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Abstract
In this paper, we use a monotone iterative technique in the presence of lower and
upper solutions to discuss the existence and uniqueness of periodic solutions for a
class of fractional differential equations in an ordered Banach space E. Under some
monotonicity conditions and noncompactness measure conditions of nonlinearity,
we obtain the existence of extremal solutions and a unique solution between lower
and upper solutions.
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1 Introduction
The theory of fractional derivatives equations is an important branch of differential equa-
tion theory, which has extensive background in physics, chemistry, control of dynamical
systems and realistic mathematical model. It has been found that the differential equations
involving fractional derivatives in time are more realistic to describe many phenomena in
practical cases than those of integer order in time. Hence, the theory and application of
fractional derivatives equations has been rapidly developed in recent years. In particular,
the existence of solutions to such problems has been extensively studied by many authors.
For details, see the monographs of Miller and Ross [1], Kiryakova [2], Podlubny [3], and
Kilbas et al. [4] and the papers by Lakshmikantham and Vatsala [5], Agarwal et al. [6],
Darwish et al. [7–10]. Some recent contributions to the theory of fractional differential
equations can be seen in [11–23].

In [13], the authors studied periodic boundary value problems for fractional differential
equations

⎧
⎨

⎩

Dα
0 u(t) = f (t, u(t)), t ∈ (0, T],

t1–αu(t)|t=0 = t1–αu(t)|t=T ,
(1.1)

where 0 < T < +∞, f ∈ C([0, T]×R), and Dα
0 is the Riemann–Liouville fractional derivative

of order 0 < α ≤ 1. Through discussing the properties of well-known Mittag-Leffler func-
tion, they established a comparison result for problem (1.1) and obtained the existence
and uniqueness of solution for (1.1) by using the monotone iterative method.
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However, all of the papers mentioned above are in scalar spaces R. To the best of our
knowledge, the work on the periodic solution for fractional differential equations in ab-
stract spaces is yet to be initiated. Motivated by the consideration and [11, 13], in this
article, we discuss the periodic boundary value problems for fractional differential equa-
tions in an ordered Banach space E

⎧
⎨

⎩

Dα
0 u(t) = f (t, u(t)), t ∈ (0, T],

t1–αu(t)|t=0 = t1–αu(t)|t=T ,
(1.2)

where 0 < T < +∞, f ∈ C([0, T]×E, E), and Dα
0 is the Riemann–Liouville fractional deriva-

tive of order 0 < α ≤ 1. By combining the theory of measure of noncompactness and the
method of lower and upper solutions coupled with the monotone iterative technique, we
construct two monotone iterative sequences and prove that the sequences monotonically
converge to the minimal and maximal periodic solutions of problem (1.2), respectively,
under some monotone conditions and noncompactness measure conditions of f . Our re-
sults are more general than those in [11, 13]. Because we consider problem (1.2) in a more
general Banach space, therefore, it has more extensive application background. Our main
results will be given in Sect. 3. Some preliminaries to discuss problem (1.2) are presented
in Sect. 2.

Remark 1.1 We call a function u(t) a classical solution of problem (1.2) if
(i) u(t) is continuous on (0, T], t1–αu(t) is continuous on [0, T], and its fractional

integral I1–αu(t) is continuously differentiable for (0, T];
(ii) u(t) satisfies problem (1.2).

2 Preliminaries
In this section, we introduce notations, definitions, and preliminary facts which are used
throughout this article.

Let E be an ordered Banach space with the norm ‖ · ‖ and the partial order ≤, whose
positive cone P = {u ∈ E | u ≥ θ} is normal with normal constant N . Generally, C([0, T], E)
denotes the space of all continuous E-value functions on the interval [0, T]. Evidently,
C([0, T], E) is an ordered Banach space with the norm ‖u‖C = maxt∈[0,T] ‖u(t)‖ and the
partial order ≤ deduced by the positive cone PC = {u ∈ C([0, T], E) | u(t) ≥ θ}. PC is
also normal with the same normal constant N . Let Cr([0, T], E) = {u ∈ C((0, T], E) | tru ∈
C([0, T], E)}, then Cr([0, T], E) is also a Banach space when endowed with the norm
‖u‖r = max{tr‖u(t)‖ : t ∈ [0, T]}. It is easy to verify that Cr([0, T], E) ⊂ L1([0, T], E) if r < 1,
where L1([0, T], E) denotes the Banach space of all E-value Bochner integrable functions
defined on [0, T] with the norm ‖u‖1 =

∫ 1
0 ‖u(t)‖dt.

Definition 2.1 (see [4]) The Riemann–Liouville fractional integral of order α > 0 of a
function y : (0, +∞) → E is given by

Iα
0 y(t) =

1
�(α)

∫ t

0
(t – s)α–1y(s) ds

provided the right-hand side is pointwise defined on (0, +∞).
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Definition 2.2 (see [4]) The Riemann–Liouville fractional derivative of order α > 0 of a
function y : (0, +∞) → E is given by

Dα
0 y(t) =

1
�(n – s)

(
d
dt

)n ∫ t

0

y(s)
(t – s)α–n+1 ds,

where n = [α] + 1, provided that the right-hand side is pointwise defined on (0, +∞).

For problem (1.2), we have the following definitions of upper and lower solutions.

Definition 2.3 A function v ∈ C1–α([0, T], E) is called a lower solution of problem (1.2) if
it satisfies

⎧
⎨

⎩

Dα
0 v(t) ≤ f (t, v(t)), t ∈ (0, T],

t1–αv(t)|t=0 = t1–αv(t)|t=T .
(2.1)

If all the inequalities of (2.1) are inverse, we call it an upper solution of problem (1.2).

Remark 2.1 In what follows, if v and w are lower solution and upper solution of problem
(1.2), respectively, we assume that

v(t) ≤ w(t), t ∈ (0, T]; t1–αv(t)|t=0 ≤ t1–αw(t)|t=0. (2.2)

Let μ(·) denote the Kuratowski measure of noncompactness of the bounded set. For
details of the definition and properties of the measure of noncompactness, see [24]. The
following result is important to proving our main results.

Lemma 2.1 Let H ⊂ C1–α([0, T], E) be bounded and equicontinuous. Then

μ(H) = max
t∈[0,T]

{
t1–αμ

(
H(t)

)}
,

where H(t) = {u(t) | u ∈ H} ⊂ E, t ∈ [0, T].

Proof By hypotheses, for every u ∈ H and any ε > 0, there exists δ > 0 such that when
|t1 – t2| < δ, for any t1, t2 ∈ [0, T], we have

∥
∥t1–α

1 u(t1) – t1–α
2 u(t2)

∥
∥ < ε. (2.3)

Let

� : 0 = t0 < t1 < · · · < tn = T

be a division of [0, T] such that ‖�‖ < δ, where ‖�‖ = max{ti – ti–1; i = 1, 2, . . . , n}. Let
B =

⋃n
i=1 t1–α

i H(ti). There is a division B =
⋃m

j=1 Bj such that

d(Bj) < μ(B) + ε, j = 1, 2, . . . , m, (2.4)
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where d(Bj) denotes the diameter of Bj. Let G be the set of all mappings from {1, 2, . . . , n}
into {1, 2, . . . , m}. It is clear that G is a finite set. For any β ∈ G, let

Hβ =
{

u ∈ H | t1–α
i u(ti) ∈ Bβ(i), i = 1, 2, . . . , n

}
.

It is clear that H =
⋃

β∈G Hβ . For any u, v ∈ Hβ , and t ∈ [0, T], we have t ∈ [ti–1, ti] for some
i ∈ {1, 2, . . . , n}, and so, (2.3) and (2.4) imply that

∥
∥t1–αu(t) – t1–αv(t)

∥
∥ ≤ ∥

∥t1–αu(t) – t1–α
i u(ti)

∥
∥ +

∥
∥t1–α

i u(ti) – t1–α
i v(ti)

∥
∥

+
∥
∥t1–α

i v(ti) – t1–αv(t)
∥
∥

< d(Bβ(i)) + 2ε

< μ(B) + 3ε.

From this and the definition of norm for Cr([0, T], E) it follows that

‖u – v‖1–α < μ(B) + 3ε;

consequently,

d(Hβ ) ≤ μ(B) + 3ε, ∀β ∈ G,

which implies μ(H) ≤ μ(B) + 3ε. Since ε is arbitrary, we get

μ(H) ≤ μ(B) = max
{
μ

(
t1–α
i H(ti)

)
, i = 1, 2, . . . , n

}

= max
{

t1–α
i μ

(
H(ti)

)
, i = 1, 2, . . . , n

}

≤ max
t∈[0,T]

{
t1–αμ

(
H(t)

)}
.

On the other hand, for any ε > 0, there is a division H =
⋃k

l=1 Hl such that

d(Hl) < μ(H) + ε, l = 1, 2, . . . , k. (2.5)

Hence, for ∀t ∈ [0, T], ∀x1, x2 ∈ Hl , l = 1, 2, . . . , k, we have

∥
∥t1–αx1(t) – t1–αx2(t)

∥
∥ ≤ ‖x1 – x2‖1–α < μ(H) + ε. (2.6)

Since {t1–αH(t)} =
⋃k

l=1 t1–αHl(t), together with (2.5) and (2.6) we get

d
(
t1–αHl(t)

) ≤ μ(H) + ε, ∀t ∈ [0, T],

that is,

μ
(
t1–αHl(t)

) ≤ μ(H) + ε, ∀t ∈ [0, T],
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Because ε is arbitrary, we obtain

t1–αμ
(
Hl(t)

) ≤ μ(H), ∀t ∈ [0, T].

Consequently,

max
t∈[0,T]

{
t1–αμ

(
Hl(t)

)} ≤ μ(H).

To sum up, the proof of Lemma 2.1 is complete. �

Lemma 2.2 (see [25]) Let B = {un} ⊂ C1–α([0, T], E) be bounded and countable set. Then
μ(B(t)) is Lebesgue integral on [0, T], and

μ

({∫ T

0
un(t) dt

∣
∣
∣ n ∈N

})

≤ 2
∫ T

0
μ

(
B(t)

)
dt.

Let M be the positive constant. For h ∈ C([0, T], E), we consider the linear periodic
boundary value problems

⎧
⎨

⎩

Dα
0 u(t) + Mu(t) = h(t), t ∈ (0, T],

t1–αu(t)|t=0 = t1–αu(t)|t=T .
(2.7)

By an argument similar to that in [11, Theorem 3.2] or [13, Lemma 1.1], we can obtain the
following result.

Lemma 2.3 The linear periodic boundary value problem (2.7) has a unique solution u
given by

u(t) =
T1–α�(α)tα–1Eα,α(–Mtα)

[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
h(s) ds

+
∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)
h(s) ds,

where Eα,α(x) =
∑∞

k=0
xk

�((k+1)α) is the Mittag-Leffler function.

Remark 2.2 The well-known two-parameter Mittag-Leffler function

Eα,β (x) =
∞∑

k=0

xk

�(αk + β)
, x ∈R,α,β > 0

converges uniformly in R.

Remark 2.3 As showed in [16, Lemma 2.1 and Lemma 2.2], for 0 < α ≤ 1, we have

0 < Eα,α(x) =
∞∑

k=0

xk

�((k + 1)α)
<

1
�(α)

, ∀x ∈ R. (2.8)

Hence, [1 – �(α)Eα,α(–MTα)] > 0. If h ≥ θ , the solution of (2.7) u ≥ θ . This comparison
result will play a very important role in this paper.
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3 Main results
For v, w ∈ C1–α([0, T], E), we denote

[v, w] =
{

u ∈ C1–α

(
[0, T], E

) | v(t) ≤ u(t) ≤ w(t), t ∈ (0, T],

t1–αv(t)|t=0 ≤ t1–αu(t)|t=0 ≤ t1–αw(t)|t=0
}

.

Our main results are as follows.

Theorem 3.1 Let E be an ordered Banach space, whose positive cone P is normal, f :
[0, T] × E → E be continuous. Assume that v0, w0 ∈ C1–α([0, T], E) are lower and upper
solutions of (1.2) such that (2.2) holds. If the following conditions are satisfied:

(H1) There exists a constant M > 0 such that

f (t, x2) – f (t, x1) ≥ –M(x2 – x1)

for ∀t ∈ [0, T] and v0 ≤ x1 ≤ x2 ≤ w0.
(H2) There exists a constant K > 0 with

2KTα�(α)
�(2α)

(
1

[1 – �(α)Eα,α(–MTα)]
+ 1

)

< 1

such that

μ
({

f
(
t, un(t)

)
+ Mun(t)

}) ≤ Kμ
({

un(t)
})

for ∀t ∈ [0, T], and a monotonous sequence {un} ⊂ [v0, w0].
Then problem (1.2) has minimal and maximal solutions between v0 and w0, which can be
obtained by a monotone iterative procedure starting from v0 and w0, respectively.

Proof For any h ∈ [v0, w0], consider the linear periodic boundary value problem

⎧
⎨

⎩

Dα
0 u(t) + Mu(t) = f (t, h(t)) + Mh(t), t ∈ (0, T],

t1–αu(t)|t=0 = t1–αu(t)|t=T .
(3.1)

By Lemma 2.3, we obtain that problem (3.1) has unique solution u, which can be expressed
as follows:

u(t) =
T1–α�(α)tα–1Eα,α(–Mtα)

[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)(
f
(
t, h(s)

)

+ Mh(s)
)

ds +
∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)(
f
(
t, h(s)

)
+ Mh(s)

)
ds

:= Ah(t). (3.2)

Firstly, we need to show that the operator A : [v0, w0] → C1–α([0, T], E) is well defined, i.e.,
for h ∈ [v0, w0], Ah ∈ C1–α([0, T], E). By (H1), for h ∈ [v0, w0], we have

f
(
t, v0(t)

)
+ Mv0(t) ≤ f

(
t, h(t)

)
+ Mh(t) ≤ f

(
t, w0(t)

)
+ Mw0(t).
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We denote

F(h)(t) = f
(
t, h(t)

)
+ Mh(t), ∀h ∈ [v0, w0].

By the normality of the cone P, there exists L > 0 such that‖F(h)‖1–α ≤ L, that is,

∥
∥f

(
t, h(t)

)
+ Mh(t)

∥
∥ ≤ Ltα–1. (3.3)

By (2.8) and (3.3), we have that

∥
∥t1–α(Ah)(t)

∥
∥ =

∥
∥
∥
∥

T1–α�(α)Eα,α(–Mtα)
[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
F(h)(s) ds

+ t1–α

∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)
F(h)(s) ds

∥
∥
∥
∥

≤ T1–α

�(α)[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1∥∥F(h)(s)

∥
∥ds

+
t1–α

�(α)

∫ t

0
(t – s)α–1∥∥F(h)(s)

∥
∥ds

≤ T1–αL
�(α)[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1sα–1 ds

+
t1–αL
�(α)

∫ t

0
(t – s)α–1sα–1 ds

=
TαL�(α)

�(2α)[1 – �(α)Eα,α(–MTα)]
+

L�(α)tα

�(2α)
.

That is to say, the integral in (3.2) exists and belongs to C1–α([0, T], E).
By Lemma (2.3), the solution of problem (1.2) is equivalent to the fixed point of the

operator A. Now, we complete the proof by four steps.
Step 1. We show that the operator A : [v0, w0] → C1–α([0, T], E) is equicontinuous. For

any u ∈ [v0, w0] and 0 ≤ t1 ≤ t2 ≤ T , we have

∥
∥t1–α

2 Au(t2) – t1–α
1 Au(t1)

∥
∥

≤
∥
∥
∥
∥

T1–α�(α)Eα,α(–Mtα
2 )

[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
F(u)(s) ds

+ t1–α
2

∫ t

0
(t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
F(u)(s) ds

–
T1–α�(α)Eα,α(–Mtα

1 )
[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
F(u)(s) ds

– t1–α
1

∫ t

0
(t1 – s)α–1Eα,α

(
–M(t1 – s)α

)
F(u)(s) ds

∥
∥
∥
∥

≤ T1–α�(α)|Eα,α(–Mtα
2 ) – Eα,α(–Mtα

1 )|
[1 – �(α)Eα,α(–MTα)]

×
∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)∥
∥F(u)(s)

∥
∥ds
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+
∥
∥
∥
∥t1–α

2

∫ t

0
(t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
F(u)(s) ds

– t1–α
1

∫ t

0
(t1 – s)α–1Eα,α

(
–M(t1 – s)α

)
F(u)(s) ds

∥
∥
∥
∥.

For the first term of the above formula, by (2.8) and (3.3), we have

T1–α�(α)|Eα,α(–Mtα
2 ) – Eα,α(–Mtα

1 )|
[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)∥
∥F(u)(s)

∥
∥ds

≤ T1–αL
[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1sα–1 ds

∣
∣Eα,α

(
–Mtα

2
)

– Eα,α
(
–Mtα

1
)∣
∣

=
Tα(�(α))2L

�(2α)[1 – �(α)Eα,α(–MTα)]
∣
∣Eα,α

(
–Mtα

2
)

– Eα,α
(
–Mtα

1
)∣
∣.

The function Eα,α(–Mtα) is continuous, so the previous expression has limit zero as |t2 –
t1| → 0.

For the rest, by the properties of Eα,α(x) discussed in [16, Proposition 1], we have

∥
∥
∥
∥t1–α

2

∫ t2

0
(t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
F(u)(s) ds

– t1–α
1

∫ t1

0
(t1 – s)α–1Eα,α

(
–M(t1 – s)α

)
F(u)(s) ds

∥
∥
∥
∥

≤
∥
∥
∥
∥

∫ t1

0

[
t1–α
2 (t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
– t1–α

1 (t1 – s)α–1Eα,α
(
–M(t1 – s)α

)]

× F(u)(s) ds
∥
∥
∥
∥

+
∥
∥
∥
∥t1–α

2

∫ t2

t1

(t2 – s)α–1Eα,α
(
–M(t2 – s)α

)
F(u)(s) ds

∥
∥
∥
∥

≤ L
∫ t1

0

[
t1–α
1 (t1 – s)α–1Eα,α

(
–M(t1 – s)α

)
– t1–α

2 (t2 – s)α–1Eα,α
(
–M(t2 – s)α

)]
sα–1 ds

+ L
∫ t2

t1

t1–α
2 (t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
sα–1 ds

= L
∫ t1

0
t1–α
1 (t1 – s)α–1Eα,α

(
–M(t1 – s)α

)
sα–1 ds

– L
∫ t2

0
t1–α
2 (t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
sα–1 ds

+ 2L
∫ t2

t1

t1–α
2 (t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
sα–1 ds

= L�(α)
(
t1–α
1

(
Iα

0 t1–α
1 Eα,α

(
–Mtα

1
))

– t1–α
2

(
Iα

0 t1–α
2 Eα,α

(
–Mtα

2
)))

+ 2L
∫ t2

t1

t1–α
2 (t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
sα–1 ds

= L�(α)
(
tα
1 Eα,2α

(
–Mtα

1
)

– tα
2 Eα,2α

(
–Mtα

2
))

+ 2L
∫ t2

t1

t1–α
2 (t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
sα–1 ds
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= –
L�(α)

M
(
Eα,α

(
–Mtα

1
)

– Eα,α
(
–Mtα

2
))

+ 2L
∫ t2

t1

t1–α
2 (t2 – s)α–1Eα,α

(
–M(t2 – s)α

)
sα–1 ds

≤ –
L�(α)

M
(
Eα,α

(
–Mtα

1
)

– Eα,α
(
–Mtα

2
))

+
2Lt1–α

2 tα–1
1

�(α)

∫ t2

t1

(t2 – s)α–1 ds

= –
L�(α)

M
(
Eα,α

(
–Mtα

1
)

– Eα,α
(
–Mtα

2
))

+
2Lt1–α

2 tα–1
1

�(α)
(t2 – t1)α .

Obviously, the previous expression also tends to zero for |t2 – t1| → 0. That is to say, A :
[v0, w0] → C1–α([0, T], E) is equicontinuous.

Step 2. We show that v0 ≤ Av0, Aw0 ≤ wo, and Au1 ≤ Au2 for any u1, u2 ∈ [v0, w0] with
u1 ≤ u2.

Let

σ (t) := Dαv0(t) + Mv0(t),

then, by Definition 2.3, we have σ (t) ≤ F(v0)(t). Hence,

v0(t) =
T1–α�(α)tα–1Eα,α(–Mtα)

[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
σ (s) ds

+
∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)
σ (s) ds

≤ T1–α�(α)tα–1Eα,α(–Mtα)
[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
F(v0)(s) ds

+
∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)
F(v0)(s) ds

= Av0(t),

namely v0 ≤ Av0. Similarly, we can show that Aw0 ≤ w0. For any u1, u2 ∈ [v0, w0] with u1 ≤
u2, by assumption (H1),

f
(
t, u1(t)

)
+ Mu1(t) ≤ f

(
t, u2(t)

)
+ Mu2(t),

which implies that Au1 ≤ Au2.
Step 3. From Step 2 we know that A maps [v0, w0] into itself, and A : [v0, w0] → [v0, w0]

is a continuously increasing operator. We can now define the sequences

vn = Avn–1, wn = Awn–1, n = 1, 2, . . . . (3.4)

Then from the monotonicity of A it follows that

v0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ · · · ≤ wn ≤ · · · ≤ w2 ≤ w1 ≤ w0. (3.5)

Obviously, {vn}, {wn} ⊂ [v0, w0] are equicontinuous. Next, we show that {vn} and {wn} are
convergent in C1–α([0, T], E).
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From (H2), Lemma 2.1, and Lemma 2.2, for any t ∈ [0, T], we have that

t1–αμ
{

vn(t)
}

= t1–αμ
{

Avn–1(t)
}

= t1–αμ

({
T1–α�(α)tα–1Eα,α(–Mtα)

[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
F(vn–1)(s) ds

+
∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)
F(vn–1)(s) ds

})

≤ μ

({
T1–α�(α)Eα,α(–Mtα)

[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
F(vn–1)(s) ds

})

+ t1–αμ

({∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)
F(vn–1)(s) ds

})

≤ 2T1–α�(α)Eα,α(–Mtα)
[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
μ

({
F(vn–1)(s)

})
ds

+ 2t1–α

∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)
μ

({
F(vn–1)(s)

})
ds

≤ 2KT1–αEα,α(–Mtα)
[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1μ

({
vn–1(s)

})
ds

+
2Kt1–α

�(α)

∫ t

0
(t – s)α–1μ

({
vn–1(s)

})
ds

≤ 2KT1–α�(α)
[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1sα–1 dsμ

({vn–1}
)

+
2Kt1–α

�(α)

∫ t

0
(t – s)α–1sα–1 dsμ

({vn–1}
)

=
2KTα�(α)

�(2α)

(
1

[1 – �(α)Eα,α(–MTα)]
+ 1

)

μ
({vn}

)
.

Since {vn} is equicontinuous, using Lemma (2.1), we have

μ
({vn}

)
= max

t∈[0,T]

{
t1–αμ

({
vn(t)

})} ≤ 2KTα�(α)
�(2α)

(
1

[1 – �(α)Eα,α(–MTα)]
+ 1

)

μ
({vn}

)
.

While

2KTα�(α)
�(2α)

(
1

[1 – �(α)Eα,α(–MTα)]
+ 1

)

< 1,

hence μ({vn}) = 0. So, {vn} are relatively compact in C1–α([0, T], E). Hence, {vn} has a con-
vergent subsequence in C1–α([0, T], E). Combining this with the monotonicity (3.5), we
easily prove that {vn} itself is convergent in C1–α([0, T], E).

Using a similar argument to that for {wn}, we can prove that {wn} is also convergent in
C1–α([0, T], E). Then there are u, ū ∈ C1–α([0, T], E) such that

u = lim
n→∞ vn, ū = lim

n→∞ wn.
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Letting n → ∞ in (3.4), we see that

u = Au, ū = Aū.

Therefore, u, ū ∈ C1–α([0, T], E) are fixed points of A.
Step 4. We prove the minimal and maximal property of u, ū. Assume that ũ is a fixed

point of A in [v0, w0], then we have

v0(t) ≤ ũ(t) ≤ w0(t), t ∈ (0, T],

t1–αv0(t)|t=0 ≤ t1–αũ(t)|t=0 ≤ t1–αw0(t)|t=0.

By the monotonicity of A, it is easy to see that

v1(t) = (Av0)(t) ≤ (Aũ)(t) = ũ(t) ≤ (Aw0)(t) = w1(t), t ∈ (0, T],

t1–αv1(t)|t=0 ≤ t1–αũ(t)|t=0 ≤ t1–αw1(t)|t=0.

Furthermore, we have

vn ≤ ũ ≤ wn, n = 1, 2, . . . . (3.6)

Letting n → ∞ in (3.6), we obtain u ≤ ũ ≤ ū. So u, ū are the minimal and maximal fixed
points of A in [v0, w0], and therefore, they are the minimal and maximal solutions of prob-
lem (1.2) in [v0, w0], respectively.

This completes the proof of Theorem 3.1. �

Remark 3.1 When E = R, we do not need condition (H3), {vn} and {wn} defined in (3.4)
are convergent in C1–α([0, T],R) automatically. Therefore, Theorem 3.1 improves the main
results in [13].

Next, we discuss the uniqueness of the solution to problem (1.2) in [vo, wo].

Theorem 3.2 Let E be an ordered Banach space, whose positive cone P is normal, f :
[0, T] × E → E be continuous. Assume that v0, w0 ∈ C1–α([0, T], E) are lower and upper
solutions of (1.2) such that (2.2) holds. If conditions (H1), (H2) and the following condition
are satisfied:

(H3) There exists a constant C > 0 with

N(M + C)Tα�(α)
�(2α)

(
1

[1 – �(α)Eα,α(–MTα)]
+ 1

)

< 1

such that

f (t, x2) – f (t, x1) ≤ C(x2 – x1),

for ∀t ∈ [0, T], and v0 ≤ x1 ≤ x2 ≤ w0, where N is a normal constant.
Then problem (1.2) has a unique solution between v0 and w0, which can be obtained by a
monotone iterative procedure starting from v0 or w0.
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Proof From the proof of Theorem 3.1, we know that the iterative sequences {vn} and {wn}
defined by (3.4) satisfy (3.5). Now, we show that there exists a unique u
 ∈ C1–α([0, T], E)
such that u
 = Au
. For t ∈ [0, T], by (H3), we have

t1–α
(
wn(t) – vn(t)

)

= t1–α
(
Awn(t) – Avn(t)

)

=
T1–α�(α)Eα,α(–Mtα)

[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
F(wn–1)(s) ds

+ t1–α

∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)
F(wn–1)(s) ds

–
T1–α�(α)Eα,α(–Mtα)

[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)
F(vn–1)(s) ds

– t1–α

∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)
F(vn–1)(s) ds

=
T1–α�(α)Eα,α(–Mtα)

[1 – �(α)Eα,α(–MTα)]

×
∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)(
F(wn–1)(s) – F(vn–1)(s)

)
ds

+ t1–α

∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)(
F(wn–1)(s) – F(vn–1)(s)

)
ds

≤ (M + C)T1–α�(α)Eα,α(–Mtα)
[1 – �(α)Eα,α(–MTα)]

×
∫ T

0
(T – s)α–1Eα,α

(
–M(T – s)α

)(
wn–1(s) – vn–1(s)

)
ds

+ (M + C)t1–α

∫ t

0
(t – s)α–1Eα,α

(
–M(t – s)α

)(
wn–1(s) – vn–1(s)

)
ds

≤ (M + C)T1–α

�(α)[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1sα–1[s1–α

(
wn–1(s) – vn–1(s)

)]
ds

+
(M + C)t1–α

�(α)

∫ t

0
(t – s)α–1sα–1[s1–α

(
wn–1(s) – vn–1(s)

)]
ds.

From the normality of the cone P, it follows that
∥
∥t1–α

(
wn(t) – vn(t)

)∥
∥

≤ N(M + C)T1–α

�(α)[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1sα–1∥∥s1–α

(
wn–1(s) – vn–1(s)

)∥
∥ds

+
N(M + C)t1–α

�(α)

∫ t

0
(t – s)α–1sα–1∥∥s1–α

(
wn–1(s) – vn–1(s)

)∥
∥ds

≤ N(M + C)T1–α

�(α)[1 – �(α)Eα,α(–MTα)]

∫ T

0
(T – s)α–1sα–1 ds‖wn–1 – vn–1‖1–α

+
N(M + C)t1–α

�(α)

∫ t

0
(t – s)α–1sα–1 ds‖wn–1 – vn–1‖1–α

=
N(M + C)Tα�(α)

�(2α)[1 – �(α)Eα,α(–MTα)]
‖wn–1 – vn–1‖1–α
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+
N(M + C)tα�(α)

�(2α)
‖wn–1 – vn–1‖1–α

≤ N(M + C)Tα�(α)
�(2α)

(
1

[1 – �(α)Eα,α(–MTα)]
+ 1

)

‖wn–1 – vn–1‖1–α .

Therefore,

‖wn – vn‖1–α ≤ N(M + C)Tα�(α)
�(2α)

(
1

[1 – �(α)Eα,α(–MTα)]
+ 1

)

‖wn–1 – vn–1‖1–α .

Again using the above inequality, we get

‖wn – vn‖1–α ≤
[

N(M + C)Tα�(α)
�(2α)

(
1

[1 – �(α)Eα,α(–MTα)]
+ 1

)]n

‖w0 – v0‖1–α ,

which implies that for n → ∞ we have ‖wn – vn‖1–α → 0. Then there exists a unique
u
 ∈ C1–α([0, T], E) such that

lim
n→∞ wn = lim

n→∞ vn = u
.

So let n → ∞ in (3.4), we have u
 = Au
, which means that u
 is a unique solution of
problem (1.2).

This completes the proof of Theorem 3.2. �

4 Conclusion
By using the method of lower and upper solutions coupled with the monotone iterative
technique, combining the theory of measure of noncompactness, we present some mono-
tone conditions and noncompactness measure conditions of f such that problem (1.2) has
minimal and maximal periodic solutions. In addition, we investigate the uniqueness of the
solution for this problem. Our results are more general than those in [11, 13], because we
consider problem (1.2) in a more general Banach space, it has more extensive application
background. Our main results improve the main results in [11, 13].
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