2.
Then T has a fixed point in K ∩ (�2 \ �1).

3 Proof of the main results
First, we consider the existence of solutions of (1.3) on (0,β1) .

Lemma 3.1 Assume that (H), (A), and (D) hold. Then (1.3) has at least one positive peri-
odic solution.

Proof Since f (·) is singular at x = β–
1 , there exists sufficiently small δ < (1 – θ )β1 such that

f (x) ≥ ρx, for 0 < |x – β1| < δ1, where ρ satisfies ρm|�2|θ ≥ 1, �2 is given as follows.
Choose R ∈ (β1 – δ,β1). Then, for x ∈ ∂KR, one has x(t) ≥ θ‖x‖ ≥ θR. If θR ≥ β1 – δ, then
β1–δ

θ
≤ R ≤ β1. Further, we have δ > (1 – θ )β1, which yields a contradiction. Now we only

consider the case θR < β1 – δ. Let [0, T] = �1 ∪ �2, where

�1 =
{

t ∈ [0, T] : θR ≤ x(t) < β1 – δ
}

,

�2 =
{

t ∈ [0, T] : β1 – δ ≤ x(t) ≤ R
}

.
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Since ‖x‖ = R and x is continuous, �2 is nonempty and |�2| > 0. Therefore, we have

‖Ax‖ = max
t∈[0,T]

∫ T

0
G(t, s)f

(
x(s)

)
ds

≥ m
[∫

�1

f
(
x(s)

)
ds +

∫
�2

f
(
x(s)

)
ds

]

≥ m
∫

�2

f
(
x(s)

)
ds ≥ ρm|�2|θ‖x‖ ≥ ‖x‖.

For any x ∈ ∂Kr̄ , we have

‖Ax‖ = max
t∈[0,T]

∫ T

0
G(t, s)f

(
x(s)

)
ds ≤

∫ T

0
G(t, s)

r̄
MT

ds < ‖x‖.

From [22], it is clear that A : KR\Kr̄ → K , and A is completely continuous on KR\Kr̄ .
Therefore, by Lemma 2.1, (1.3) has at least a positive solution x(t) ∈ KR\Kr̄ . �

Lemma 3.2 Assume that (H) and (A) hold. If f 0 = 0, then (1.3) has at least one positive
periodic solution.

Proof Since f 0 = 0, there exists sufficiently small r̄ > 0 such that f (x) ≤ εx for x ∈ [0, r̄],
where εMT < 1. Then, for any x ∈ ∂Kr̄ , we have

‖Ax‖ = max
t∈[0,T]

∫ T

0
G(t, s)f

(
x(s)

)
ds ≤ εMT‖x‖ < ‖x‖.

The remainder is similar to the proof of Lemma 3.1, so we omit it. �

Lemma 3.3 Assume that (H), (A), and (D) hold. If f 0 = +∞, then (1.3) has at least two
positive periodic solutions.

Remark f 0 = +∞ implies that f may be singular at x = 0.

Proof Since f (·) is singular at x = β–
1 , from the proof of Lemma 3.1, there exists R ∈ (β1 –

δ,β1) > r̄ such that ‖Ax‖ > ‖x‖ for x ∈ ∂KR

Since f 0 = +∞, there exists sufficiently small r < r̄ such that f (x) ≥ x for x ∈ [0, r], where
mθT > 1. Then, for any x ∈ ∂Kr , we have

‖Ax‖ = max
t∈[0,T]

∫ T

0
G(t, s)f

(
x(s)

)
ds ≥ mθT‖x‖ < ‖x‖.

For any x ∈ ∂Kr̄ , we have

‖Ax‖ = max
t∈[0,T]

∫ T

0
G(t, s)f

(
x(s)

)
ds ≤ εMT‖x‖ < ‖x‖.

Further, from (A) and the Arzela–Ascoli theorem it follows that now we verify that A :
KR\Kr → K , and A is completely continuous.
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Therefore, by Lemma 2.1, (1.3) has at least two positive solutions x1(t) ∈ KR\Kr̄ and
x2(t) ∈ Kr̄\Kr . �

Second, we give some existence results of solutions of (1.3) on (βN , +∞).

Lemma 3.4 Assume that (H), (A), and (C) hold. Then (1.3) has at least one positive peri-
odic solution.

Remark Since f (·) is singular at x = β+
N , there exists sufficiently small δ < 1–θ

θ
such that

f (x) ≥ ρx for 0 < x – βN < δ. Choose r ∈ (βN ,βN + δ). Then, for x ∈ ∂Kr , one has x(t) ≥
θ‖x‖ ≥ θr. If θr ≥ βn, then βN

θ
≤ r ≤ βN + δ, which yields a contradiction. Therefore θr <

βN , which implies that A is not continuous on KR\Kr , where R > βN
θ

.

Proof Let ω = u – βN . Then (1.3) is equivalent to the problem
⎧⎨
⎩ω̈ + a(t)ω = f (ω + βN ) – a(t)βN = F(ω),

ω(0) = ω(T), ω̇(0) = ω̇(T).
(3.1)

From (A) and (C), it follows that
(a1) limω→0+ F(ω) = +∞;
(a2) let r̃ = R̄ – βN , F(ω) ≥ 0, for ω ∈ (0, r̃);
(a3) there exists sufficiently small r < r̃ such that

F(ω) > L‖ω‖, for ω ∈ (0, r),

where LmT > 1.
Define the operator A : K → E by

Tx(t) =
∫ T

0
G(t, s)

[
f
(
ω(s) + βN

)
– a(t)βN

]
ds, 0 ≤ t ≤ T .

Then, for any ω ∈ ∂K̃r , from (ii) of (C), we have

max
ω∈[θ̃r,̃r]

[
f
(
ω(s) + βN

)
– a(t)βN

] ≤ max
ω∈[θ r̃,̃r]

[
f
(
ω(s) + βN

)
– a∗βN

]

= max
x∈[θ R̄+(1–θ )βN ,R̄]

f (x) – a∗βN <
r̃

MT
.

Further, we have

‖Tω‖ = max
t∈[0,T]

Tω(t) = max
t∈[0,T]

∫ T

0
G(t, s)

[
f
(
ω(s) + βN

)
– a(t)βN

]
ds

≤ MT max
ω∈[θ̃r,̃r]

[
f
(
ω(s) + βN

)
– a(t)βN

]
< r̃ = ‖ω‖.

For ω ∈ ∂Kr̄ , we have

‖Tω‖ = max
t∈[0,T]

Tω(t) = max
t∈[0,T]

∫ T

0
G(t, s)

[
f
(
ω(s) + βN

)
– a(t)βN

]
ds

≥ mTL‖ω‖ > ‖ω‖.
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From (f5) and the Arzela–Ascoli theorem it follows that T is completely continuous on
K̃r\Kr̄ . Therefore, by Lemma 2.1, (3.1) has at least a positive solution ω(t) ∈ K̃r\Kr̄ . Namely,
(1.3) has at least a positive solution x(t) = ω(t) + βN satisfying ‖x(t)‖ < βN + r̃ = R̄. �

Corollary 3.5 Assume that (H) and (A) hold. In addition,
(f1) f (·) is continuous on (βN , +∞) and f (x) ≥ a∗βN on (βN , +∞).

If f ∞ = 0, then (1.3) has at least one positive periodic solution.

Proof If (f1) holds, then F(ω) ≥ and (i) of (C) hold. From (f1) and f ∞ = 0 it follows that
limω→+∞ F(ω)

ω
= 0. Then there exists sufficiently large R > 0 such that F(ω) ≤ εω for ω ≥ R,

where εMT < 1. Choose r̃ > max{R
θ

, r̄}, where r̄ is given in (a3). Then, for any ω ∈ ∂Kr̃ , one
has ω(t) ≥ θ‖ω‖ > R, and further we have

‖Tω‖ = max
t∈[0,T]

∫ T

0
G(t, s)F

(
ω(s)

)
ds ≤ εMT‖ω‖ < ‖ω‖.

Combining Lemma 3.4 and Lemma 2.1, we have that (1.3) has at least one positive pe-
riodic solution. �

Lemma 3.6 Assume that (H), (A), and (E) hold. If f ∞ = +∞, then (1.3) has at least two
positive periodic solutions.

Proof It is easy to see that (E) implies (C). Then, from Lemma 3.3, we can obtain a solution
x1(t) satisfying ‖x1(t)‖ < R̄.

For any x(t) ∈ ∂KR̂, we get

‖Ax‖ = max
t∈[0,T]

Ax(t) = max
t∈[0,T]

∫ T

0
G(t, s)f

(
x(s)

)
ds

≤ MT max
x∈[θ R̂,R̂]

f
(
x(s)

)
< R̂ = ‖x‖.

By the definition of f ∞ = ∞, there exists R̃ > R̂ such that f (x) ≥ μx for x ≥ R̃, where μ

satisfies μmTθ > 1.
Choose R = R̃

θ
. Then, for x ∈ ∂KR, one has x(t) ≥ θ‖x‖ ≥ R̃, and

‖Ax‖ = max
t∈[0,T]

∫ T

0
G(t, s)f

(
x(s)

)
ds

≥ μmTθ‖x‖ > ‖x‖.

From (A) and the Arzela–Ascoli theorem it follows that A is completely continuous on
KR\KR̂. Therefore, by Lemma 2.1, (1.3) has another positive solution x2(t) ∈ KR\KR̂. �

Finally, we are studying the existence of solutions of (1.3) on (βi,βi+1), i = 1, 2 . . . , N – 1.

Lemma 3.7 Assume that (H), (A), and (B) hold. Then (1.3) has at least two positive peri-
odic solutions.
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Proof Let ω = u – βi. Then (1.3) is equivalent to the problem

⎧⎨
⎩ω̈ + a(t)ω = f (ω + βi) – a(t)βi = Fi(ω),

ω(0) = ω(T), ω̇(0) = ω̇(T).
(3.2)

From (A) and (B), it follows that
(F1) Fi(·) is nonnegative and continuous on (0,βi+1 – βi) ;
(F2) Fi(·) is singular at x = 0+, (βi+1 – βi)–;
(F3) Let r̄i = R̃i – βi ∈ (0,βi+1 – βi) such that F∗

i (r̄i) < r̄i
MT .

Then from Lemma 3.3 it follows that (1.3) has at least two positive periodic solutions. �

Now we give the proof of the main results.

Proof of Theorem 1.1 The number of the interval (βi,βi+1) is N – 1, then we can obtain the
result from Lemma 3.7. �

Proof of Theorem 1.2 From Lemmas 3.4 and 3.7 the result follows. �

Proof of Theorem 1.3 From Lemmas 3.1 and 3.7 the result follows. �

Proof of Corollary 1.4 From Lemmas 3.2 and 3.7 the result follows. �

Proof of Theorem 1.5 From Lemmas 3.3 and 3.7 the result follows. �

Proof of Theorem 1.6 From Lemmas 3.1, 3.4, and 3.7 the result follows. �

Proof of Theorem 1.7 . From Lemmas 3.6 and 3.7 the result follows. �

Proof of Theorem 1.8 From Lemmas 3.3, 3.4, and 3.7 the result follows. �

Proof of Theorem 1.9 From Lemmas 3.1, 3.6, and 3.7 the result follows. �

Proof of Theorem 1.10 From Lemmas 3.3, 3.6, and 3.7 the result follows. �

Now we just give an example to illustrate Theorem 1.10.

Example For convenience, we consider the following periodic boundary value problem:

⎧⎨
⎩ẍ + μx = f (x),

x(0) = x(T), ẋ(0) = ẋ(T),
(3.3)

where a(t) = μ is a constant such that (H) holds, and f (x) is expressed by

f (x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

C01xν01 + C02
(x–β1)ν02 , x ∈ (0,β1);

C11
(x–β1)ν11 + C12

(x–β2)ν12 + β1μ, x ∈ (β1,β2);
C21

(x–β2)ν21 + C22
(x–β3)ν22 + β2μ, x ∈ (β2,β3);

C31
(x–β3)ν31 + C32xν32 + β3μ, x ∈ (β3, +∞),
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where
(I) Cij are positive constants; (i = 0, 1, 2, 3, j = 1, 2);

(II) a∗ = a∗ = μ;
(III) ν01 < 1, ν11,ν21,ν31 > 0, ν32 > 1, ν02, ν12, ν22 are even.
It is obvious that (A) holds. First we show that assumption (B) holds.

(i) f (x) – a∗βi ≥ 0 obviously holds for x ∈ (βi,βi+1),

(ii) max
x∈[θ R̄i+(1–θ )βi ,R̄i]

f (x) <
R̄i – βi

MT
+ a∗βi

�

max
x∈[θ R̄i+(1–θ )βi ,R̄i]

[
Ci1

(x – βi)νi1
+

Ci2

(x – βi+1)νi2

]
<

R̄i – βi

MT
.

If Cij (i = 1, 2, j = 1, 2) is sufficiently small, there exists R̃i ∈ (βi,βi+1) such that the above
inequality holds.

Second, if C0j (j = 1, 2) is sufficiently small, there exists r̄ ∈ (0,β1) such that f ∗(r̄) < r̄
MT ,

namely (D) holds.
Third, it is clear that f (x) – a∗βN ≥ 0 for x ∈ (βN , R̂). In addition, if C3j (j = 1, 2) is suffi-

ciently small, there exists R̂ > βN
θ

such that

max
x∈[θ R̂,R̂]

f (x) <
R̄

MT
+ min

{
a∗ –

1
MT

, 0
}
βN ,

namely (E) holds.
Finally, we can verify that

f 0 = lim
x→0

f (x)
x

= lim
x→0

C01xν01 + C02
(x–β1)ν02

x
= +∞,

f ∞ = lim
x→∞

f (x)
x

= lim
x→∞

C31
(x–β3)ν31 + C32xν32 + β3μ

x
= +∞.

Therefore, by Theorem 1.10, (3.3) has at least (2N + 2) positive periodic solutions.

4 Conclusion
Some sufficient conditions are given to illustrate the existence and multiplicity of positive
periodic solutions for the second order differential equations

⎧⎨
⎩ẍ + a(t)x = f (x),

x(0) = x(T), ẋ(0) = ẋ(T).

For given nonnegative constants 0 < β1 < β2 < · · · < βN , the function f may be singular at
x = βi.
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