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Abstract
The main purpose of this article is to consider a Lotka–Volterra predator–prey system
with ratio-dependent functional responses and feedback controls. By using a
comparison theorem and constructing a suitable Lyapunov function as well as
developing some new analysis techniques, we establish a set of easily verifiable
sufficient conditions which guarantee the permanence of the system and the global
attractivity of a positive solution for the predator–prey system. Furthermore, some
conditions for the existence, uniqueness, and stability of a positive periodic solution
for the corresponding periodic system are obtained by using the fixed point theory
and some new analysis method. In additional, some numerical solutions of the
equations describing the system are given to verify that the obtained criteria are new,
general, and easily verifiable.
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1 Introduction
After the pioneering works of Lotka and Volterra, a lot of work has been carried out on
the predator–prey model. The most crucial element in these models is the “functional
response”—the expression that describes the rate at which the number of prey is con-
sumed by a predator. Modifications were limited to replacing the Malthusian growth func-
tion, the predator per capita consumption of prey functions such as Holling type I, II, III
functional responses, or density-dependent mortality rates. These functional responses
depend only on the prey volume, but soon it became clear that the predator volume can
influence this function by direct interference while searching or by pseudo interference
[1–3]. A simple way of incorporating predator dependence in the functional response
was proposed by Arditi and Ginzburg [4], who first considered this response function
as a function of the ratio. Moreover, Jost et al. [5] showed that prey-dependent and ratio-
dependent models can fit well with the time series generated by each other. Interestingly,
it has been investigated that the ratio-dependent predator–prey models are more appro-
priate for predator–prey interactions when the predator involves serious hunting pro-
cesses, like animals searching for animals, etc. [6–8]. It is justified through some basic
but different principles that ratio-dependent models are more appropriate for modeling
predator–prey interactions [9]. Kesh et al. [10] consider a food web model consisting of
two competing prey and one predator population with predator interference. From the
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knowledge of saturated equilibria and by constructing the average Lyapunov function, the
sufficient condition for permanent coexistence and extinction of species of the system is
obtained. Pang and Wang [11] study a class of two-predator-one-prey ecosystem and show
that the unique positive equilibrium solution of the system is globally asymptotically sta-
ble. Baek et al. [12] study a x1(t) elliptic system with ratio-dependent functional responses.
By employing a comparison argument for the elliptic problem and the fixed-point theory
applied to a positive cone on a Banach space, authors examine the positive coexistence
of one prey and two competing predators in an interacting system with ratio-dependent
functional responses under a hostile environment. Furthermore, Ko and Ahn [13, 14] in-
vestigate the stability at all non-negative equilibria and long time behavior of solutions for
a ratio-dependent reaction-diffusion system. For more similar work, we refer the reader
to [15–21].

On the other hand, one can find that an ecosystem in the real world is continuously dis-
tributed by some forces, which can result in changes in the biological parameters such as
survival rates. Of practical interest in ecology is the question of whether or not an ecosys-
tem can withstand those disturbances which persist for a finite period of time. In the lan-
guage of control variables, we refer to the disturbance functions as control variables. This
is of significance in the control of ecology balance. One of the methods for the realiza-
tion of it is to alter the system structurally by introducing feedback control variables. The
feedback control mechanism might be implemented by means of some biological control
schemes or by harvesting procedure. In fact, during the last decade, the qualitative behav-
ior of the population dynamics with feedback control has been studied extensively. Yin
and Li [22] propose a single species model with feedback regulation and distributed time
delay. By using the continuation theorem of coincidence degree theory, a criterion which
guarantees the existence of a positive periodic solution of the system is obtained. Further-
more, Chen [23] obtains a sufficient condition which guarantees the global attractivity of
the positive solution of the system by constructing a suitable Lyapunov functional. Nie
et al. [24] consider a non-autonomous predator–prey Lotka–Volterra system with feed-
back controls. They study whether or not the feedback controls have an influence on the
permanence of a positive solution of the general non-autonomous predator–prey Lotka–
Volterra type systems, and establish the general criteria on the permanence of the system,
which is independent of some feedback controls. In additional, by constructing a suitable
Lyapunov function, some sufficient conditions are obtained for the global stability of any
positive solution to the system. More work on feedback controls can be found in [25–30].

Commonly, an ecological system, such as that represented by the deterministic Lotka–
Volterra model, is not suitable to describe the real behavior of the population dynamics.
What we claim as “disturbance functions as control variables”, which is mentioned above,
is strictly connected to the environmental noise effect. It is necessary to include the effect
of environmental variables that can be deterministic, such as the variation of the temper-
ature due to atmospheric conditions, and stochastic, due to the stochastic variability of
all the other variables, such as growth rate, resources, etc. [31–36]. Moreover, the study
of nonlinear dynamical systems in the presence of external noise has led to the discov-
ery of a number of counterintuitive phenomena, with a constructive role of the noise and
high fundamental and practical interests in many scientific areas. The presence of a noise
source can change the stability of the ecological system [37]. Ghergu and Radulescu [38]
study the existence and non-existence of classical solutions to a general Gierer- Meinhardt
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system in which both the activator and the inhibitor have different sources given by gen-
eral nonlinearities, and regularity and uniqueness of the solution in one dimension are
also presented. In 2010, Ghergu and Radulescu [39] consider a class of reaction-diffusion
system of Brusselator type, and show that if f (u) has a sublinear growth then no Turing
patterns occur, while if f (u) has a superlinear growth then the existence of such patterns
is strongly related to the inter-dependence between the parameters a, b and the diffusion
coefficients d1, d2. Liu et al. [40] establish the existence of at least four positive periodic
solutions for a discrete time Lotka–Volterra competitive system with harvesting terms by
using Mawhin’s continuation theorem of coincidence degree theory. In [41], Giacomoni et
al. investigate a quasilinear and singular elliptic system and give some applications to biol-
ogy. In particular, many mathematical models in biology, chemistry, and population genet-
ics are included and studied in [42]. In recent years many theoretical investigations have
been done on noise-induced effects in population dynamics [43–45]. Finally, the noise
source can be non-Gaussian and this further enriches the dynamics [46–51].

However, as far as we know, no work has been done for the one-predator and two-prey
system with ratio-dependent functional responses and feedback controls. So, in this paper,
we will consider the following system:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x1(t)[r1(t) – a11(t)x1(t) – a12(t)x2(t)
b12(t)x2(t)+x1(t) – a13(t)x3(t)

b13(t)x3(t)+x1(t) – d1(t)u1(t)],

ẋ2(t) = x2(t)[–r2(t) + a21(t)x1(t)
b12(t)x2(t)+x1(t) – a23(t)x3(t) + d2(t)u2(t)],

ẋ3(t) = x3(t)[–r3(t) + a31(t)x1(t)
b13(t)x3(t)+x1(t) – a32(t)x2(t) + d3(t)u3(t)],

u̇1(t) = e1(t) – f1(t)u1(t) + q1(t)x1(t),

u̇2(t) = e2(t) – f2(t)u2(t) – q2(t)x2(t),

u̇3(t) = e3(t) – f3(t)u3(t) – q3(t)x3(t),

(1.1)

where x1(t), x2(t) and x3(t) stand for the densities of one prey and two competing preda-
tors, respectively, and ui(t) (i = 1, 2, 3) are the indirect control variables. The given coef-
ficients aij(t), bij(t), di(t), ei(t), fi(t), qi(t), and ri(t) are positive continuous bounded func-
tions of t for i, j = 1, 2, 3. System (1.1) describes the interaction between prey and predator
species which is based on a ratio-dependent functional response. System (1.1) is the so-
called food web system with two competing predators and one prey. Here, r1(t) is the
intrinsic growth rate in the absence of predators r2(t) and x3(t); the parameters a12(t) and
a13(t) are the capturing (or catching efficiency) rates of the two predators; a21(t) and a31(t)
are the conversion rates (or maximum growth rates); b12(t) and b13(t) are the interfer-
ence coefficients of predator species; r2(t) and r3(t) are the death rates of the two predator
species x2(t) and x3(t); di(t), ei(t), qi(t), and fi(t) (i = 1, 2, 3) are the controls parameters.
When there are no feedback controls, system (1.1) is reduced to the following Lotka and
Volterra model:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ1(t) = x1(t)[a1(t) – a11(t)x1(t) – a12(t)x2(t)
b12(t)x2(t)+x1(t) – a13(t)x3(t)

b13(t)x3(t)+x1(t) ],

ẋ2(t) = x2(t)[–a2(t) + a21(t)x1(t)
b12(t)x2(t)+x1(t) – a23(t)x3(t)],

ẋ3(t) = x3(t)[–a3(t) + a31(t)x1(t)
b13(t)x3(t)+x1(t) – a32(t)x2(t)],

(1.2)

where the meanings of the parameters of system (1.2) are the same as those of (1.1). Lu et
al. [52] show that this system is permanent and globally asymptotically stable under some
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appropriate conditions by constructing a suitable Lyapunov function. Comparing systems
(1.1) and (1.2), one could see that we introduce the control variables ui(t) (i = 1, 2, 3) so as
to implement a feedback control mechanism.

This paper is organized as follows. In Sect. 2, we provide the conditions for perma-
nence to system (1.1) by using a comparison theorem and developing some new analysis
techniques. In Sect. 3, by constructing a non-negative Lyapunov function, we shall derive
sufficient conditions for the global attractivity of positive solution for the predator–prey
system (1.1). In Sect. 4, some conditions for the existence, uniqueness, and stability of a
positive periodic solution for the corresponding periodic system are obtained by using
the fixed point theory and some new analysis method. Some numerical solutions of the
equations describing the system are given in Sect. 5 to verify that the obtained criteria are
verifiable.

2 Permanence
In order to establish a permanence result for system (1.1), we need some preparations.
Due to the biological interpretation of the system, it is reasonable to consider only positive
solution of (1.1), in other words, to take admissible initial conditions xi(t0) > 0, ui(t0) > 0
(i = 1, 2, 3). Firstly, we introduce the following notations and definitions. Given a function
g(t) defined on [t0, +∞), we set

gm = sup
{

g(t) : t0 < t < +∞}
, gl = inf

{
g(t) : t0 < t < +∞}

.

Definition 2.1 System (1.1) is called permanent if there exist positive constants Mi, Ni,
mi, ni (i = 1, 2, 3), and T such that mi ≤ xi(t) ≤ Mi, ni ≤ ui(t) ≤ Ni as t > T for any positive
solution (x1(t), x2(t), x3(t), u1(t), u2(t), u3(t)) of system (1.1) with positive initials.

For system (1.1), we let

M∗
1 =

rm
1

al
11

, N∗
1 =

em
1 + qm

1 M1

f l
1

,

m∗
1 =

rl
1bl

12bl
13 – am

12bl
13 – am

13bl
13 – dm

1 bl
12bl

13N1

am
11bl

12bl
13

,

N∗
3 =

em
3

f l
3

, M∗
3 = M1

dm
3 N3 + am

31 – rl
3

rl
3bl

13 – dm
3 bl

13N3
,

N∗
2 =

em
2

f l
2

, M∗
2 = M1

dm
2 N2 + am

21 – rl
2

rl
2bl

12 – dm
2 bl

12N2
,

m∗
2 =

m1(–am
23M3 + al

21 – rm
2 )

rm
2 bm

12 + am
23bm

12M3
, m∗

3 =
m1(–am

23M2 + al
31 – rm

3 )
rm

3 bm
13 + am

32bm
13M2

,

n∗
1 =

el
1 + ql

1m1

f m
1

, n∗
2 =

el
2 – qm

2 M2

f m
2

, n∗
3 =

el
3 – qm

3 M3

f m
3

,

where Mi, Ni, mi, ni are some appropriate positive constants such that

0 < mi < m∗
i < M∗

i < Mi, 0 < ni < n∗
i < N∗

i < Ni, i = 1, 2, 3.

Theorem 2.1 Assume that system (1.1) satisfies the following conditions:
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(H1)

rl
1bl

12bl
13 > am

12bl
13 + am

13bl
13 + dm

1 bl
12bl

13N1;

(H2)

dm
3 N3 + am

31 – rl
3

rl
3bl

13 – dm
3 bl

13N3
> 0;

(H3)

dm
2 N2 + am

21 – rl
2

rl
2bl

12 – dm
2 bl

12N2
> 0;

(H4)

–am
23M3 + al

21 > rm
2 ;

(H5)

–am
23M2 + al

31 > rm
3 ;

(H6)

el
2 > qm

2 M2;

(H7)

el
3 > qm

3 M3.

Then system (1.1) is permanent.

Proof From the first equation of system (1.1), we have

ẋ1(t) ≤ x1(t)
[
r1(t) – a11(t)x1(t)

] ≤ x1(t)
[
rm

1 – al
11x1(t)

]
= al

11x1(t)
[
M∗

1 – x1(t)
]
,

thus, it holds that

ẋ1(t)|x1(t)=M∗
i
≤ al

11M1
[
M∗

1 – M1
]

< 0.

In view of the comparison theorem, one has
(1) When 0 < x1(t0) < M1, if t ≥ t0, then x1(t) ≤ M1.
(2) When x1(t0) ≥ M1, for a sufficiently large t, one has x1(t) ≤ M1. Otherwise, if

x1(t) > M1, then there exists α > 0 such that x1(t) ≥ M∗
1 + α. Moreover, we have

ẋ1(t)|x1(t)>M1 ≤ x1(t)
[
r1(t) – a11(t)x1(t)

] ≤ al
11x1(t)

[
M∗

1 – x1(t)
]

< –al
11αx1(t),
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thus, it holds that x1(t) < x1(t0) exp(–al
11αt) → 0 as t → +∞. This is a contradiction,

so there exist sufficiently large T1 ≥ t0 ≥ 0 such that

x1(t) ≤ M1 as t > T1. (2.1)

By the sixth equation of system (1.1), we can get

u̇3 ≤ em
3 – f l

3u3(t) = f l
3
[
N∗

3 – u3(t)
]
.

Thus, employing the comparison theorem and analysis similar to the one used
above, it holds that there exist sufficiently large T6 ≥ t0 ≥ 0 such that

u3(t) ≤ N3 as t > T6. (2.2)

Similarly, from the fifth equation of model (1.1), one has that there exist sufficiently
large T5 ≥ t0 ≥ 0 such that

u2(t) ≤ N2 as t > T5. (2.3)

From the third equation of system (1.1), and combining (2.1) and (2.2), the following
holds:

ẋ3 ≤ x3(t)
[

–rl
3 +

am
31M1

b13(t)x3(t) + M1
+ dm

3 N3

]

≤ x3(t)
[

–rl
3 +

am
31M1

bl
13x3(t) + M1

+ dm
3 N3

]

= x3(t)
[

–rl
3(bl

13x3(t) + M1) + am
31M1 + dm

3 N3(bl
13x3(t) + M1)

bl
13x3(t) + M1

]

= x3(t)
rl

3bl
13 – dm

3 N3bl
13

bl
13x3(t) + M1

[

–x3(t) +
M1(dm

3 N3 + am
31 – rl

3)
rl

3bl
13 – dm

3 N3bl
13

]

= x3(t)
rl

3bl
13 – dm

3 N3bl
13

bl
13x3(t) + M1

[
–x3(t) + M3

]
.

In view of the comparison theorem and the same analysis as above, we can obtain
that

(3) When 0 < x3(t0) < M3, if t ≥ t0, then x3(t) ≤ M3;
(4) When x3(t0) ≥ M3, for a sufficiently large t, one has x3(t) ≤ M3. So it holds that

there exist sufficiently large T3 ≥ t0 ≥ 0 such that

x3(t) ≤ M3 as t > T3. (2.4)

Similarly, from the second equation of system (1.1), and combining (2.1) and (2.3), it
holds that there exist sufficiently large T3 ≥ t0 ≥ 0 such that

x2(t) ≤ M2 as t > T2. (2.5)
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By the fourth equation of system (1.1), we can obtain

u̇1 ≤ em
1 – f l

1u1(t) + qm
1 M1 = f l

1
[
N∗

1 – u1(t)
]
.

Moreover, employing the comparison theorem and analysis similar to the one used
above, it holds that there exist sufficiently large T4 ≥ t0 ≥ 0 such that

u1(t) ≤ N1 as t > T4. (2.6)

On the other hand, by the same analysis process, we have

ẋ1(t) ≥ x1(t)
[

rl
1 – am

11x1(t) –
am

12

bl
12

–
am

13

bl
13

– dm
1 N1

]

= x1(t)am
11

[

–x1(t) +
rl

1bl
12bl

13 – am
12bl

13 – am
13bl

12 – bl
12bl

13dm
1 N1

am
11bl

12bl
13

]

= x1(t)am
11

[
–x1(t) + m∗

1
]
.

Using the comparison theorem and the same analysis as above, it holds that
(5) When m1 < x1(t0), if t ≥ t0, then m1 ≤ x1(t);
(6) When 0 < x1(t0) ≤ m1, for a sufficiently large t, one has m1 ≤ x1(t). Otherwise,

if x1(t) < m1, then there exists β > 0 such that x1(t) ≤ m∗
1 – β . Moreover, we have

ẋ1(t)|x1(t)<m1 ≥ am
11x1(t)

[
–x1(t) + m∗

1
]

> am
11βx1(t),

thus, it holds that x1(t) > x1(t0) exp(am
11βt) → +∞ as t → +∞. This is a

contradiction, so there exist sufficiently large T ′
1 ≥ t0 ≥ 0 such that

x1(t) ≥ m1 as t > T ′
1. (2.7)

Similarly, we can obtain that there exist five sufficiently large positive constants T ′
i

(i = 2, . . . , 6) such that

xi(t) ≥ mi, as t > T ′
i , i = 2, . . . , 6. (2.8)

From (2.1)–(2.8), and setting T = max1≤i≤6{Ti, T ′
i }, we have

mi ≤ xi(t) ≤ Mi, ni ≤ ui(t) ≤ Ni as t > T for any positive solution
(x1(t), x2(t), x3(t), u1(t), u2(t), u3(t)) of system (1.1) with positive initials. This ends
the proof of Theorem 2.1. �

3 Global attractivity
In this section, the global attractivity of system (1.1) is studied. To get the sufficient condi-
tions for global attractivity of system (1.1), the following definition and lemma are firstly
given.

Definition 3.1 System (1.1) is said to be globally attractive if there exists a positive solu-
tion X(t) = (x1(t), x2(t), x3(t), u1(t), u2(x), u3(x)) of system (1.1) such that

lim
t→+∞

∣
∣xi(t) – yi(t)

∣
∣ = 0, lim

t→+∞
∣
∣ui(t) – vi(t)

∣
∣ = 0,
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for any other positive solution Y (t) = (y1(t), y2(t), y3(t), v1(t), v2(t), v3(t)) of system (1.1).

Lemma 3.1 ([53]) If the function f (t) : R+ → R is uniformly continuous, and the limit
limt→∞

∫ t
0 f (s) ds exists and is finite, then limt→+∞ f (t) = 0.

Theorem 3.1 Assume that system (1.1) satisfies (H1)–(H7) and the following conditions:
(H8)

al
11 –

(am
12 + bm

12am
21)M2

(bl
12m2 + m1)2

–
(am

13 + bm
13am

31)M3

(bl
13m3 + m1)2

– qm
1 > 0;

(H9)

–am
32 –

am
12M1

(bl
12m2 + m1)2

+
al

21bl
12m1

(bm
12M2 + M1)2 – qm

2 > 0;

(H10)

–am
23 –

am
13M1

(bl
13m3 + m1)2

+
al

31bl
13m1

(bm
13M3 + M1)2 – qm

3 > 0;

(H11)

f l
i > dm

i (i = 1, 2, 3).

Then system (1.1) is globally attractive.

Proof Let X(t) = (x1(t), x2(t), x3(t), u1(t), u2(t), u3(t)) be a positive solution of system (1.1)
and Y (t) = (y1(t), y2(t), y3(t), v1(t), v2(t), v3(t)) be any positive solution of system (1.1) with
initial conditions xi(t0) > 0, ui(t0) > 0, i = 1, 2, 3, then from Theorem 2.1, there exist positive
constants Mi, Ni, mi, ni, and T such that mi ≤ xi(t) ≤ Mi, ni ≤ ui(t) ≤ Ni for all t > T .

Set the Lyapunov function

V (t) =
3∑

i=1

[∣
∣ln xi(t) – ln yi(t)

∣
∣ +

∣
∣ui(t) – vi(t)

∣
∣
]
.

We compute the upper right derivative of V (t) along with the solution of system (1.1) only
using H-assumptions and simple calculations:

D+V (t) ≤
3∑

i=1

D+[∣
∣ln xi(t) – ln yi(t)

∣
∣ +

∣
∣ui(t) – vi(t)

∣
∣
]

=
3∑

i=1

sgn
{

xi(t) – yi(t)
}
(

ẋi(t)
xi(t)

–
ẏi(t)
yi(t)

)

+
3∑

i=1

sgn
{

ui(t) – vi(t)
}(

u̇i(t) – v̇i(t)
)

= sgn
{

x1(t) – y1(t)
}
[

–a11(t)
(
x1(t) – y1(t)

)
– a12(t)

(
x2(t)

(b12(t)x2(t) + x1(t))

–
y2(t)

(b12(t)y2(t) + y1(t))

)
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– a13(t)
(

x3(t)
(b13(t)x3(t) + x1(t))

–
y3(t)

(b13(t)y3(t) + y1(t))

)

– d1(t)
(
u1(t) – v1(t)

)
]

+ sgn
{

x2(t) – y2(t)
}
[

–a23(t)
(
x3(t) – y3(t)

)

+ a21(t)
(

x1(t)
b12(t)x2(t) + x1(t)

–
y1(t)

b12(t)y2(t) + y1(t)

)

+ d2(t)
(
u2(t) – v2(t)

)
]

+ sgn
{

x3(t) – y3(t)
}

×
[

–a32
(
x2(t) – y2(t)

)
+ a31(t)

(
x1(t)

b13(t)x3(t) + x1(t)
–

y1(t)
b13(t)y3(t) + y1(t)

)

+ d3(t)
(
u3(t) – v3(t)

)
]

+ sgn
{

u1(t) – v1(t)
}[

–f1(t)
(
u1(t) – v1(t)

)
+ q1(t)

(
x1(t) – y1(t)

)]

+ sgn
{

u2(t) – v2(t)
}[

–f2(t)
(
u2(t) – v2(t)

)
– q2(t)

(
x2(t) – y2(t)

)]

+ sgn
{

u3(t) – v3(t)
}[

–f3(t)
(
u3(t) – v3(t)

)
– q3(t)

(
x3(t) – y3(t)

)]

= sgn
{

x1(t) – y1(t)
}
[

–a11(t)
(
x1(t) – y1(t)

)

– a12(t)
(

y1(t)(x2(t) – y2(t)) – y2(t)(x1(t) – y1(t))
(b12(t)x2(t) + x1(t))(b12(t)y2(t) + y1(t)

)

– a13(t)
(

y1(t)(x3(t) – y3(t)) – y3(t)(x1(t) – y1(t))
(b13(t)x3(t) + x1(t))(b13(t)y3(t) + x1(t))

)

– d1(t)
(
u1(t) – v1(t)

)
]

+ sgn
{

x2(t) – y2(t)
}
[

a21(t)b12(t)
(

y2(t)(x1(t) – y1(t)) – y1(t)(x2(t) – y2(t))
(b12(t)x2(t) + x1(t))(b12(t)y2(t) + y1(t)

)

– a23(t)
(
x3(t) – y3(t)

)
+ d2(t)

(
u2(t) – v2(t)

)
]

+ sgn
{

x3(t) – y3(t)
}
[

a31(t)b13(t)
(

y3(t)(x1(t) – y1(t)) – y1(t)(x3(t) – y3(t))
(b13(t)x3(t) + x1(t))(b13(t)y3(t) + y1(t)

)

– a23(t)
(
x2(t) – y2(t)

)
+ d3(t)

(
u3(t) – v3(t)

)
]

+ sgn
{

u1(t) – v1(t)
}[

–f1(t)
(
u1(t) – v1(t)

)
+ q1(t)

(
x1(t) – y1(t)

)]

+ sgn
{

u2(t) – v2(t)
}[

–f2(t)
(
u2(t) – v2(t)

)
– q2(t)

(
x2(t) – y2(t)

)]

+ sgn
{

u3(t) – v3(t)
}[

–f3(t)
(
u3(t) – v3(t)

)
– q3(t)

(
x3(t) – y3(t)

)]

≤ ∣
∣x1(t) – y1(t)

∣
∣

[

–a11(t) +
(a12(t) + b12(t)a21(t))y2(t)

(b12(t)x2(t) + x1(t))(b12(t)y2(t) + y1(t))

+
(a13(t) + b13(t)a31(t))y3(t)

(b13(t)x3(t) + x1(t))(b13(t)y3(t) + y1(t))
+ q1(t)

]

+
∣
∣x2(t) – y2(t)

∣
∣

[

a32(t) +
(a12(t) – b12(t)a21(t))y1(t)

(b12(t)x2(t) + x1(t))(b12(t)y2(t) + y1(t))
+ q2(t)

]

+
∣
∣x3(t) – y3(t)

∣
∣

[

a23(t) +
(a13(t) – b13(t)a31(t))y1(t)

(b13(t)x2(t) + x1(t))(b13(t)y2(t) + y1(t))
+ q3(t)

]

+
∣
∣u1(t) – v1(t)

∣
∣
[
–f1(t) + d1(t)

]
+

∣
∣u2(t) – v2(t)

∣
∣
[
–f2(t) + d2(t)

]
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+
∣
∣u3(t) – v3(t)

∣
∣
[
–f3(t) + d3(t)

]

≤ –
∣
∣x1(t) – y1(t)

∣
∣

[

al
11 –

(am
12 + bm

12am
21)M2

(bl
12m2 + m1)2

–
(am

13 + bm
13am

31)M3

(bl
13m3 + m1)2

– qm
1

]

–
∣
∣x2(t) – y2(t)

∣
∣

[

–am
32 –

am
12M1

(bl
12m2 + m1)2

+
al

21bl
12m1

(bm
12M2 + M1)2 – qm

2

]

–
∣
∣x3(t) – y3(t)

∣
∣

[

–am
23 –

am
13M1

(bl
13m3 + m1)2

+
al

31bl
13m1

(bm
13M3 + M1)2 – qm

3

]

–
∣
∣u1(t) – v1(t)

∣
∣
[
f l
1 – dm

1
]

–
∣
∣u2(t) – v2(t)

∣
∣
[
f l
2 – dm

2
]

–
∣
∣u3(t) – v3(t)

∣
∣
[
f l
3 – dm

3
]
.

In view of conditions (H8)–(H11), one has

α = min

{

al
11 –

(am
12 + bm

12am
21)M2

(bl
12m2 + m1)2

–
(am

13 + bm
13am

31)M3

(bl
13m3 + m1)2

– qm
1 ,

– am
32 –

am
12M1

(bl
12m2 + m1)2

+
al

21bl
12m1

(bm
12M2 + M1)2 – qm

2 ,

– am
23 –

am
13M1

(bl
13m3 + m1)2

+
al

31bl
13m1

(bm
13M3 + M1)2 – qm

3 , f l
1 – dm

1 , f l
2 – dm

2 , f l
3 – dm

3

}

> 0.

Thus,

D+V (t) ≤ –α

3∑

i=1

[∣
∣xi(t) – yi(t)

∣
∣ +

∣
∣ui(t) – vi(t)

∣
∣
]
. (3.1)

Integrating (3.1) from T to t (T ≥ t0), one has

V (t) + α

∫ t

T

{ 3∑

i=1

[∣
∣xi(t) – yi(t)

∣
∣ +

∣
∣ui(t) – vi(t)

∣
∣
]
}

ds ≤ V (T) < +∞.

Therefore,

∫ t

T

{ 3∑

i=1

[∣
∣xi(t) – yi(t)

∣
∣ +

∣
∣ui(t) – vi(t)

∣
∣
]
}

ds ≤ V (T)
α

< +∞. (3.2)

By (3.2), we have

3∑

i=1

[∣
∣xi(t) – yi(t)

∣
∣ +

∣
∣ui(t) – vi(t)

∣
∣
] ∈ L1(T , +∞).

From the uniform permanence of system (1.1),
∑3

i=1[|xi(t) – yi(t)| + |ui(t) – vi(t)|] is uni-
formly continuous. By Lemma 3.1, we can obtain that

lim
t→+∞

∣
∣xi(t) – yi(t)

∣
∣ = 0, lim

t→+∞
∣
∣ui(t) – vi(t)

∣
∣ = 0 (i = 1, 2, 3).

This ends the proof of Theorem 3.1. �
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4 Periodic solution
Assuming that the coefficients of system (1.1) are positive continuous, ω-periodic func-
tions, then system (1.1) is changed to an ω-periodic system. In this section, we shall obtain
conditions for the existence, uniqueness, and stability of a positive periodic solution for
system (1.1) by using the fixed point theory and some new analysis method. For conve-
nience, we give firstly the following lemma.

Lemma 4.1 ([54]) Let S ⊂ Rn be convex and compact. If the mapping T : S → S is contin-
uous, then there exists a fixed point, i.e., there exists x∗ ∈ S such that T(x∗) = x∗.

Theorem 4.1 Assume that system (1.1) is an ω-periodic system and satisfies conditions
(H1)–(H11), then system (1.1) has a positive unique ω-periodic solution, which is globally
asymptotically stable.

Proof According to the existence and uniqueness theorem of solutions of differential
equations, we can obtain a Poincaré mapping T : R6

+ → R6
+ defined as follows:

T(X0) = X(t,ω, t0, X0),

where X(t,ω, t0, X0) = (x1(t), x2(t), x3(t), u1(t), u2(t), u3(t)) is a positive solution of system
(1.1) with the initial conditions X0 = (x1(t0), x2(t0), x3(t0), u1(t0), u2(t0), u3(t0)). And define

S =
{

(x1, x2, x3, u1, u2, u3) ∈ R6
+|mi ≤ xi ≤ Mi, ni ≤ ui ≤ Ni, i = 1, 2, 3

}
,

then it is obvious that S ⊂ R6
+ is a convex and compact set. By Theorem 2.1 and the continu-

ity of solution of system (1.1) with respect to the initial conditions, the mapping T : S → S
is continuous. Furthermore, it is not difficult to show that system (1.1) has a positive
unique ω-periodic solution, which is globally asymptotically stable by using Lemma 4.1,
Theorem 2.1, and Theorem 3.1. �

5 Numerical simulation
In this section, we give some numerical simulations supporting our theoretical analysis. As
an example, we consider the following Lotka–Volterra predator–prey system with ratio-
dependent functional responses and feedback controls:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1(t) = x1(t)[5 + cosπ t – [6.25 + 1.25 sinπ t]x1(t) – [0.4 + 0.1 sinπ t]x2(t)

– [0.75+0.25 sinπ t]x3(t)
[1.5+0.5 sinπ t]x3(t)+x1(t) – (0.015 + 0.005 sinπ t)u1(t)],

ẋ2(t) = x2(t)[2.5 + 0.5 cosπ t – [0.13 + 0.1 sinπ t]x1(t) – [7 + sinπ t]x2(t)

– [1+0.5 sinπ t]x3(t)
[1.8+0.2 sinπ t]x3(t)+x2(t) – (0.5 + 0.1 sinπ t)u2(t)],

.
x3(t) = x3(t)[–[4.25 + 0.25 cosπ t] + [7.5+0.5 sinπ t]x1(t)

[1.5+0.5 sinπ t]x3(t)+x1(t)

+ [5.5+0.5 sinπ t]x2(t)
[1.8+0.2 sinπ t]x3(t)+x2(t) + (0.03 + 0.01 sinπ t)u3(t)],

u̇1(t) = [0.8 + 0.2 cosπ t] – [1.6 + 0.1 sinπ t]u1(t) + [0.15 + 0.05 sinπ t]x1(t),

u̇2(t) = [0.5 + 0.1 cosπ t] – [1.4 + 0.2 sinπ t]u2(t) + [0.30 + 0.1 sinπ t]x2(t),

u̇3(t) = [2 + 0.5 cosπ t] – [1.2 + 0.2 sinπ t]u3(t) – [0.15 + 0.01 sinπ t]x3(t).

(5.1)
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(a) (b)

Figure 1 The numerical solution of system (5.1) with initial conditions (5.2). (a) Time series of x1(t), x2(t), and
x3(t). (b) Time series of u1(t),u2(t), and u3(t)

It is easy to show that system (5.1) satisfies the conditions of Theorem 4.1. It follows from
Theorem 2.1, Theorem 3.1, and Theorem 4.1 that the predator–prey system (5.1) is per-
manent and globally attractive and that it has a unique and stable periodic solution which
is globally asymptotically stable. By employing the software package MATLAB 7.1, we
can solve the numerical solutions of Eqs. (5.1) which are shown in Fig. 1, Fig. 2, and Fig. 3.
Figure 1 shows the permanence of system (5.1) with the initial conditions

x1(t0) = 0.1, x2(t0) = 0.1, x3(t0) = 0.1,

u1(t0) = 1, u2(t0) = 1, u3(t0) = 1.
(5.2)

From Fig. 1, it is not difficult to find that

0.07 ≤ xi(t) ≤ 0.18, i = 1, 2, 3,

and

0.2 ≤ ui(t) ≤ 2, i = 1, 2, 3 as t > 10.

From Fig. 2, one can find that limt→+∞ |xi(t) – yi(t)| = 0, i = 1, 2, 3, for any two solutions
X(t) = (x1(t), x2(t), x3(t)) and Y (t) = (y1(t), y2(t), y3(t)) of system (5.1) with different initial
conditions, which shows that the periodic predator–prey system (5.1) has a unique peri-
odic solution which is globally asymptotically stable. Figure 3 shows the dynamic behavior
of system (5.1).
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Figure 2 The numerical solution of system (5.1) with different initial conditions

(a) (b)

(c) (d)

Figure 3 The dynamic behavior of system (5.1). (a) Phase portrait of x1(t) and x2(t). (b) Phase portrait of x1(t)
and x3(t). (c) Phase portrait of x2(t) and x3(t). (d) Phase portrait of x1(t), x2(t), and x3(t)

6 Conclusion
This paper presents the use of Lyapunov stability theorem and comparison theorem as
well as fixed point theory for a system of nonlinear differential equations. This method
is a powerful tool for solving nonlinear differential equations in mathematical physics,
chemistry, engineering, etc. The technique constructing a suitable Lyapunov function and
Poincaré mapping provides a new efficient method to handle the nonlinear structure.
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We have dealt with the problem of positive solution and periodic solution for a Lotka–
Volterra predator–prey system with ratio-dependent functional responses and feedback
controls. The general sufficient conditions have been obtained to ensure the permanence
of the system and the global asymptotic stability of a positive solution for the predator–
prey system. Furthermore, some conditions for the existence, uniqueness, and stability of a
positive periodic solution for the corresponding periodic system are obtained. In addition,
some numerical solutions of the equations describing the system are given to illustrate
our results. In particular, the sufficient conditions that we obtained are very simple, which
provides flexibility for the application and analysis of the Lotka–Volterra predator–prey
system.

Remark Obviously, model (1.1) is the extension of model (1.2). Adding delay term to the
proposed model (1.1) is our next research work.

Acknowledgements
The authors would like to thank the referees for their valuable suggestions which helped to improve this work.

Funding
This work is supported by the Science Fund for Distinguished Young Scholars (cstc2014jc yjjq40004) of China, the
Sichuan Science and Technology Program (Grant no. 2018JY0480) of China, the Postdoctoral Science Foundation (Grant
no. 2016m602663) of China, the National Nature Science Fund (Project no. 61503053) of China, the Natural Science
Foundation Project of CQ CSTC (Grant no. cstc2015jcyj BX0135) of China.

Availability of data and materials
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
CW carried out the study of permanence and global attractivity and participated in the design of the study, YZ carried
out the study of periodic solution and participated in the design of the study, YL drafted the manuscript and participated
in the design of the study. RL carried out the numerical simulation and helped to draft the manuscript. All authors read
and approved the final manuscript.

Author details
1College of Applied Mathematics, Chengdu University of Information Technology, Chengdu, P.R. China. 2College of
Science, Chongqing University of Posts and Telecommunications, Chongqing, P.R. China. 3College of Automation,
Chongqing University of Posts and Telecommunications, Chongqing, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 9 June 2018 Accepted: 13 July 2018

References
1. Curds, C.R., Cockburn, A.: Studies on the growth and feeding of tetrahymena pyriformis in axenic and monoxenic

culture. J. Gen. Microbiol. 54, 343–358 (1968)
2. Hassell, M.P., Varley, G.C.: New inductive population model for insect parasites and its bearing on biological control.

Nature 223, 1133–1137 (1969)
3. Salt, G.W.: Predator and prey densities as controls of the rate of capture by the predator didinium nasutum. Ecology

55, 434–439 (1974)
4. Arditi, R., Ginzburg, L.R.: Coupling in predator–prey dynamics: ratio-dependence. J. Theor. Biol. 139, 311–326 (1989)
5. Jost, C., Arino, O., Arditi, R.: About deterministic extinction in ratio-dependent predator–prey models. Bull. Math. Biol.

61, 19–32 (1999)
6. Bianca, C., Pennisi, M., Motta, S., Ragusa, M.A.: Immune system network and cancer vaccine. AIP Conf. Proc. 1389,

945–948 (2011). https://doi.org/10.1063/1.3637764
7. Bianca, C., Pappalardo, F., Motta, S., Ragusa, M.A.: Persistence analysis in a Kolmogorov-type model for

cancer-immune system competition. AIP Conf. Proc. 1558, 1797–1800 (2013). https://doi.org/10.1063/1.4825874
8. Kuang, Y.: Rich dynamics of Gause-type ratio-dependent predator–prey system. Fields Inst. Commun. 21, 325–337

(1999)
9. Conser, C., Angelis, D.L., Ault, J.S., Olson, D.B.: Effects of spatial grouping on the functional response of predators.

Theor. Popul. Biol. 56, 65–75 (1999)

https://doi.org/10.1063/1.3637764
https://doi.org/10.1063/1.4825874


Wang et al. Boundary Value Problems  (2018) 2018:117 Page 15 of 16

10. Kesh, D., Sarkar, A.K., Roy, A.B.: Persistence of two prey-one predator system with ratio-dependent predator influence.
Math. Methods Appl. Sci. 23, 347–356 (2000)

11. Pang, P.Y.H., Wang, M.: Strategy and stationary pattern in a three-species predator–prey model. J. Differ. Equ. 200,
245–273 (2004)

12. Baek, S., Ko, W., Ahn, I.: Coexistence of a one-prey two-predators model with ratio-dependent functional responses.
Appl. Math. Comput. 219, 1897–1908 (2012)

13. Ko, W., Ahn, I.: A diffusive one-prey and two-competing-predator system with a ratio-dependent functional response:
I, long time behavior and stability of equilibria. J. Math. Anal. Appl. 397, 9–28 (2013)

14. Ko, W., Ahn, I.: A diffusive one-prey and two-competing-predator system with a ratio-dependent functional response:
II stationary pattern formation. J. Math. Anal. Appl. 397, 29–45 (2013)

15. Sarwardi, S., Haque, M., Mandal, P.K.: Ratio-dependent predator–prey model of interacting population with delay
effect. Nonlinear Dyn. 69, 817–836 (2012)

16. Sen, M., BanerJee, M., Morozov, A.: Bifurcation analysis of a ratio-dependent prey–predator model with the Allee
effect. Ecol. Complex. 11, 12–27 (2012)

17. Wang, J., Shi, J., Wei, J.: Predator-prey system with strong Allee effect in prey. J. Math. Biol. 62, 291–331 (2011)
18. Zhang, G., Wang, W., Wang, X.: Coexistence states for a diffusive one-prey and two-predators model with B–D

functional response. J. Math. Anal. Appl. 387, 931–948 (2012)
19. Zhou, J., Mu, C.: Coexistence of a diffusive predator–prey model with Holling type-II functional response and density

dependent mortality. J. Math. Anal. Appl. 385, 913–927 (2012)
20. Mandal, P.S.: Noise-induced extinction for a ratio-dependent predator–prey model with strong Allee effect in prey.

Phys. A, Stat. Mech. Appl. 496, 40–52 (2018)
21. Louartassi, Y., Alla, A., Hattaf, K., Nabil, A.: Dynamics of a predator–prey model with harvesting and reserve area for

prey in the presence of competition and toxicity. J. Appl. Math. Comput. (2018).
https://doi.org/10.1007/s12190-018-1181-0

22. Yin, F.Q., Li, Y.K.: Positive periodic solutions of a single species model with feedback regulation and distributed time
delay. Appl. Math. Comput. 153, 475–484 (2004)

23. Chen, F.: Global stability of a single species model with feedback control and distributed time delay. Appl. Math.
Comput. 178, 474–479 (2006)

24. Nie, L., Teng, Z., Hu, L., Peng, J.: Permanence and stability in non-autonomous predator–prey Lotka–Volterra systems
with feedback controls. Comput. Math. Appl. 58, 436–448 (2009)

25. Chen, F.: The permanence and global attractivity of Lotka–Volterra competition system with feedback controls.
Nonlinear Anal., Real World Appl. 7, 133–143 (2006)

26. Fan, Y., Wang, L.: Global asymptotical stability of a logistic model with feedback control. Nonlinear Anal., Real World
Appl. 11, 2686–2697 (2010)

27. Gopalsamy, K., Weng, P.: Global attractivity in a competition system with feedback controls. Comput. Math. Appl. 45,
665–676 (2003)

28. Lai, Y.C., Tel, T.: Transient Chaos: Complex Dynamics on Finite Time Scales. Springer, Berlin (2011)
29. Li, J., Zhao, A., Yan, J.: The permanence and global attractivity of a Kolmogorov system with feedback controls.

Nonlinear Anal., Real World Appl. 10, 506–518 (2009)
30. Yang, Z.: Positive periodic solutions of a class of single species neutral models with state dependent delay and

feedback control. Eur. J. Appl. Math. 17, 735–757 (2006)
31. Lande, R., Engen, S., Saether, B.E.: Stochastic Population Dynamics in Ecology and Conservation. Oxford University

Press, Oxford (2003)
32. Liu, Y., Shan, M., Lian, X.: Stochastic extinction and persistence of a parasite-host epidemiological model. Phys. A, Stat.

Mech. Appl. 462, 586–602 (2016)
33. Ridolfi, L., D’Odorico, P., Laio, F.: Noise-Induced Phenomena in the Environmental Sciences. Cambridge University

Press, Cambridge (2011)
34. Spagnolo, B., Cirone, M., La Barbera, A., De Pasquale, F.: Noise-induced effects in population dynamics. J. Phys.

Condens. Matter 14, 2247–2255 (2002)
35. Spagnolo, B., Fiasconaro, A., Valenti, D.: Noise induced phenomena in Lotka–Volterra systems. Fluct. Noise Lett. 3,

L177–L185 (2003)
36. Spagnolo, B., Valenti, D., Fiasconaro, A.: Noise in ecosystems: a short review. Math. Biosci. Eng. 1, 185–211 (2004)
37. Fiasconaro, A., Mazo, J.J., Spagnolo, B.: Noise-induced enhancement of stability in a metastable system with damping.

Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 82, 041120 (2010)
38. Ghergu, M., Radulescu, V.: A singular Gierer–Meinhardt system with different source terms. Proc. R. Soc. Edinb., Sect. A

138, 1215–1234 (2008)
39. Ghergu, M., Radulescu, V.: Turing patterns in general reaction-diffusion systems of Brusselator type. Commun.

Contemp. Math. 12, 661–679 (2010)
40. Liu, X., Ren, Y., Li, Y.: Four positive periodic solutions of a discrete time Lotka–Volterra competitive system with

harvesting terms. Opusc. Math. 31, 257–267 (2011)
41. Giacomoni, J., Hernandez, J., Sauvy, P.: Quasilinear and singular elliptic systems. Adv. Nonlinear Anal. 2, 1–41 (2013)
42. Ghergu, M., Radulescu, V.: Nonlinear PDEs. Mathematical Models in Biology, Chemistry and Population Genetics.

Springer Monographs in Mathematics. Springer, Heidelberg (2012)
43. Ciuchi, S., Depasquale, F., Spagnolo, B.: Nonlinear relaxation in the presence of an absorbing barrier. Phys. Rev. E, Stat.

Phys. Plasmas Fluids Relat. Interdiscip. Topics 47, 3915–3926 (1993)
44. Bashkirtseva, I., Ryashko, L.: How environmental noise can contract and destroy a persistence zone in population

models with Allee effect. Theor. Popul. Biol. 115, 61–68 (2017)
45. Bashkirtseva, I., Ryashko, L.: Noise-induced shifts in the population model with a weak Allee effect. Phys. A, Stat.

Mech. Appl. 491, 28–36 (2018)
46. Dubkov, A., Spagnolo, B.: Langevin approach to Lévy flights in fixed potentials: exact results for stationary probability

distributions. Acta Phys. Pol. B 38, 1745–1758 (2007)
47. Gao, J.B., Hwang, S.K., Liu, J.M.: When can noise induce chaos? Phys. Rev. Lett. 82, 1132–1135 (1999)

https://doi.org/10.1007/s12190-018-1181-0


Wang et al. Boundary Value Problems  (2018) 2018:117 Page 16 of 16

48. Li, Y., Zhang, T.: Permanence of a discrete n-species cooperation system with time-varying delays and feedback
controls. Math. Comput. Model. 53, 1320–1330 (2011). https://doi.org/10.1016/j.mcm.2010.12.018

49. Sun, G.Q., Jin, Z., Li, L., Liu, Q.X.: The role of noise in a predator–prey model with Allee effect. J. Biol. Phys. 35, 185–196
(2009)

50. Zhang, X.B., Huo, H.F., Xiang, H., Shi, Q.H., Li, D.G.: The threshold of a stochastic SIQS epidemic model. Phys. A, Stat.
Mech. Appl. 482, 362–374 (2017)

51. Shi, Q.H., Wang, S.: Nonrelativistic approximation in the energy space for KGS system. J. Math. Anal. Appl. 462,
1242–1253 (2018)

52. Lu, Z.Q., Liang, G.Z.: Dynamics of a nonautonomous ratio-dependent two competing predator-one prey model.
J. Henan Norm. Univ. Nat. Sci. 35(2), 211–214 (2007) (In Chinese)

53. Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, Englewood Cliffs (2002)
54. Basener, W.: Topology and Its Applications. Wiley, Hoboken (2006)

https://doi.org/10.1016/j.mcm.2010.12.018

	Well-posedness of a ratio-dependent Lotka-Volterra system with feedback control
	Abstract
	Keywords

	Introduction
	Permanence
	Global attractivity
	Periodic solution
	Numerical simulation
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


