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Abstract
This paper is concerned with a kind of first-order quasilinear parabolic partial
differential equations associated with a class of ordinary differential equations with
two-point boundary value problems. We prove that the function given by the
solution of an ordinary differential equation is the unique solution of a first-order
quasilinear parabolic partial differential equation in both classical and weak senses.
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1 Introduction
In this paper, we study the problem of solving the following first-order quasilinear
parabolic partial differential equation (PDE):

⎧
⎨

⎩

∂tu(t, x) + �xu(t, x)b(t, x, u(t, x)) + f (t, x, u(t, x)) = 0,

u(T , x) = h(x), (t, x) ∈ [0, T] ×R
n,

(1)

where �xu = ( ∂u
∂xi

)1≤i≤n is an n-dimensional row vector. We notice that PDE (1) is novel
since its factor b depends on u(t, x), which is different from the traditional PDE form. It
is very complicated and difficult to study the existence and uniqueness of solution of this
kind of partial differential equations by traditional methods of the theory partial differ-
ential equations; some related studies can be found in [1–4]. However, PDE (1) should
be related to a family of coupled ordinary differential equations (ODEs) associated with a
kind of two-point boundary problems parameterized by (t, x) ∈ [0, T] ×R

n as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋt,x
s = b(s, Xt,x

s , Y t,x
s ),

–Ẏ t,x
s = f (s, Xt,x

s , Y t,x
s ),

Xt,x
t = x, YT = h(Xt,x

T ).

This two-point boundary value problem can be embedded into an optimal control prob-
lem when applying the maximum principle; the existence and uniqueness results were
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obtained in [5]. Peng and Pardoux [6] studied the relationship between a system of quasi-
linear PDEs and a kind of backward stochastic differential equations. They proved that
under different assumptions, the function defined by solution of the backward stochastic
differential equation is a classical and viscosity solution of a kind of second-order quasilin-
ear PDEs. In the related field, for the stochastic cases, by introducing a family of coupled
forward–backward stochastic differential equations (FBSDEs) Wu and Yu [7] gave a prob-
abilistic interpretation for a kind of systems of second-order quasilinear parabolic PDEs
combined with algebra equations in the viscosity sense. Ouknine and Turpin [8] studied
weak solutions of second-order PDEs in Sobolev spaces and gave a probabilistic interpre-
tation via the FBSDEs (see also Wei and Wu [9] and Kunita [10]). By some analysis tech-
niques of those related references, in this paper, we study PDE (1) in both classical and
weak senses, including a Sobolev weak solution and viscosity solution of the two-point
boundary value problem.

The paper is organized as follows. In Sect. 2, we recall some existence and uniqueness
results for the two-point boundary value problem from [5] and give some regularity prop-
erties of solutions of the ODEs; Then, in Sect. 3, we prove that the function defined by the
solution of an ODE is the unique classical solution of PDE (1). Meanwhile, we derive the
existence and uniqueness of a solution of PDE (1) in the Sobolev space and in the viscosity
sense in Sects. 4 and 5, respectively. Finally, we list some conclusive remarks.

2 Preliminary results of the ODEs
In this paper, we work with a finite time horizon T > 0. We denote byRn the n-dimensional
Euclidean space and by Rm×n the collection of m×n matrices. For a given Euclidean space,
we denote by 〈·, ·〉 (resp., | · |) the inner product (resp., norm). The superscript � denotes
the transpose of vectors or matrices.

Let a (terminal) function h : Rn → R
m and a couple of coefficients (b, f ) : [0, T] × R

n ×
R

m →R
n+m be given. We introduce a family of coupled ODEs parameterized by the initial

time t ∈ [0, T] and initial state x ∈R
n:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋt,x
s = b(s, Xt,x

s , Y t,x
s ),

–Ẏ t,x
s = f (s, Xt,x

s , Y t,x
s ),

Xt,x
t = x, Y t,x

T = h(Xt,x
T ).

(2)

Let also an m × n full-rank matrix G be given. For each (x, y) ∈R
n+m, we denote

� =

(
x
y

)

, A(t,�) =

(
–G�f

Gb

)

(t,�).

In this paper, we use the following standard assumptions:
(H1) For each �, A(·,�) is in L2(0, T); h and A are uniformly Lipschitz continuous with

respect to x and �, respectively. Here L2(0, T) = {ϕ :
∫ T

0 |ϕ(s)|2 ds ≤ ∞}.
(H2) There exist three nonnegative constants μ, U1, and U2 satisfying U1 + U2 > 0 and

μ + U2 > 0. Moreover, μ > 0 and U1 > 0 (resp., U2 > 0) in the case of m > n (resp., n > m),
and for all h = (x, y, z)� and h = (x, y)�,

〈
h(x) – h(x), (x – x)

〉 ≥ μ
∣
∣G(x – x)

∣
∣2



Ma and Wu Boundary Value Problems  (2018) 2018:120 Page 3 of 22

and

〈
A(t,�) – A(t,�),� – �

〉 ≤ –U1
∣
∣G(x – x)

∣
∣2 – U2

∣
∣G�(y – y)

∣
∣2.

Under Assumptions (H1) and (H2), ODEs (2) admit a unique solution

(
Xt,x

s , Y t,x
s

)

s∈[t,T] ∈ C(0, T),

(see Theorem 1.1 in [5]). In addition, we have the following L2-estimates.

Proposition 2.1 Let (b, f , h) and (b, f , h) satisfy (H1) and (H2), and let x, x′ ∈ R
n and s ∈

[t, T]. Let (Xt,x
s , Y t,x

s ) (resp., (Xt,x′
s , Y t,x′

s )) denote the unique solution of ODEs

⎧
⎪⎪⎨

⎪⎪⎩

Ẋt,x
s = b(t, Xt,x

s , Y t,x
s ),

–Ẏ t,x
s = f (t, Xt,x

s , Y t,x
s ),

Xt,x
t = x, Y t,x

T = h(Xt,x
T ).

⎛

⎜
⎜
⎜
⎝

resp.,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ẋ
t,x′
s = b(t, Xt,x′

s , Y t,x′
s ),

–Ẏ
t,x′
s = f (t, Xt,x′

s , Y t,x′
s ),

Xt,x
t = x′, Y t,x

T = h(Xt,x′
T )

⎞

⎟
⎟
⎟
⎠

.

Then the following estimates hold:

sup
t≤s≤T

∣
∣Xt,x

s
∣
∣2 + sup

t≤s≤T

∣
∣Y t,x

s
∣
∣2 ≤ C

(
1 + |x|2), (3)

sup
t≤s≤T

∣
∣Xt,x

s – Xt,x′
s

∣
∣2 + sup

t≤s≤T

∣
∣Y t,x

s – Y t,x′
s

∣
∣2

≤ C
[
∣
∣x – x′∣∣2 +

∣
∣h

(
Xt,x′

T
)

– h
(
Xt,x′

T
)∣
∣2

+
∫ T

t

(∣
∣b

(
s, Xt,x′

s , Y t,x′
s

)
– b

(
s, Xt,x′

s , Y t,x′
s

)∣
∣2

+
∣
∣f

(
s, Xt,x′

s , Y t,x′
s

)
– f

(
s, Xt,x′

s , Y t,x′
s

)∣
∣2)

]

. (4)

Proof These L2-estimates are standard (see [7, 11]). For reader’s convenience, we only
prove (4). Let

(X̂s, Ŷs) =
(
Xt,x

s – Xt,x′
s , Y t,x

s – Y t,x′
s

)
;

α(s) := f̂
(
s, Xt,x

s , Y t,x
s

)
= f

(
s, Xt,x

s , Y t,x
s

)
– f

(
s, Xt,x

s , Y t,x
s

)
;

β(s) := b̂
(
s, Xt,x

s , Y t,x
s

)
= b

(
s, Xt,x

s , Y t,x
s

)
– b

(
s, Xt,x

s , Y t,x
s

)
.
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We consider 〈GX̂s, Ŷs〉 and, using Assumptions (H1) and (H2), by differential equation we
get

μ|X̂T |2 + U1

∫ T

t
〈GX̂s, GX̂s〉ds + U2

∫ T

t

〈
G�Ŷs, G�Ŷs

〉
ds

≤ Cλ
∣
∣x – x′∣∣2 +

C
λ

sup
t≤s≤T

|Ŷt|2 + C
∫ T

t

(∣
∣α(s)

∣
∣2 +

∣
∣β(s)

∣
∣2)ds, (5)

where λ ∈ R can be any positive number. For |X̂s|2 and |Ŷs|2, by the Gronwall inequality
we have

sup
t≤s≤T

|X̂s|2 ≤ C
∣
∣x – x′∣∣2 + C

∫ T

t

(|Ŷs|2 +
∣
∣β(s)

∣
∣2)ds, (6)

sup
t≤s≤T

|Ŷs|2 ≤ C|X̂T |2 + C
∫ T

t

(|X̂s|2 +
∣
∣α(s)

∣
∣2)ds. (7)

Combining (5) and (7), we have

(

μ –
C
λ

)

|X̂T |2 +
(

U1 –
C
λ

)∫ T

t
|X̂s|2 ds + U2

∫ T

t
|Ŷs|2 ds

≤ Cλ
∣
∣x – x′∣∣2 + C

∫ T

t

(∣
∣α(s)

∣
∣2 +

∣
∣β(s)

∣
∣2)ds. (8)

Case 1: μ > 0, U1 > 0: We can choose λ = λ0 such that

μ –
C
λ0

> 0, U1 –
C
λ0

> 0.

Combining with (7), we get

sup
t≤s≤T

|Ŷs|2 ≤ C
∣
∣x – x′∣∣2 + C

∫ T

t

(∣
∣α(s)

∣
∣2 +

∣
∣β(s)

∣
∣2)ds.

Now let us prove (4).
Case 2: U2 > 0:
Combining (6) and (8), we have

sup
t≤s≤T

|X̂s|2 ≤ Cλ
∣
∣x – x′∣∣2 +

C
λ

[

|X̂T |2 +
∫ T

t
|X̂s|2 ds

]

+ C
∫ T

t

(∣
∣α(s)

∣
∣2 +

∣
∣β(s)

∣
∣2)ds.

Then

sup
t≤s≤T

|X̂s|2 ≤ Cλ
∣
∣x – x′∣∣2 +

C
λ

(1 + T) sup
t≤s≤T

|X̂s|2 + C
∫ T

t

(∣
∣α(s)

∣
∣2 +

∣
∣β(s)

∣
∣2)ds.

We choose λ = λ1 such that

C
λ1

(1 + T) ≤ 1
2

.
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Then we get

sup
t≤s≤T

|X̂s|2 ≤ C
∣
∣x – x′∣∣2 + C

∫ T

t

(∣
∣α(s)

∣
∣2 +

∣
∣β(s)

∣
∣2)ds. (9)

Combining (7) and (9), we get (4) and conclude the proof. �

We define Y t,x
t by a function u from [0, T] ×R

n to R
m:

u(t, x) := Y t,x
t . (10)

Remark 2.1 Assumption (H2) can be relaxed to ensure the existence and uniqueness of
the solution of the ODEs (2); see [5].

Remark 2.2 For each deterministic (t, x) ∈ [0, T] ×R
n, from the uniqueness of a solution

of ODEs (2) we have

u
(
s, Xt,x

s
)

= Y s,Xt,x
s

s = Y t,x
s .

Proposition 2.2 Let Assumptions (H1) and (H2) hold. The function u defined by (10) is
continuous with respect to (t, x). In particular, u is Lipschitz continuous in x.

Proof First, from Proposition 2.1 we get the Lipschitz continuity of u in x:

∣
∣u(t, x + δ) – u(t, x)

∣
∣ =

∣
∣Y t,x+δ

t – Y t,x
t

∣
∣ ≤ C

∣
∣x – x′∣∣.

Next, we prove that u(t, x) is continuous in t. We have

∣
∣u(t + δ, x) – u(t, x)

∣
∣ =

∣
∣u(t, x) – u

(
t + δ, Xt,x

t+δ

)
+ u

(
t + δ, Xt,x

t+δ

)
– u(t + δ, x)

∣
∣

≤ ∣
∣Y t,x

t – Y t+δ,Xt,x
t+δ

t+δ

∣
∣ +

∣
∣Y t+δ,Xt,x

t+δ
t+δ – Y t+δ,x

t+δ

∣
∣

≤ ∣
∣Y t,x

t – Y t,x
t+δ

∣
∣ + C

∣
∣Xt,x

t+δ – x
∣
∣

≤
∫ t+δ

t

∣
∣f

(
r, Xt,x

R
, Y t,x

R

)∣
∣dr + C

∣
∣Xt,x

t+δ – x
∣
∣

:= ρ(δ),

where ρ(δ) → 0 as δ → 0. The continuity in t and the Lipschitz continuity in x imply the
joint continuity of u in (t, x). �

To improve the smoothness of the solutions of ODEs (2), we add the following assump-
tion:

(H3) For any s ∈ [t, T], the functions b(s, ·, ·), f (s, ·, ·), and h(·) are of class C2 with
bounded derivatives.
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Theorem 2.1 Under Assumptions (H1)–(H3), the function x → (Xt,x, Y t,x) is differentiable
with continuous derivatives given by (∂xi Xt,x, ∂xi Y t,x)1≤i≤n satisfying the following ODEs:

⎧
⎪⎪⎨

⎪⎪⎩

d∂xi Xt,x
s = �xb(s, Xt,x

s , Y t,x
s )∂xi Xt,x

s ds + �yb(s, Xt,x
s , Y t,x

s )∂xi Y t,x
s ds,

–d∂xi Y t,x
s = �xf (s, Xt,x

s , Y t,x
s )∂xi Xt,x

s ds + �yf (s, Xt,x
s , Y t,x

s )∂xi Y t,x
s ds,

∂xi X
t,x
t = (0, 0, . . . , 1i, . . . , 0, 0)�, ∂xi Y

t,x
T = �xh(Xt,x

T )∂xi X
t,x
T , s ∈ [t, T].

(11)

Proof A similar technique can be found in [11] and [12]. Here we give a detailed proof.
Let hi = h · ei, �hi Xt = hi

–1(Xt,x+hi
s – Xt,x

s ), and �hi Yt = hi
–1(Y t,x+hi

s – Y t,x
s ). Then

⎧
⎪⎪⎨

⎪⎪⎩

d�hi Xt,x
s = hi

–1[b(t, Xt,x+hi
s , Y t,x+hi

s ) – b(t, Xt,x
s , Y t,x

s )] ds,

–d�hi Y t,x
s = hi

–1[f (t, Xt,x+hi
s , Y t,x+hi

s ) – f (t, Xt,x
s , Y t,x

s )] ds,

�hi X
t,x
t = 1, �hi Y

t,x
T = hi

–1[h(Xt,x+h
T ) – h(Xt,x

T )].

(12)

Hence we treat this equation as a linear one:

⎧
⎪⎪⎨

⎪⎪⎩

d�hi Xt,x
s = φ(s,�hi Xt,x

s ,�hi Y t,x
s ) ds,

–d�hi Y t,x
s = ψ(s,�hi Xt,x

s ,�hi Y t,x
s ) ds,

�hi X
t,x
t = 1, �hi Y

t,x
T = hi

–1[h(Xt,x+hi
T ) – h(Xt,x

T )],

(13)

where φ and ψ are defined by

φh(s, x, y) = Ah(s)x + Bh(s)y,

ψhi (s, x, y) = Chi (s)x + Dhi (s)y,

and

Ahi (s) =

⎧
⎨

⎩

b(s,Xt,x+hi
s ,Y t,x+hi

s )–b(s,Xt,x
s ,Y t,x+hi

s )
Xt,x+hi

s –Xt,x
s

if Xt,x+hi
s �= Xt,x

s ,

�xb(s, Xt,x
s , Y t,x+hi

s ) otherwise,
(14)

Bhi (s) =

⎧
⎨

⎩

b(s,Xt,x
s ,Y t,x+hi

s )–b(s,Xt,x
s ,Y t,x

s )
Y t,x+h

s –Y t,x
s

if Y t,x+hi
s �= Y t,x

s ,

�yb(s, Xt,x
s , Y t,x

s ) otherwise,
(15)

Chi (s) =

⎧
⎨

⎩

f (s,Xt,x+hi
s ,Y t,x+hi

s )–f (s,Xt,x
s ,Y t,x+hi

s )
Xt,x+hi

s –Xt,x
s

if Xt,x+hi
s �= Xt,x

s ,

�xf (s, Xt,x
s , Y t,x+hi

s ) otherwise,
(16)

Dhi (s) =

⎧
⎨

⎩

f (s,Xt,x
s ,Y t,x+hi

s )–f (s,Xt,x
s ,Y t,x

s )
Y t,x+hi

s –Y t,x
s

if Y t,x+hi
s �= Y t,x

s ,

�yf (s, Xt,x
s , Y t,x

s ) otherwise,
(17)

for h �= 0. Let

φ0(s, x, y) = �xb
(
s, Xt,x

s , Y t,x
s

)
x + �yb

(
s, Xt,x

s , Y t,x
s

)
y,

ψ0(s, x, y) = �xf
(
s, Xt,x

s , Y t,x
s

)
x + �yf

(
s, Xt,x

s , Y t,x
s

)
y.
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From Proposition 2.1 we know that (Xt,x+hi , Y t,x+hi ) converges to (Xt,x, Y t,x). We have
to prove that (�hi X,�hi Y ) converges to (∂xi X, ∂xi Y ), the solution of ODEs (11). To use
the same convergence argument, we have to show that φhi (s, ∂xi Xt,x, ∂xi Y t,x) converges to
φ0(s, ∂xi Xt,x, ∂xi Y t,x) and ψhi (s, ∂xi Xt,x, ∂xi Y t,x) converges to ψ0(s, ∂xi Xt,x, ∂xi Y t,x) as hi goes
to 0. Notice that

Ahi (s) =
∫ 1

0
�xb

(
s, Xt,x

s + λ
(
Xt,x+hi

s – Xt,x
s

)
, Y t,x+hi

s
)

dλ.

Thus
∫ T

0

[
Ahi (s) – �xb

(
s, Xt,x

s , Y t,x+hi
s

)]2(
∂xi X

t,x
s

)2 ds

≤
∫ T

0

∫ 1

0

[
�xb

(
s, Xt,x

s + λ
(
Xt,x+hi

s – Xt,x
s

)
, Y t,x+hi

s
)

– �xb
(
s, Xt,x

s , Y t,x+hi
s

)]2(
∂xi X

t,x
s

)2 dλds.

We split this integral into two terms on the sets {|Xt,x+hi
s –Xt,x

s | ≤ η} and {|Xt,x+hi
s –Xt,x

s | > η}.
By Assumption (H3), �xb(s, x, y) is uniformly continuous and bounded (by a constant K ).
It follows that, for each ε > 0, there exists η > 0 such that

∥
∥
(
Ahi (s) – �xb

(
s, Xt,x

s , Y t,x+hi
s

))(
∂xi X

t,x
s

)∥
∥

≤ ε2∥∥∂xi X
t,x
s

∥
∥ + K2

∫ T

0
1{|Xt,x+hi

s –Xt,x
s |>η}

∣
∣∂xi X

t,x
s

∣
∣2 ds.

We split the term into two parts corresponding to the set {|∂xi Xt,x
s | ≤ M} and its comple-

ment. Then we have
∫ T

0
1{|Xt,x+hi

s –Xt,x
s |>η}

∣
∣∂xi X

t,x
s

∣
∣2 ds ≤ M2

η2

∥
∥Xt,x+hi

s – Xt,x
s

∥
∥2 +

∫ T

0
1{|∂xi Xt,x

s |>M}
∣
∣∂xi X

t,x
s

∣
∣2 ds.

By the Lebesgue theorem, since ∂xi Xt,x is square integrable,
∫ T

0 1{|∂xi Y t,x|>M}|∂xi Xt,x
s |2 ds con-

verges to 0 as M → ∞. Choosing M sufficiently large and using the convergence of Xt,x+hi
s

to Xt,x
s , it follows that

lim
hi→0

∥
∥
(
Ahi (s) – �xb

(
s, Xt,x

s , Y t,x+hi
s

))(
∂xi X

t,x
s

)∥
∥ = 0.

By the same method we get

lim
hi→0

∥
∥
(
�xb

(
s, Xt,x

s , Y t,x+hi
s

))(
∂xi X

t,x
s

)
– �xb

(
s, Xt,x

s , Y t,x
s

)
)
(
∂xi X

t,x
s

)∥
∥ = 0.

Hence it follows that

lim
hi→0

∥
∥
(
Ahi (s) – �xb

(
s, Xt,x

s , Y t,x
s

))(
∂xi X

t,x
s

)∥
∥ = 0.

Similar arguments give that

lim
hi→0

∥
∥
(
Bhi (s) – �yb

(
s, Xt,x

s , Y t,x
s

))(
∂xi Y

t,x
s

)∥
∥ = 0,
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lim
hi→0

∥
∥
(
Chi (s) – �xf

(
s, Xt,x

s , Y t,x
s

))(
∂xi X

t,x
s

)∥
∥ = 0,

lim
hi→0

∥
∥
(
Dhi (s) – �yf

(
s, Xt,x

s , Y t,x
s

))(
∂xi Y

t,x
s

)∥
∥ = 0.

It is easy to verify that the functions φ and ψ are continuous with respect to pa-
rameter hi at point 0. By Proposition 2.1, as hi → 0, φhi (s, ∂xi Xt,x

s , ∂xi Y t,x
s ) converges to

φ0(s, ∂xi Xt,x
s , ∂xi Y t,x

s ), and ψh(s, ∂xi Xt,x
s , ∂xi Y t,x

s ) converges to ψ0(s, ∂xi Xt,x
s , ∂xi Y t,x

s ). By Propo-
sition 2.1, (�hi X,�hi Y ) converges to (∂xi X, ∂xi Y ). �

We also have the following property.

Proposition 2.3 Under Assumptions (H1)–(H3), there exists a constant C > 0, depending
only on L,μ, and T , such that

sup
0≤t≤T

∥
∥�xXt,x

s
∥
∥2 + sup

0≤t≤T

∥
∥�xY t,x

s
∥
∥2 ≤ C.

Proof From Proposition 2.1 and Theorem 2.1 we get

sup
0≤t≤T

∥
∥�xXt,x

s
∥
∥2 + sup

0≤t≤T

∥
∥�xY t,x

s
∥
∥2

= sup
0≤t≤T

lim
h→0

∥
∥�hXt,x

s + �hY t,x
s

∥
∥2

= sup
0≤t≤T

lim
h→0

|h|–1(∥∥Xt,x+h
s – Xt,x

s
∥
∥2 +

∥
∥Y t,x+h

s – Y t,x
s

∥
∥2)

≤ C. �

3 Classical solution to the PDE
We now relate the function u defined by (10) to the parabolic partial differential equa-
tions (1).

Theorem 3.1 Let Assumptions (H1)–(H3) hold. Then the function u defined by (10) is of
class C1,1([0, T] × R

n) and solves PDE (1). In particular, u(t, x) is the unique solution of
PDE (1).

Proof By Theorem 2.1, u ∈ C0,1([0, T] × R
n). Let h > 0 be such that t + h ≤ T . Clearly,

Y t,x
t+h = Y t+h,Xt,x

t+h
t+h . Hence

u(t + h, x) – u(t, x) = u
(
t + h, Xt,x

t+h
)

– u
(
t + h, Xt,x

t+h
)

+ u(t + h, x) – u(t, x). (18)

Differentiating u(t, Xt,x
s ), we get

Du
(
t, Xt,x

s
)

= �xu
(
t, Xt,x

s
)
b
(
s, Xt,x

s , Y t,x
s

)
ds. (19)
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Here Du(t, x) = (du1(t, x), du2(t, x), . . . , dum(t, x))� is an m-dimensional rank victor. Com-
bining (18) with (19), we get

u(t + h, x) – u(t, x) = –
∫ t+h

t
�xu

(
t + h, Xt,x

s
)
b
(
s, Xt,x

s , Y t,x
s

)
ds

–
∫ t+h

t
f
(
s, Xt,x

s , Y t,x
s

)
ds. (20)

Let t = t0 < t1 < · · · < tn = T . We have

u(T , x) – u(t, x) = –
n–1∑

i=0

∫ ti+1

ti

�xu
(
ti+1, Xti ,x

s
)
b
(
s, Xti ,x

s , Y ti ,x
s

)
ds

–
n–1∑

i=0

∫ ti+1

ti

f
(
s, Xti ,x

s , Y ti ,x
s

)
ds. (21)

It follows from Theorem 2.1 that if we take a sequence of meshes t = t0 < t1 < · · · < tn = T
such that limn→∞ supi≤n–1(tn

i+1 – tn
i ) = 0, then we obtain:

u(t, x) = h(x) +
∫ T

t
�xu(t, x)b

(
t, x, u(t, x)

)
+ f

(
t, x, u(t, x)

)
.

Hence u ∈ C1,1([0, T] ×R
n) and satisfies PDE (1).

Now we consider the uniqueness of the solution. It suffices to show that (Xt,x
s , u(s, Xt,x

s );
t ≤ s ≤ T) solves ODEs (2). From the uniqueness of the solution of ODEs (2) we get the
uniqueness of the solution of the PDE (1). Suppose that a function v(t, x) ∈ C1,1([0, T]×R

n)
is a solution of PDE (1). Set

DXt,x
s = b

(
s, Xt,x

s , v
(
s, Xt,x

s
))

ds.

Letting t = t0 < t1 < t2 < · · · < tn = T , we have

n–1∑

i=0

[
v
(
ti, Xt,x

ti

)
– v

(
ti+1, Xt,x

ti+1

)]

=
n–1∑

i=0

[
v
(
ti, Xt,x

ti

)
– v

(
ti, Xt,x

ti+1

)]
+

n–1∑

i=0

[
v
(
ti+1, Xt,x

ti

)
– v

(
ti+1, Xt,x

ti+1

)]

= –
n–1∑

i=0

∫ ti+1

ti

�xv
(
ti, Xt,x

s
)
b
(
s, Xt,x

s , v
(
s, Xt,x

s
))

ds

+
n–1∑

i=0

∫ ti+1

ti

[
�xv

(
s, Xt,x

ti+1

)
b
(
s, Xt,x

ti+1
, v

(
s, Xt,x

ti+1

))
+ f

(
s, Xt,x

ti+1
, u

(
s, Xt,x

ti+1

))]
ds.

Here we apply the differential equation to u(ti, ·) and calculate v(ti, Xt,x
ti ) – v(ti, Xt,x

ti+1 ).
Then we compute v(ti+1, Xt,x

ti ) – v(ti+1, Xt,x
ti+1 ) from the PDE (1). Finally, by the fact that

v ∈ C1,1([0, T] ×R
n) and by the assumption we let the mesh size go to zero to obtain

v
(
s, Xt,x

s
)

– h
(
Xt,x

T
)

=
∫ T

s
f
(
r, Xt,x

r , v
(
r, Xt,x

r
))

dr,
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where (Xt,x
s , v(s, Xt,x

s ); t ≤ s ≤ T) solves ODEs (2). By the uniqueness of solution of ODEs,
(Xt,x

s , v(s, Xt,x
s )) = (Xt,x

s , Y t,x
s ). In particular, v(t, x) = Y t,x

t . �

4 Weak solutions in Sobolev space
In this section, we prove that the function u(t, x) defined by (10) is the unique weak solu-
tion of PDE (1) in the Sobolev space under some usual assumptions. First, we recall the
definition of a Sobolev weak solution for PDE (1) from [8] and [9].

Definition 4.1 A function u is called a Sobolev weak solution (solution in L2
ρ(Rn;Rm)) of

PDE(1) if u ∈ L2([0, T]; L2
ρ(Rn;Rm)) and for an arbitrary ϕ ∈ C1,∞

c ([0, T] ×R
n;Rm),

∫ T

t

∫

Rn
u(s, x)∂sϕ(s, x) dx ds +

∫

Rn
u(t, x)ϕ(t, x) dx –

∫

Rn
u(T , x)ϕ(T , x) dx

+
∫ T

t

∫

Rn
�x

(
b
(
s, x, u(s, x)

)
ϕ(s, x)

)
u(s, x) dx ds

=
∫ T

t

∫

Rn
f
(
s, x, u(s, x)

)
ϕ(s, x) dx ds, (22)

where ρ is the weight function defined as ρ(x) := (1 + |x|2)q, q ≤ –2, and L2
ρ is the Hilbert

space with the inner product

〈u1, u2〉L2
ρ

=
∫

Rn
u1(x)u2(x)ρ(x) dx,

where u1(x)u2(x) is the inner product of the Euclidean space.

We make the following assumption:
(H4) For any s ∈ [t, T], the function b(s, ·, ·) is in C1,1(Rn ×R

m;Rn) with bounded deriva-
tives.

Theorem 4.1 Under Assumptions (H1), (H2), and (H4), Xt,x
s is the solution defined in the

forward equation in ODEs (2). Then the map Xt,·
s : Rn → R

n is a homeomorphism. This
means the map Xt,·

s is one-to-one and onto, so that its inverse map exists. Moreover, the
inverse map, denoted by X̂t,·

s : Rn →R
n, is also continuous.

Proof The one-to-one property of the map Xt,x
s follows from Proposition 2.1. The rest of

proof is similar to [10] (pp. 225–227), and hence we omit it. �

Lemma 4.1 (Norm equivalence principle) Assume Assumptions (H1), (H2), and (H4). Let
Xt,x

s be the solution of forward equation in ODEs (2), let ρ be a weight function. Then there
exist constants c, C > 0 such that, for any s ∈ [t, T] and ϕ ∈ L1

ρ(Rn,Rm),

c
∫

Rn

∣
∣ϕ(x)

∣
∣ρ(x) dx ≤

∫

Rn

∣
∣ϕ

(
Xt,x

s
)∣
∣ρ(x) dx ≤ C

∫

Rn

∣
∣ϕ(x)

∣
∣ρ(x) dx, (23)
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and, for any � ∈ L1
ρ([t, T] ⊗R

n;Rm),

c
∫ T

t

∫

Rn

∣
∣�(s, x)

∣
∣ρ(x) dx ≤

∫ T

t

∫

Rn

∣
∣�

(
s, Xt,x

s
)∣
∣ρ(x) dx

≤ C
∫ T

t

∫

Rn

∣
∣�(s, x)

∣
∣ρ(x) dx, (24)

where c and C depend on T , L,ρ , and the bounds of the first derivatives of b, f , h, but do not
depend on the initial value x.

Proof First, we take ρ(x) := (1 + |x|2)q, q ∈ R. We claim that there exists constants c, C > 0
such that

c ≤ J(X̂t,y
s )ρ(X̂t,y

s )
ρ(x)

≤ C, ∀y ∈R
n, t ≤ s ≤ T . (25)

Here X̂t,y
s is the inverse flow of Xt,y

s , J(X̂t,y
s ) := det�yX̂t,y

s is the determinant of the Jacobian
matrix of X̂t,y

s . The existence of x̂t,y
s is given by Theorem 4.1. Now we prove (25). Assume

that T – h ≤ t ≤ T for some small h > 0. We substitute x = X̂t,y
s into ODEs (2) with Xt,X̂t,y

s
s =

Xt,·
s ◦ X̂t,y

s = y. Then

⎧
⎨

⎩

X̂t,y
s = y –

∫ s
t b(r, X̂r,y

s , Y t,X̂t,y
s

r ) dr,

Y t,X̂t,y
s

s = h(Xt,X̂t,y
s

T ) +
∫ T

s f (r, Xt,X̂t,y
s

r , Y t,X̂t,y
s

r ) dr.
(26)

We differentiate (26) with respect to y to get

�yX̂t,y
s = I –

∫ s

t
b′

x
(
r, Xt,X̂t,y

s
r , Y t,X̂t,y

s
r

)
�yXt,X̂t,y

s
r dr –

∫ s

t
b′

y
(
r, Xt,X̂t,y

s
r , Y t,X̂t,y

s
r

)
�yY t,X̂t,y

s
r dr

=: I + Jt
s (y). (27)

We define ρ(x) := eF(X), so F(x) is C2
l,b(Rn). Using the differential equation for F(X̂t,y

s )
(see[10], pp. 262–263), we get

F
(
X̂t,y

s
)

– F(y) =
∫ s

t
b
(
r, X̂t,y

r , Y t,X̂t,y
s

r
)
�xF

(
X̂t,y

r
)

dr.

It follows that

ρ(X̂t,y
s )

ρ(y)
= exp

(
F
(
X̂t,y

s
)

– F(y)
)

= exp

(∫ s

t
b
(
r, X̂t,y

r , Y t,X̂t,y
s

r
)
�xF

(
X̂t,y

r
)

dr
)

:= Ns
t (y).

Since the first derivatives of F are bounded, it is easy to verify that Ns
t (x) is bounded by

Assumptions (H1) and (H4). Then there exist two constants r > 0 and R > 0 such that

r ≤ Ns
t (y) ≤ R, ∀y ∈ R

n. (28)

Since J(X̂t,y
s ) := det�yX̂t,y

s , from(27) we obtain

1 –
∥
∥Jt

s (y)
∥
∥ ≤ Jt

s
(
X̂t,y

s
) ≤ 1 +

∥
∥Jt

s (y)
∥
∥.
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We consider (27), apply the differential equation, and use a similar method in Proposi-
tion 2.3. Then there exists a constant c0 > 0, depending only on L,μ, T , and the bounds of
the first-order derivatives of b, f , and h, such that

sup
t≤r≤T

(∥
∥�yXt,X̂t,y

s
r

∥
∥2 +

∥
∥�yY t,X̂t,y

s
r

∥
∥2) ≤ c0.

So

∥
∥Jt

s (y)
∥
∥2 ≤ c0(s – t). (29)

By (28) and (29) the upper and lower bounds can be estimated as

r
(
1 –

√
c0(s – t)

) ≤ J(X̂t,y
s )ρ(X̂t,y

s )
ρ(y)

≤ R
(
1 +

√
c0(s – t)

)
.

If s – t is small enough, the lower bound r(1 –
√

c0(s – t)) > 0. Therefore, we can take h
small enough such that (25) holds for T – h ≤ s ≤ T . Note that c and C do not depend
on the initial value y. So we use the flow property X̂t,y

s = X̂t,·
r ◦ X̂r,y

s ,∀t ≤ r ≤ s ≤ T (from
Remark 2.1) to drop the restriction T – h ≤ t ≤ T and extend inequality (25) to the whole
interval of [t, T].

Finally, we prove (23). Using the change of variable y = Xt,x
s , we get

∫

Rn

∣
∣ϕ

(
Xt,x

s
)∣
∣ρ(x) dx =

∫

Rn

∣
∣ϕ(y)

∣
∣ρ(y)

J(X̂t,y
s )ρ(X̂t,y

s )
ρ(y)

dy.

By (25) we get (23). Moreover, for a function (s, x) → �(s, x), we consider x → �(s, x) in
the same way as before. We integrate with respect to s ∈ [t, T] to get (24). The lemma is
proved. �

Let the mollifier Kd be defined as Kd(x) := Cd exp( –1
1–|x|2 ) for |x| < 1 and Kd(x) = 0 other-

wise, where Cd is chosen such that
∫

Rn Kd(x) dx = 1. Denote Km
d (x) := mdKd(mx). Suppose

that φ : Rn →R is a Hölder-continuous function with exponent γ ∈ (0, 1) and define

φm(x) :=
∫

Rn
Km

d (x – y)φ(y) dy

for m > 0.
By [13] φm is a C∞ function and is Hölder-continuous with respect to exponent γ , More-

over, φm → φ uniformly on R as m → ∞. Similarly, we define

hm(x) =
∫

Rn
Km

d
(
x – x′)h

(
x′)dx′,

bm(r, x, y) =
∫

Rn×Rm
Km

d
(
x – x′)Km

k
(
y – y′)b

(
r, x′, y′)dy,

f m(r, x, y) =
∫

Rn×Rm
Km

d
(
x – x′)Km

k
(
y – y′)f

(
r, x′, y′)dy.

It is easy to see that (hm(·), bm(t, ·, ·), f m(t, ·, ·))m∈N are C∞ functions such that, for any
t ∈ [0, T], x ∈ R

n, and y ∈ R
m, (bm, f m, hm)(t, x, y) → (b, f , h)(t, x, y) as m → ∞. From the
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definition we can easily check that, when m is large enough, hm, bm, f m also satisfy As-
sumptions (H1)–(H3) independently of m. By [5] and Proposition 2.1 the smootherized
ODEs

⎧
⎪⎪⎨

⎪⎪⎩

Ẋt,x
s,m = bm(t, Xt,x

s,m, Y t,x
s,m),

–Ẏ t,x
s,m = f m(t, Xt,x

s,m, Y t,x
s,m),

Xt,x
t,m = x, YT = h(Xt,x

T ,m),

(30)

have a unique solution (Xt,··,m, Y t,··,m) ∈ L2([0, T]; L2
ρ(Rn;Rn)) ⊗ L2([0, T]; L2

ρ(Rn;Rm)).
We define Y t,x

t,m by a function um from [0, T] ×R
n to R

m:

um(t, x) := Y t,x
t,m.

Lemma 4.2 Under Assumptions (H1) and (H2), (Xt,··,m, Y t,··,m) → (Xt,·· , Y t,·· ) in L2([0, T];
L2

ρ(Rn;Rn)) ⊗ L2([0, T]; L2
ρ(Rn;Rm)) as m → ∞.

Proof We set X̃t,x
s = Xt,x

s,m – Xt,x
s and Ỹ t,x

s = Y t,x
s,m – Y t,x

s . Applying the differential equation tor
〈GX̃t,x

s , Ỹ t,x
s 〉 and a similar method as in Proposition 2.1, we get

〈
GX̂t,x

T , hm(XT ) – h(XT )
〉
+ U1

∫ T

t
〈GX̂s, GX̂s〉ds + U2

∫ T

t

〈
G�Ŷs, G�Ŷs

〉
ds

≤ –
∫ T

t

〈
GX̂s, fm

(
s, Xt,x

s , Y t,x
s

)
– f

(
s, Xt,x

s , Y t,x
s

)〉
ds

+
∫ T

t

〈
GX̂s, bm

(
s, Xt,x

s , Y t,x
s

)
– b(s, Xt,x

s , Y t,x
s

〉
ds

→ 0 as m → ∞.

Eventually, by (3) and the definition of ρ , similarly to the discussion in Proposition 2.1, we
have (Xt,··,m, Y t,··,m) → (Xt,·· , Y t,·· ) in L2([0, T]; L2

ρ(Rn;Rn)) ⊗ L2([0, T]; L2
ρ(Rn;Rm)) as m → ∞.

�

Theorem 4.2 Under Assumptions (H1), (H2), and (H4), the function u(t, x) defined by (10)
is the unique Sobolev weak solution of PDE (1) with u(T , x) = h(x).

Proof Existence. By Lemma 4.1 and Proposition 2.1 we have

∫ T

0

∫

Rn

∣
∣u(s, x)

∣
∣2

ρ–1(x) dx ds ≤ C
∫ T

0

∫

Rn

∣
∣u

(
s, Xt,x

s
)∣
∣2

ρ–1(x) dx ds

= C
∫ T

0

∫

Rn

∣
∣Y t,x

s
∣
∣2

ρ–1(x) dx ds < ∞.

So u(s, x) ∈ L2([0, T]; L2
ρ(Rn;Rm)).

From the structure of smootherized ODEs (30) and Theorem 3.1 we get that um(t, x) :=
Y t,x

t,m is the unique classical solution of the following PDFs:

⎧
⎨

⎩

∂tum(t, x) + �xum(t, x)bm(t, x, um(t, x)) + fm(t, x, um(t, x)) = 0,

um(T , x) = hm(x), (t, x) ∈ [0, T] ×R
n.
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Moreover, by the integration-by-parts formula it is easy to verify that um(t, x) also satisfies
the following weak formulation: for any smooth test function ϕ ∈ C1,∞

c ([0, T] ×R
n;Rm),

∫ T

t

∫

Rn
um(s, x)∂sϕ(s, x) dx ds +

∫

Rn
um(t, x)ϕ(t, x) dx –

∫

Rn
um(T , x)ϕ(T , x) dx

+
∫ T

t

∫

Rn
�x

(
b
(
s, x, um(s, x)

)
ϕ(s, x)

)
um(s, x) dx ds

=
∫ T

t

∫

Rn
f
(
s, x, um(s, x)

)
ϕ(s, x) dx ds. (31)

Now we verify that u(t, x) satisfies (22) with u(T , x) = h(x) by passing the limit for um in
L2

ρ in (31). We only show the convergence of the last term. By the Lipschitz assumption
and the fact that f m → f in the L2

ρ sense as m → ∞, for any � ∈ C1,∞
c ([0, T] × R

n), we
have

∣
∣
∣
∣

∫ T

t

∫

Rn
f m(

s, x, um(s, x)
)
�(s, x) dx ds –

∫ T

t

∫

Rn
f
(
s, x, u(s, x)

)
�(s, x) dx ds

∣
∣
∣
∣

2

≤ Cp

∫ T

t

∫

Rn

∣
∣f m(

s, x, um(s, x)
)

– f m(
s, x, u(s, x)

)∣
∣2

�(s, x) dx ds

+
∫ T

t

∫

Rn

∣
∣f m(

s, x, u(s, x)
)

– f
(
s, x, u(s, x)

)∣
∣2

�(s, x) dx ds

≤ Cp,L

∫ T

t

∫

Rn

∣
∣um(s, x) – u(s, x))

∣
∣2

�(s, x) dx ds

+
∫ T

t

∫

Rn

∣
∣f m(

s, x, u(s, x)
)

– f
(
s, x, u(s, x)

)∣
∣2

�(s, x) dx ds

→ 0 as m → ∞.

Therefore u(t, x) satisfies (22) and is a Sobolev weak solution of (1) with u(T , x) = h(x).
Uniqueness. Let v be another solution of PDE (1). By Definition 4.1, we get:

∫ T

t

∫

Rn
v(s, x)∂sϕ(s, x) dx ds +

∫

Rn
v(t, x)ϕ(t, x) dx –

∫

Rn
v(T , x)ϕ(T , x) dx

+
∫ T

t

∫

Rn
v(s, x)�x

(
b
(
s, x, u(s, x)

)
ϕ(s, x)

)
dx ds

=
∫ T

t

∫

Rn
f
(
s, x, u(s, x)

)
ϕ(t, x) dx ds. (32)

By Lemma 4.3 in [8], for the test function ψt(s) = ϕ(X̂t
s )J(X̂t

s ), we obtain

∫ T

s

∫

Rn
v(s, x)∂sϕ(s, x) dx ds = –

∫ T

t

∫

Rn
v(s, x)�x

(
b
(
s, x, u(s, x)

)
ϕ(s, x)

)
dx ds. (33)

Taking (33) into (32), we get

∫

Rn
v(t, x)ϕ(t, x) dx –

∫

Rn
v(T , x)ϕ(T , x) dx =

∫ T

t

∫

Rn
f
(
s, x, u(s, x)

)
ϕ(t, x) dx ds. (34)
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Let us make the change of variable y = X̂t,x
s in each term of (34). Then (34) becomes

∫

Rn
v
(
t, Xt,y

s
)
ϕ(y) dy –

∫

Rn
h
(
T , Xt,y

T
)
ϕ(y) dy =

∫ T

t

∫

Rn
f
(
s, Xt,y

s , u
(
s, Xt,y

s
))

ϕ(y) dy ds.

Since ϕ is arbitrary, we can prove that, for almost every y,

v
(
t, Xt,y

s
)

= h
(
T , Xt,y

T
)

+
∫ T

t
f
(
s, Xt,y

s , u
(
s, Xt,y

s
))

ds.

Then we get that v(s, Xt,x
s ) is a solution of ODEs (2), and we obtain the uniqueness result

by the uniqueness of the solution of ODEs (2), and the proof is completed. �

5 Viscosity solution to the PDE
In this section, we prove that the function u(t, x) defined by (10) is the unique viscosity
solution of PDE (1) under Assumptions (H1) and (H2). We first recall the definition of a
viscosity solution for (1) from [14] and [15].

Definition 5.1 Let u be a continuous function on [0, T] × R
n → R

m satisfying ui(T , x) =
hi(x), x ∈R

n, 1 ≤ i ≤ m. It is called a viscosity subsolution (resp., supersolution) of PDE (1) if
for any 1 ≤ i ≤ m, (t, x) ∈ [0, T) ×R

n, and ϕ ∈ C1,1([0, T] ×R
n; R) such that (ϕ – ui) attains

a local minimum (resp., maximum) at (t, x), ϕ(t, x) – ui(t, x) = 0, such that

∂tϕ(t, x) + �xϕ(t, x)b
(
t, x, u(t, x)

)
+ fi

(
t, x, u(t, x)

) ≥ 0,
(
resp. ∂tϕ(t, x) + �xϕ(t, x)b

(
t, x, u(t, x)

)
+ fi

(
t, x, u(t, x)

) ≤ 0
)
.

A function u is called a viscosity solution of PDE (1) if it is both a viscosity subsolution
and a viscosity supersolution.

Theorem 5.1 Let Assumptions (H1) and (H2) hold. The function u(t, x) defined by (10) is
continuous and is a viscosity solution of PDE (1).

Proof The continuity of u follows from Proposition 2.2. Next, we only show that u is a
viscosity subsolution of PDE (1). A similar argument would show that u is also a viscosity
supersolution.

Let (t, x) ∈ [0, T) × R
n, ϕ ∈ C1,1([0, T) × R

n; R), and let (ϕ – ui) attain a local minimum
at (t, x), ϕ(t, x) – ui(t, x) = 0. Assuming that

∂tϕ(t, x) + �xϕ(t, x)b
(
t, x, u(t, x)

)
+ fi

(
t, x, u(t, x)

)
< 0,

we will obtain a contradiction.
It follows from above that there exists 0 < α < T – t such that, for all (s, y) ∈ [t, T] × R

n

satisfying t ≤ s ≤ t + α,

ui(s, y) ≤ φ(s, y)

and

∂tϕ(s, y) + �xϕ(t, x), b
(
s, y, u(s, y)

)
+ fi

(
s, y, ui(s, y)

)
< 0.
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We denote

t� := inf
{

s > t : |Xs – x| ≥ α
} ∧ (t + α).

From ODEs (2) we have

Y t,x
s = YT +

∫ T

s
f
(
r, Xt,x

r , u
(
r, Xt,x

r
))

dr,

Y t,x
t� = YT +

∫ T

t�
f
(
r, Xt,x

r , u
(
r, Xt,x

r
))

dr.

Then we get

Y t,x
s = Y t,x

t� +
∫ t�

s∧t�
f (r, Xt,x

r , u
(
r, Xt,x

r
)

dr.

Since Y t,x
t� = u(t�, Xt,x

t� ), we have

Y t,x
s = u

(
t�, Xt,x

t�
)

+
∫ t�

s∧t�
f (r, Xt,x

r , u
(
r, Xt,x

r
)

dr,

Y t,x,i
s = ui

(
t�, Xt,x

t�
)

+
∫ t�

s∧t�
fi(r, Xt,x

r , u
(
r, Xt,x

r
)

dr.

(35)

Let Ŷs = ϕ(s, Xt,x
s ). By the differential equation,

dŶs = ∂tϕ
(
s, Xt,x

s
)

ds + �xϕ
(
s, Xt,x

s
)
b
(
s, Xt,x

s , u
(
s, Xt,x

s
))

ds,

Ŷs = ϕ
(
t�, Xt,x

t�
)

–
∫ t�

s∧t�

[
∂tϕ

(
r, Xt,x

r
)

ds + �xϕ
(
r, Xt,x

r
)
b
(
r, Xt,x

r , u
(
r, Xt,x

s
))]

dr.
(36)

We consider the difference between (35) and (36):

Ŷs – Y t,x,i
s = ϕ

(
t�, Xt,x

t�
)

– ui
(
t�, Xt,x

t�
)

–
∫ t�

s∧t�

[
∂tϕ

(
r, Xt,x

r
)

ds + �xϕ
(
r, Xt,x

r
)
b
(
r, Xt,x

r , u
(
r, Xt,x

s
))

+ fi
(
r, Xt,x

r , u
(
r, Xt,x

r
))]

dr.

From the definition of t� we have

ϕ
(
t�, Xt,x

t�
)

– ui
(
t�, Xt,x

t�
) ≥ 0

and

–β(r) = ∂tϕ
(
r, Xt,x

r
)

+ �xϕ
(
r, Xt,x

r
)
b
(
r, Xt,x

r , u
(
r, Xt,x

s
))

+ fi
(
r, Xt,x

r , u
(
r, Xt,x

r
))

< 0.

Then

Ŷs – Y t,x,i
s = ϕ

(
t�, Xt,x

t�
)

– ui
(
t�, Xt,x

t�
)

+
∫ t�

t
β(r) dr > 0,

a contradiction with ϕ(t, x) = u(t, x). �
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Remark 5.1 It is obvious that if a function u is Lipschitz continuous in x and continuous
in t, then u satisfies the linear growth assumption, that is, there exists a constant C > 0
such that

∣
∣u(t, x)

∣
∣ ≤ C

(
1 + |x|), ∀(t, x) ∈ [0, T] ×R

n. (37)

Lemma 5.1 Let Assumptions (H1) and (H2) hold, let u, v ∈ C([0, T] × R
n) be Lipschitz

continuous in x, and let u be a viscosity subsolution and v be a viscosity supersolution of
PDE (1). Then the function ω := u – v is a viscosity subsolution of the following PDE:

⎧
⎨

⎩

∂tω(t, x) + C(1 + |x|)|�xω(t, x)| + C|ω(t, x)| = 0,

ω(T , x) = 0,
(38)

where C is a constant only depending on the Lipschitz constants and the linear constants of
b, f .

Proof Let ϕ ∈ C1,1([0, T] ×R
n), and let (t0, x0) ∈ [0, t] ×R

n be a global maximum point of
ωi – ϕ for some 1 ≤ i ≤ m.

We introduce the function

ψα,β (t, x, s, y) = ui(t, x) – vi(s, y) –
|x – y|2

α
–

(t – s)2

β
– ϕ(t, x),

where α,β are positive parameters devoted to zero.
Let (t̄, x̄, s̄, ȳ) be a global maximum point of ψα,β in ([0, T] × B̄R)2, where BR is a ball with

large radius R. We drop the dependence of t̄, x̄, s̄, ȳ on α and β for simplicity of notations.
Noting that

ψα,β (t̄, x̄, s̄, ȳ) ≥ max
(t,x)∈[0,T]×B̄R

ψα,β (t, x, t, x),

we have

ui(t̄, x̄) – vi(s̄, ȳ) –
|x̄ – ȳ|2

α
–

|t̄ – s̄|2
β

– ϕ(t̄, x̄)

≥ max
[0,T]×B̄R

[
ui(t, x) – vi(t, x) – ϕ(t, x)

]
:= M. (39)

We set

N = max
(t,x,s,y)∈([0,T]×B̄R)2

(
ui(t, x) – vi(s, y) – ϕ(t, x)

)
.

Then we have

|x̄ – ȳ|2
α

+
|t̄ – s̄|2

β
≤ –M + N .

Since [0, T] × B̄R is compact, we can find (x0, y0) ∈ [0, T] × B̄R and αk ,βk > 0 such that (t̄, x̄)
and (s̄, ȳ) tend to (t0, x0) as αk and βk tend to 0.
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Relation (39) again implies

0 ≤ lim inf
α,β→0

( |x̄ – ȳ|2
α

+
|t̄ – s̄|2

β

)

≤ lim sup
α,β→0

( |x̄ – ȳ|2
α

+
|t̄ – s̄|2

β

)

≤ lim sup
α,β→0

(
ui(t̄, x̄) – vi(s̄, ȳ) – ϕ(t̄, x̄)

)
– M

= 0.

We have

lim
α→0

|x̄ – ȳ|2
α

= lim
β→0

|t̄ – s̄|2
β

= 0.

Letting α and β tend to 0, we get that (t0, x0) is a global maximum point of ui – vi – ϕ in
[0, T] × B̄R.

Now we are going to use the definition of the viscosity solution. By the definition of
(t̄, x̄, s̄, ȳ) the function

(t, x) �→ ui(t, x) –
(

vi(s, y) +
|x – y|2

α
+

(t – s)2

β
+ ϕ(t, x)

)

attains a global maximum point at (t̄, x̄) in [0, T] × B̄R. Hence we have

2(t̄ – s̄)
β

+ ∂tϕ(t̄, x̄) +
(

2(x̄ – ȳ)�

α
+ �xϕ(t̄, x̄)

)

b
(
t̄, x̄, u(t̄, x̄)

)
+ fi

(
t̄, x̄, u(t̄, x̄)

) ≥ 0.

Similarly, the function

(s, y) �→ vi(s, y) –
(

ui(t, x) –
|x – y|2

α
–

(t – s)2

β
– ϕ(t, x)

)

attains a global minimum point at (s̄, ȳ) in [0, T] × B̄R. Thus

2(t̄ – s̄)
β

+
2(x̄ – ȳ)�

α
b
(
s̄, ȳ, v(s̄, ȳ)

)
+ fi

(
s̄, ȳ, v(s̄, ȳ)

) ≥ 0.

Considering the difference between the last inequalities, we obtain

0 ≤ ∂tϕ(t̄, x̄) +
2(x̄ – ȳ)�

α

[
b
(
t̄, x̄, u(t̄, x̄)

)
– b

(
s̄, ȳ, v(s̄, ȳ)

)]

+ Dϕ(t̄, x̄)b
(
t̄, x̄, u(t̄, x̄)

)
+ fi

(
t̄, x̄, u(t̄, x̄)

)
– fi

(
s̄, ȳ, v(s̄, ȳ)

)

≤ ∂tϕ(t̄, x̄) +
2|x̄ – ȳ|

α

[∣
∣b

(
t̄, x̄, u(t̄, x̄)

)
– b

(
t̄, ȳ, u(t̄, x̄)

)∣
∣

+
∣
∣b

(
t̄, ȳ, u(t̄, x̄)

)
– b

(
t̄, ȳ, v(t̄, x̄)

)∣
∣ +

∣
∣b

(
t̄, ȳ, v(t̄, x̄)

)
– b

(
t̄, ȳ, v(t̄, ȳ)

)∣
∣
]

+
∣
∣Dϕ(t̄, x̄)b

(
t̄, x̄, u(t̄, x̄)

)∣
∣ +

∣
∣fi

(
t̄, x̄, u(t̄, x̄)

)
– fi

(
t̄, ȳ, u(t̄, x̄)

)∣
∣

+
∣
∣fi

(
t̄, ȳ, u(t̄, x̄)

)
– fi

(
t̄, ȳ, v(t̄, x̄)

)∣
∣ +

∣
∣fi

(
t̄, ȳ, v(t̄, x̄)

)
– fi

(
t̄, ȳ, v(t̄, ȳ)

)∣
∣]|.
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By the Lipschitz continuity and the linear growth property of b and f , letting β tend to
zero, the above inequality becomes

0 ≤ ∂tϕ(t̄, x̄) +
2|x̄ – ȳ|

α
× C

[|x̄ – ȳ| +
∣
∣u(t̄, x̄) – v(t̄, x̄)

∣
∣ +

∣
∣v(t̄, x̄) – v(t̄, ȳ)

∣
∣
]

+ C
(
1 + |x̄| + |u(t̄, x̄)

)∣
∣�xϕ(t̄, x̄)

∣
∣

+ C
[|x̄ – ȳ| +

∣
∣u(t̄, x̄) – v(t̄, x̄)

∣
∣ +

∣
∣v(t̄, x̄) – v(t̄, ȳ)

∣
∣
]
.

Letting α → 0, we have 2|x̄–ȳ|
α

→ 0. We get

∂tϕ(t0, x0) + C
(
1 + |x0|

)∣
∣�xϕ(t0, x0)

∣
∣ + C

∣
∣ωi(t0, x0)

∣
∣ ≥ 0.

Since (t0, x0) is a maximum point of ωi –ϕ, by Definition 5.1 the function ω is a subsolution
of PDE (35), and we conclude the proof. �

Lemma 5.2 Let Assumptions (H1) and (H2) hold. For any A > 0, there exists C1 > 0 such
that the function

χ (t, x) = exp
{(

C1(T – t) + A
)
ψ(x)

}
,

where

ψ(x) =
[
log

((|x|2 + 1
) 1

2
)]2,

satisfies

∂tχ (t, x) + C
(
1 + |x|)∣∣�xχ (t, x)

∣
∣ + Cχ (x) < 0

in [t1, T] ×R
n. Here t1 = T – A

C1
.

Proof By the definition of χ and ψ we have

∣
∣�xψ(x)

∣
∣ ≤ 2[ψ(x)] 1

2

(1 + |x|2) 1
2

.

Then we have

|�xχ (t, x) ≤ (
C1(T – t) + A

)
χ (t, x)

∣
∣�xψ(x)

∣
∣

≤ Cχ (t, x)
[ψ(x)] 1

2

(1 + |x|2) 1
2

.

Because of the choice of t1, these estimates do not depend on C1. Easy computations yield

∂tχ (t, x) + C
(
1 + |x|)∣∣�xχ (t, x)

∣
∣ + Cχ (x)

≤
(

–C1ψ(x) + C
(
1 + |x|) [ψ(x)] 1

2

(1 + |x|2) 1
2

+ C
)

χ (t, x).
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Since ψ(x) > 1, it is clear that when C1 is large enough, the quantity in the brackets is
negative, and the proof is complete. �

Theorem 5.2 Let Assumptions (H1) and (H2) hold. Then there exists at most one viscosity
solution of PDE (1) in the class of continuous functions that are Lipschitz continuous in the
spatial variable x.

In particular, the function u(t, x) = Y t,x
t is the unique viscosity solution of (1) in the class

of continuous functions that are Lipschitz continuous in the spatial variable x.

Proof First, we will show that ω = u – v satisfies

∣
∣ω(t, x)

∣
∣ ≤ αχ (t, x), [0, T] ×R

n,

for any α > 0. Then, we let α tend to zero.
By (37), to prove this inequality, we first remark that

lim|x|→∞
∣
∣ω(t, x)

∣
∣e–A[log((|x|2+1)

1
2 )]2

= 0

uniformly for t ∈ [0, T] and for some A > 0. This implies, in particular, that ω(t, x)–αχ (t, x)
is bounded from above in [t1, T] ×R

n for any α > 0, and we have that

M := max
1≤i≤m

max
[t1,T]×Rn

(|ωi| – αχ
)
(t, x)e–L(T–t)

is achieved at some point (t0, x0) ∈ [t1, T] × R
n. Since | · | is the supremum norm in R

m,
we have

M := max
[t1,T]×Rn

(|ω| – αχ
)
(t, x)e–L(T–t)

and |ωi0 (t0, x0)| = |ω(t0, x0)|. We may assume w.l.o.g. that |ωi0 (t0, x0)| �= 0; otherwise, we are
done.

Then we have |ωi0 (t0, x0)| > 0.
From the maximum point property we deduce that

ωi0 (t, x) – αχ (t, x) ≤ (
ωi0 (t0, x0) – αχ (t0, x0)

)
e–L(t–t0), (t, x) ∈ [t1, T] ×R

n.

We define

ϕ(t, x) = αχ (t, x) +
(
ωi0 (t0, x0) – αχ (t0, x0)

)
e–L(t–t0)

and get

(ωi0 – ϕ)(t, x) ≤ (ωi0 – ϕ)(t0, x0), (t, x) ∈ [t1, T] ×R
n.

Since ϕ(t0, x0) = ωi0 (t0, x0) > 0 and Lemma 5.1, we have

∂tϕ(t0, x0) + C
(
1 + |x0|

)∣
∣�xϕ(t0, x0)

∣
∣ ≥ 0
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for all t0 ∈ [t1, T). By the definition of ϕ we can rewrite this inequality as

∂tχ (t0, x0) + C
(
1 + |x0|

)∣
∣�xχ (t0, x0)

∣
∣ + Cχ (t0, x0) ≥ 0.

This is a contradiction with Lemma 5.1. Thus t0 = T . Since |ω(T , x)| = 0, we have

∣
∣u(t, x) – v(t, x)

∣
∣ ≤ αχ (t, x), (t, x) ∈ [t1, T] ×R

n.

Letting α tend to zero, we obtain

u(t, x) = v(t, x), (t, x) ∈ [t1, T] ×R
n.

Applying successively the same argument on the intervals [t2, t1], where t2 = (t1 –A/C1)+,
and then, if t2 > 0, then on [t3, t2], where t3 = (t2 – A/C1)+, and so on, we finally obtain that

u(t, x) = v(t, x), (t, x) ∈ [0, T] ×R
n.

The proof is complete. �

6 Conclusion
In this paper, to our best knowledge, we are the first to study this kind of PDE systems as-
sociated with the two-point boundary value problems. The distinguishing feature is that
we consider the coefficient b of PDE (1) dependent on u(t, x). We give three kinds of so-
lutions of PDE (1). The first one is the classical solution, which needs the coefficients of
ODEs (2) be twice continuously differentiable with bounded derivatives besides the usual
assumptions in [5]. If the coefficient b of ODEs (2) is only once continuously differentiable
with bounded derivatives and if f satisfies the usual Lipschitz condition, then we can prove
that the associated PDE has a unique weak solution in the Sobolev space. In addition, we
also prove that the function defined by the solution of ODEs (2) is the unique viscosity
solution of PDE (1) if the coefficients of ODEs (2) only satisfy the usual assumptions and
Lipschitz condition. This kind of two-point boundary problems is quite important in the
ordinary differential equations and has meaningful applications in optimal control theory.
By virtue of the solution of PDE (1) we give a method to solve the numerical solution of
the two-point boundary value problem and provide a powerful tool to solve the related
optimal control problems.
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