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Abstract
We investigate the stability of Rayleigh–Taylor (RT) problem of the stratified
incompressible viscoelastic fluids under the rotation and the gravity in a horizontal
periodic domain, in which the rotation axis is parallel to the direction of gravity, the
two fluids are immiscible, and the heavier fluid lies on the lighter one. We establish a
stability condition for the RT problem. Moreover, we prove that, under the stability
condition, the RT problem enjoys a unique strong solution, which exponentially
decays with respect to time. In addition, we note that the stability condition is
independent of rotation angular velocity, and the rotation has no destabilizing effect.
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1 Introduction
Considering two completely plane-parallel layers of immiscible fluids, the heavier on top
of the lighter one and both subject to the earth’s gravity, it is well-known that such equi-
librium state is unstable to sustain small disturbances, and this unstable disturbance will
grow and lead to a release of potential energy as the heavier fluid moves down under the
gravitational force and the lighter one is displaced upwards. This phenomenon was first
studied by Rayleigh [33] and then Taylor [34], and therefore is called the Rayleigh–Taylor
(RT) instability. In the last decades, this phenomenon has been extensively investigated
from both physical and numerical aspects, see [3, 8, 17, 19, 23, 36] for examples. It has
been also widely investigated how the RT instability evolves under the effects of other
physical factors, internal surface tension [9, 38], magnetic fields [3, 4, 18, 21, 22, 24, 25],
and so on.

Recently, Jiang et al. [16, 27] have found that the elasticity can inhibit the RT instability
based on the following idea, i.e., Oldroyd–B model of an incompressible viscoelastic fluid
in the presence of a uniform gravitational field in a three-dimensional domain �:

⎧
⎪⎨

⎪⎩

ρ∂tv + ρv · ∇v + ∇p = μ�v + κ div(ρUUT ) – gρe3,
∂tU + v · ∇U – ∇vU = 0,
div v = 0.

(1.1)
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Here v := v(t, x), p := p(t, x), and U := U(t, x) represent velocity, pressure, and deforma-
tion tensor (a 3 × 3 matrix-valued function), respectively. ρ,μ > 0, κ > 0, g > 0 stand for
the density, viscosity coefficient, elasticity coefficient, and gravitational constant, respec-
tively. e3 := (0, 0, 1)T is the vertical unit vector, and –ge3 denotes the gravitational force. We
mention that the well-posedness problem of (1.1) without gravity –ρge3 has been widely
studied, see [28–31] for examples, the corresponding compressible case has also been in-
vestigated in [11–15].

Recently, Baldwin et al. investigated the effect of rotation on the RT instability by an
experiment. Motivated by the experiment of Baldwin et al. and the mathematical result of
Jiang et al. [16, 27], we further mathematically investigate the effect of rotation on the RT
instability in the stratified viscoelastic fluids in this article. Before stating our result, we
shall introduce the mathematical model.

1.1 Stratified rotating VRT problem in Eulerian coordinates
We consider the stratified incompressible viscoelastic fluids under the rotation and the
gravity in a layer domain, in which the rotation axis is parallel to the direction of gravity.
Moreover, the two fluids are immiscible, and the heavier fluid lies on the lighter one. Re-
ferring to the motion equations (1.1) and the motion equations of stratified viscous fluids
(see [20]), we can easily write out the mathematical model of stratified viscoelastic fluids
without internal surface tension:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ±∂tv± + ρ±v± · ∇v± + divS(pg
±, v±, U±) + 2ρ±(a × v±) = 0 in �±(t),

∂tU± + v± · ∇U± = ∇v±U± in �±(t),
div v± = 0 in �±(t),
dt + v1∂1d + v2∂2d = v3 on T,
�v±� = 0, �S(pg

±, v±, U±)�ν = gd�ρ�ν on �(t),
v± = 0 on �±,
v±|t=0 = v0±, U±|t=0 = U0± in �±(0),
d|t=0 = d0 on �(0),

(1.2)

where S(pg
±, v±, U±) := pg

±I – μ±D(v±) – κ±ρ±(U±UT± – I) and pg
± := p± + gρ±x3. Next we

shall introduce the notations appearing in the above mathematical model.
Equations (1.2)1–(1.2)2 describe the motion of the lower lighter and upper heavier vis-

coelastic fluids driven by the gravitational field along the negative x3-direction, which oc-
cupy the two time-dependent disjoint open subsets �+(t) and �–(t) at time t, respec-
tively. The fluids are incompressible by (1.2)3. The two fluids interact with each other by
the interfacial jump conditions (1.2)5 and the motion of a free interface (1.2)4, in which
d := d(x1, x2, t) represents the displacement function of the point at the interface. (1.2)6

describes the non-slip boundary condition of the velocities on both upper and lower fixed
flat boundaries, and the initial statuses of the two fluids are described by (1.2)7–(1.2)8.

The notations f– and f+ in (1.2) denote the values of the quantity f in the lower and upper
fluids, respectively. The term 2ρ±(a × v±) represents the Coriolis force with constant ro-
tation angular velocity a = (0, 0, a) about the vertical direction [5]. D(v±) := ∇v± + (∇v±)T

denotes viscous stress tension. The superscript T and the capital letter I stand for the
transposition and the 3 × 3 identity matrix, respectively. The notations f 0 or f0 represent
the initial data of f .
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In this article, we consider that the domain � occupied by the two fluids is horizontal
periodic, thus we denote

� =
{

(xh, x3) ∈R
3 | xh := (x1, x2) ∈ T, –l < x3 < m

}
with l, m > 0, (1.3)

where we have defined that Ti = 2πLi(R/Z) and T = T1 × T2. Moreover, we have the fol-
lowing expressions:

�+(t) =
{

(xh, x3) | xh ∈ T, d(xh, t) < x3 < m
}

,

�–(t) =
{

(xh, x3) | xh ∈ T, –l < x3 < d(xh, t)
}

, �(t) = �+(t) ∪ �–(t),

�(t) :=
{(

xh, d(xh, t)
) | xh ∈ T

}
,

�– := T× {x3 = –l} and �+ := T× {x3 = m}.

Finally, we explain the interfacial jump conditions (1.2)5. The mathematical notation �·�

represents

�f±� := f+|�(t) – f–|�(t),

where f±|�(t) denote the traces of the quantities f± on �(t). From the physical point of
view, the velocity of two viscous fluids meeting at a free boundary is continuous across
the interface and the jump in the normal stress is proportional to the mean curvature of
the surface multiplied by the normal to the surface (see [38]). Thus, we have the jump
conditions �v� = 0 on �(t) and

�
S(p±, v±, U±)

�
ν = ϑCν on �(t),

where we have defined that

S(p±, v±, U±) := p±I – μ±D(v±) – κ±ρ±
(
U±UT

± – I
)
, (1.4)

and ν represents the unit normal vector on �(t), ϑ the surface tension coefficient, and C
twice the mean curvature of the internal surface �(t). Here we only focus on the elasticity
effect upon the RT instability, then the surface tension is omitted. Thus we obtain the
second jump condition in (1.2)5. In addition, since the density of the lower fluid is lighter
than the upper one, we have

�ρ±� > 0.

Problem (1.2) enjoys the following stratified equilibrium state solution:

(
v, U , d, pg) =

(
0, I, d̄, p̄g),

where d̄ ∈ (–l, m). We should point out that p̄g can be uniquely computed out by hydrostat-
ics, which depends on the variable x3 and ρ± and is continuous with respect to x3 ∈ (–l, m).
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Without loss of generality, we assume that d̄ = 0 in this article. If d̄ is not zero, we can ad-
just the x3 coordinate to make d̄ = 0. Thus d can be regarded as a displacement function
away from the plane

� := T× {0}.

To simplify problem (1.2), we introduce the indicator function χ :

χ�+(t) =

{
1, x ∈ �+(t);
0, x ∈ �c

+(t),
χ�–(t) =

{
1, x ∈ �–(t);
0, x ∈ �c

–(t).

Then we define that

ρ = ρ+χ�+(t) + ρ–χ�–(t), μ = μ+χ�+(t) + μ–χ�–(t),

κ = κ+χ�+(t) + κ–χ�–(t), v = v+χ�+(t) + v–χ�–(t),

U = U+χ�+(t) + U–χ�–(t), p = p+χ�+(t) + p–χ�–(t),

v0 = v0
+χ�+(t) + v0

–χ�–(t), U0 = U0
+(t)χ�+(t) + U0

–(t)χ�–(t),

and denote the perturbation quantity around the equilibrium state (0, I, 0, p̄g) by

v = v – 0, σ = pg – p̄g , V = U – I, d = d – 0.

Thus we have the following perturbation form for problem (1.2):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ∂tv + ρv · ∇v + divS(σ , v, V + I) + 2ρ(a × v) = 0 in �(t),
Vt + v · ∇V = ∇v(V + I) in �(t),
div v = 0 in �(t),
dt + v1∂1d + v2∂2d = v3 on T,
�v� = 0, �S(σ , v, V + I) – gρdI �ν = 0 on �(t),
v = 0 on �+

–,
v±|t=0 = v0, V±|t=0 = V0 on �(0),
d|t=0 = d0 in � \ �(0),

(1.5)

where �+
– := �+ ∪ �–, and S(σ , v, V + I) is defined by (1.4) with (σ , v, V + I) in place of

(p±, v±, U±). Here and in what follows, the subscript ± has been omitted in the jump
notation �·� for simplicity. Thus the equilibrium-state solution of (1.5) is (v, V , d,σ ) =
(0, 0, 0, 0). In this article, we call the initial-boundary value problem (1.5) the stratified ro-
tation viscoelastic Rayleigh–Taylor (SRVRT) problem.

1.2 Reformulation in Lagrangian coordinates
It is difficult to investigate the well-posedness of the SRVRT problem due to the movement
of the free interface �(t) and the changes of the domain �±(t) in Eulerian coordinates.
Therefore we switch the problem to Lagrangian coordinates, so that the interface and
the domains stay fixed in time. To this purpose, we define the fixed Lagrangian domains
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�+ := T× (0, m), �– = T× (–l, 0), and � := �+ ∪�–, and assume that there exist invertible
mappings

ξ 0
± : �± → �±(0)

such that

�(0) = ξ 0
±(�), �+ = ξ 0

+(�+), �– = ξ 0
–(�–), (1.6)

and

det(∇ξ0) = 1. (1.7)

The first condition in (1.6) means that the initial interface �(0) is parameterized by the
mapping ξ 0± defined on �, while the latter two conditions in (1.6) mean that ξ 0± map the
fixed upper and lower boundaries into themselves. Let ξ± be the flow maps, which are
solutions to

{
∂tξ±(y, t) = v±(ξ±(y, t), t) in �±,
ξ±(y, 0) = ξ 0±(y) in �±.

We call (x, t) with x = ξ (y, t) and (y, t) ∈ � ×R
+ the Eulerian coordinates and Lagrangian

coordinates, respectively.
We further assume that ξ±(·, t) are invertible and

�±(t) = ξ±(�±, t)

in order to switch back from Lagrangian to Eulerian coordinates. Since v± and ξ 0± are all
continuous across the surface �, we have

�(t) = ξ±(�, t).

In other words, the Eulerian domains of upper and lower fluids are the image of �± un-
der the mapping ξ±, and the free interface is the image of � under the mappings ξ±(t, ·).
Recalling the non-slip boundary condition v±|�± = 0, we have

y = ξ±(y, t) on �±.

Using the incompressible condition, we can derive that

det(∇ξ±) = 1 in �± (1.8)

as well as the initial condition (1.7), please refer to [32, Proposition 1.4] for the derivation.
In Lagrangian coordinates, we can use the Jacobi matrix of ξ±(y, t) to define the defor-

mation tensor Ũ±(y, t):

Ũ±(y, t) := ∇ξ±(y, t), i.e., Ũij = ∂
(
ξ±(y, t)

)

i,
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where ∂j stands for the partial derivative with respect to the jth component of the spatial
variables. In Eulerian coordinates, the deformation tensor can be rewritten as follows:

U±(x, t) := Ũ±
(
ξ–1
± (x, t), t

)
.

Using the chain rule, it is easy to verify that U±(x, t) enjoys the transport equation

∂tU± + v± · ∇U± = ∇v±U± in �±(t).

Now, we define ξ = χ+ξ+ + χ–ξ–, η = ξ – y, and the Lagrangian unknowns

(u, q)(y, t) = (v,σ )
(
ξ (y, t), t

)
for (y, t) ∈ � ×R

+,

then the motion equations of u and q in Lagrangian coordinates the evolution equations
read as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = u in�,
ρut + divA SA(q, u,∇η + I) + 2ρa(u1e2 – u2e1) = 0 in �,
divA u = 0 in �,
�u� = �η� = 0, �SA(q, u,∇η + I) – gρη3I �n = 0 on �,
u = 0, η = 0 on �+

–,
u|t=0 = u0,η|t=0 = η0 in �,

(1.9)

where we have defined that

SA(q, u,∇η + I) := qI – μDA(u) – κρ
(
D(η) + ∇η∇ηT)

, (1.10)

DA(u) := ∇Au + (∇Au)T, (1.11)

n :=
∂1(η + y) × ∂2(η + y)
|∂1(η + y) × ∂2(η + y)|

∣
∣
∣
∣
�

=
Ae3

|Ae3|
∣
∣
∣
∣
�

(1.12)

for the unit normal to �(t) = ξ (�, t). Since �η� = 0 on �, then

�∂1η� = �∂2η� = 0 on �.

Thus the definition of n in (1.12) makes sense. We call problem (1.9) the transformed
SRVRT problem. In this article, we prove that the transformed SRVRT problem is stable
under proper conditions, see Theorem 2.1.

Next, we further introduce the notations involving A. The matrix A is defined by the
relation

AT = (∇ξ )–1 := (∂jξi)–1
3×3. (1.13)

We define the differential operator ∇A by

∇Aw := (∇Aw1,∇Aw2,∇Aw3)T,

∇Awi := (A1k∂kwi,A2k∂kwi,A3k∂kwi)T,
(1.14)
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where Aij is the (i, j)th entry of A, w := (w1, w2, w3)T, and we have used the Einstein con-
vention of summation over repeated indices. The differential operator divA is defined by

divA(f1, f2, f3) = (divA f1, divA f2, divA f3)T and divA fi := Alk∂kfil (1.15)

for the vector function fi := (fi1, fi2, fi3)T . In addition,

�AX := divA ∇AX. (1.16)

Finally, we introduce some properties of A. Recalling the definition of A and (1.8), we
have

A =
(
A∗

ij
)

3×3, (1.17)

where A∗
ij represents the algebraic complement minor of the (i, j)th entry of the matrix

(∂jξi)3×3. In addition, we have

Aji∂lξj = Aij∂jξl = δil (1.18)

and

∂kA∗
ik = 0 or ∂kAik = 0, (1.19)

where we have defined that δil = 1 for i = l and δil = 0 for i �= l. Thus

divAt u = ∂l(∂tAkluk). (1.20)

The rest of this paper is organized as follows. In Sect. 2, we present the stability result of
the transformed SRVRT problem. Then, in Sect. 3, we deduce some preliminary estimates,
while in Sect. 4 we derive a priori estimates of η and u. Finally, in Sect. 5, we derive an
exponential decay estimate which, together with the local well-posedness result of the
transformed SRVRT problem, yields the desired stability result of the transformed SRVRT
problem.

2 Main results
Before stating our main result, we shall derive the stability condition for the transformed
SRVRT problem. To begin with, we introduce some notations, which are used throughout
this article.

(1) Simplified function spaces:

Lp := Lp(�) := W 0,p(�) for 1 < p ≤ ∞,

H1
0 := W 1

0 (�), H1
σ :=

{
w ∈ H1

0 (�)|div w = 0
}

,

Hk := W k,2(�).
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(2) Simplified norms:

‖ · ‖k := ‖ · ‖Hk = ‖ · ‖W k,2 for k ≥ 0,
∣
∣�w�

∣
∣
s := ‖w+|� – w–|�‖Hs(T) for s ∈ R,

|w|s :=

{
‖w+|� – w–|�‖Hs(T) for w+|� �= w–|� ,
‖w+|�‖Hs(T) for w+|� = w–|� ,

‖ · ‖2
i,k :=

∑

α1+α2=i

∥
∥∂

α1
1 ∂

α2
2 ·∥∥2

k for non-negative integer k.

(3) Energy and functionals:

E(t) :=
∥
∥u(t)

∥
∥2

2 + ‖ut‖2
0 +

∥
∥η(t)

∥
∥2

3 +
∥
∥∇q(t)

∥
∥2

0 +
∣
∣

�
q(t)

�∣
∣2
1/2,

D(t) :=
∥
∥(u,η)(t)

∥
∥2

3 + ‖ut‖2
1 +

∥
∥∇q(t)

∥
∥2

1 +
∣
∣

�
q(t)

�∣
∣2
3/2.

(4) Other notations:

f ∈ Hk+ 1
2 denotes f (yh, 0) ∈ Hk+ 1

2 (T) for f = (yh, y3), yh = (y1, y2),

∂ i
h denotes ∂

α1
1 ∂

α2
2 for any α1 + α2 = i,

a � b means that a ≤ cb, a � b means that a ≥ cb,

where the letter c denotes a positive constant depending on the domain and the
known physical parameters in the transformed SRVRT problem.

Now we start to derive the stability condition. We assume that (u,η) is very small, thus
we can neglect the small terms of the second order (i.e., the nonlinear terms) in (1.9) and
obtain the following linearized transformed SRVRT problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = u in �,
ρut + ∇q + 2ρa(u1e2 – u2e1) = μ�u + κρ divD(η) in �,
div u = 0 in �,
�u� = �η� = 0, �(q – gρη3)I – D(μu + κρη)�e3 = 0 on �,
u = 0, η = 0 on �+

–,
u|t=0 = u0, η|t=0 = η0 in �.

(2.1)

It is convenient to analyze the physical and mathematical mechanisms in the transformed
SRVRT problem based on the linearized problem.

Exploiting the standard method, we shall look for the normal mode solutions of (2.1) in
the following form:

u(y, t) = ũ(y)eλt , q(y, t) = q̃(y)eλt , η(y, t) = η̃(y)eλt for some constant λ > 0.
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Inserting these ansatz into (2.1) yields the following eigenvalue problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λη̃ = ũ in �,
λρũ + ∇q̃ + 2ρa(ũ1e2 – ũ2e1) = μ�ũ + κρ divD(η̃) in �,
div ũ = 0 in �,
�ũ� = 0, �(q̃ – gρη3)I – D(μũ + κρη̃)�e3 = 0 on �,
ũ = 0, η̃ = 0 on �+

–.

(2.2)

Replacing η̃ by (2.2)1, we arrive at the boundary value problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

λ2ρũ + λ∇q̃ – divD((λμ + κρ)ũ) + 2ρa(ũ1e2 – ũ2e1) = 0 in �,
div ũ = 0 in �,
�ũ� = 0, �(q̃ – gρη3)I – D(μũ + κρη̃)�e3 = 0 on �,
ũ = 0, η̃ = 0 on �+

–.

(2.3)

Multiplying (2.3)1 by ũ in L2 and exploiting the formula of integration by parts and con-
ditions (2.3)2–(2.3)4, one has

λ2‖√ρũ‖2
0 = g�ρ�|ũ3|20 –

1
2
∥
∥√

κρD(ũ)
∥
∥2

0 –
1
2
∥
∥
√

λμD(ũ)
∥
∥2

0 + 2ρa
∫

�

(ũ2e1 – ũ1e2) · ũ dy.

Noting that

2ρa
∫

�

(ũ2e1 – ũ1e2) · ũ dy = 0,

thus we derive that

λ2‖√ρũ‖2
0 = Ẽ(ũ) –

1
2
∥
∥
√

λμD(ũ)
∥
∥2

0, (2.4)

where we have defined that

Ẽ(ũ) := g�ρ�|ũ3|20 –
1
2
∥
∥√

κρD(ũ)
∥
∥2

0. (2.5)

Using the point of view of energy, if Ẽ(ũ) < 0 for some ũ, then the linearized SRVRT
problem may be stable. Hence, we have the stability criterion: if Cr < 1 (i.e., the elasticity
coefficient κ is appropriately large), any solution to the linearized stratified VRT problem
enjoys some stability estimate, where we have defined that

Cr := sup
u∈H1

σ

2g�ρ�|u3|20
‖√κρD(u)‖2

0
. (2.6)

In this article, we will rigorously prove that the transformed SRVRT problem (1.9) is stable.
More precisely, we have the following mathematical result.

Theorem 2.1 Let a ≥ 0. Under the stability condition Cr < 1, there is a sufficiently small
constant δ > 0 such that for any (u0,η0) ∈ H2 × H3 enjoying the following conditions:

(1) u0 = 0 on �+
– and divA0 u0 = 0;

(2) det(∇η0 + I) = 1, η0 = 0 on �+
– and �η0 � = 0 on �;
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(3) ‖u0‖2 + ‖η0‖3 ≤ δ;
(4) the initial value (u0,η0) satisfies the compatibility condition

�
SA0 (0, u0,∇η0 + I)n0 – n0 · (SA0 (0, u0,∇η0 + I)n0

)
n0

�
= 0,

then the transformed SRVRT problem (1.9) possesses a unique global solution
(u,η) ∈ C0([0,∞), H2 × H3) with an associated perturbation pressure q.
Furthermore, (η, u, q) has the following exponential stability estimate:

E(t) ≤ ce–ct(‖u0‖2
2 + ‖η0‖2

3
)
, (2.7)

where A0 and n0 denote the initial data of A and n, respectively, and are defined by
η0, and the positive constants δ and c depend on the domain and the physical
parameters in the transformed SRVRT problem.

Remark 2.1 In view of the proof of Theorem 2.1, we can easily observe that Theorem 2.1
still holds if � = {x ∈R

3|–l < x3 < m} or one of κ+ and κ– is non-zero and sufficiently large.
Moreover, if κ+ = κ–, then the stability condition is equivalent to κ > κc, where we have
defined that

κc := sup
w∈H1

σ

2g�ρ�|w3|20
‖√ρD(w)‖2

0
.

It should be noted that the stability condition is independent of a. Thus Theorem 2.1
presents that the rotation has no destabilizing effect. Next we briefly introduce the proof of
Theorem 2.1. The key step of the proof is to deduce an a priori exponential decay estimate
(2.7). To this purpose, we naturally construct an energy inequality of differential form

d
dt

Ẽ(t) + D̃(t) �
√
ED (2.8)

for some energy functional Ẽ(t) (see (5.7) for the definition) and dissipative functional
D̃(t) (see (5.8) for the definition). Moreover, Ẽ(t) and D̃(t) are equivalent to E(t) and D(t),
respectively, and Ẽ(t) can be controlled by D(t). In particular, if E is sufficiently small, we
further have

d
dt

Ẽ(t) + D(t) � 0,

which implies the desired exponential decay estimate by Gronwall’s inequality. Thus, by a
local well-posedness result of the transformed SRVRT problem, we immediately get The-
orem 2.1.

Here we mention the derivation of (2.8). Recently, Jiang et al. [27] have proved that the
elasticity can inhibit the RT instability based on the energy method. To obtain (2.8), we nat-
urally use the energy method in [27] to prove Theorem 2.1. However, we need some more
complicated mathematical techniques for the estimate of ‖η‖3. Thus our derivation of the
estimate of ‖η‖3 is very different with the one in [27]. In fact, since w := u + (κρ/μ)η may
not be continuous on �, we shall apply the regularity theory of one-phase steady Stokes
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problem to the momentum equations of upper and lower viscoelastic fluids. Thus we de-
rive an energy inequality of ‖η‖3, which has some norms of yh-derivative (i.e., horizontal
derivative) of (u,η), see Lemma 4.2 for details. Moreover, we also derive a series of energy
inequalities of yh-derivative in the energy inequalities of yh-derivative of (u,η), see Lem-
mas 4.1 and 4.4 for details, which can close the norms involving yh-derivative in the energy
inequality of ‖η‖3. Thus, we can still exploit a standard energy method to establish the en-
ergy inequality (2.8). It should be noted that Ẽ(t) contains some negative terms involving
gravity. To control the non-positive terms, we shall use the stability condition based on
the physical idea that the stabilizing terms of elasticity can control the non-positive term,
see Lemma 4.3 for details. Thus we derive the equivalence of Ẽ and E . Of course, we will
also use the stability condition in the derivation of the dissipative functional D.

3 Preliminary estimates
The key step in the proof of Theorem 2.1 is to derive a priori exponential stability estimate
for the transformed SRVRT problem (1.9). To this purpose, let (u,η) be a solution of the
transformed SRVRT problem and satisfy

sup
0≤t≤T

√∥
∥η(t)

∥
∥

3 +
∥
∥u(t)

∥
∥

2 ≤ δ ∈ (0, 1) for some T > 0, (3.1)

where the initial data of (u,η) enjoys assumptions (1)–(4) in Theorem 2.1, and δ is suffi-
ciently small. We mention that the smallness condition (3.1) depends on � and other phys-
ical parameters in the transformed SRVRT problem, and will be repeatedly used through-
out the rest of the article. Moreover, we assume that the solution (u,η) possesses proper
regularity, so that the procedure of formal derivation makes sense.

In order to exploit the regularity theory of the (steady) Stokes problem in the derivation
of a priori estimates, we shall write (1.9)2–(1.9)5 as the following nonhomogeneous form,
in which the terms on the left-hand side of the equations are linear:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρut + ∇q – divD(μu + κρη) + 2ρa(u1e2 – u2e1) = N in �,
div u = – divÃ u in �,
�u� = 0, �(qI – D(μu + κρη) – gρη3)e3 � = M on �,
u = 0, η = 0 on �+

–,

(3.2)

where we have defined that

Ã := A – I, (3.3)

N := div
(
μDÃ(u) + κρ∇η∇ηT)

– divÃ SA(q, u,∇η + I), (3.4)

M :=
�
μDÃ(u) + κρ∇η∇ηT �

e3 +
�(

SA(q, u,∇η + I) – gρη3I
)�

(e3 – n), (3.5)

and DÃ(u) and divÃ are defined by (1.11) and (1.15) with Ã in place of A, respectively.
Since det(∇ξ0) = 1, we have det(∇ξ ) = 1, i.e., det(∇η + I) = 1.

This section is devoted to the derivation of preliminary estimates for (η, u). To begin
with, we shall recall some important inequalities, these inequalities will be frequently used
in the rest of the article.
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(1) Sobolev’s embedding inequalities [1, Theorem 4.12]:

‖f ‖Lp � ‖f ‖1 for 2 ≤ p ≤ 6, (3.6)

‖f ‖C0(�̄) � ‖f ‖2. (3.7)

(2) Korn’s inequality [10, Lemma 10.7]:

‖w‖1 �
∥
∥D(w)

∥
∥

0 for any w ∈ H1
0 . (3.8)

(3) Interpolation inequality Hj ([1, Theorem 5.2]):

‖f ‖j ≤ ‖f ‖1– j
i

0 ‖f ‖
j
i
i ≤ Cε‖f ‖0 + ε‖f ‖i for any 0 ≤ j < i, ε > 0, (3.9)

where the constant Cε depends on the domain and ε.
(4) Estimates of the product of functions in Sobolev spaces [26]:

‖f ψ‖j �

⎧
⎪⎨

⎪⎩

‖f ‖1‖ψ‖1 for j = 0,
‖f ‖j‖ψ‖2 for 0 ≤ j ≤ 2,
‖f ‖2‖ψ‖3 + ‖f ‖3‖ψ‖2 for j = 3,

(3.10)

‖φϕ‖
H

3
2 (T)

� ‖φ‖
H

3
2 (T)

‖ϕ‖
H

3
2 (T)

, (3.11)

‖φϕ‖
H– 1

2 (T)
� ‖φ‖L4(T)‖ϕ‖L4(T), (3.12)

‖φϕ‖
H

1
2 (T)

� ‖φ‖W 1,γ (T)‖ϕ‖
H

1
2 (T)

for any γ > 2. (3.13)

(5) Trace theorems [1, Theorem 7.58]:

∥
∥f (xh, 0)

∥
∥

W k,4(T) � ‖f ‖k+1 for any integer k ≥ 0, (3.14)
∥
∥f (xh, 0)

∥
∥

Hk+ 1
2 (T)

� ‖f ‖k+1 for any k ≥ 0, (3.15)

|u3|– 1
2
� ‖u‖0 + ‖div u‖0 for any u := (u1, u2, u3) ∈ H1

0 , (3.16)

where (3.16) can be derived by integration by parts and the inverse trace theorem.
We mention that (3.6)–(3.10) also hold for the bounded domain.

Now, we start the derivation of some preliminary estimates. First, we derive bounds for
divη. Since

det(∇ξ0) = det
(∇(η0 + y)

)
= det(∇η0 + I) = 1,

one can derive from (1.9)1 that

det(∇η + I) = 1.
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Then, using the determinant expansion theorem, we have

det(∇η + I) =

∣
∣
∣
∣
∣
∣
∣

∂1η1 + 1 ∂2η1 ∂3η1

∂1η2 ∂2η2 + 1 ∂3η2

∂1η3 ∂2η3 ∂3η3 + 1

∣
∣
∣
∣
∣
∣
∣

= det∇η +
1
2
(
(divη)2 – tr(∇η)2) + divη + 1 = 1.

Consequently,

divη =
1
2
(
tr(∇η)2 – (divη)2) – det∇η. (3.17)

Making use of (3.17), (3.10), and (3.1), we have

‖divη‖2 �
∥
∥(divη)2∥∥

2 +
∥
∥tr(∇η)2∥∥

2 + ‖det∇η‖2

� ‖divη‖2‖η‖3 + ‖∇η‖2‖∇η‖2 + ‖∇η‖3
2

� ‖∇η‖2
2
(
1 + ‖∇η‖2

)
� ‖η‖2

3. (3.18)

Second, we estimate for A and Ã. Using (3.10) and (1.17), we have

‖A‖2 �1 + ‖η‖3
(
1 + ‖η‖3

)
� 1. (3.19)

Similarly, we can deduce from (1.9)1 that

‖At‖j � ‖u‖j+1 for 0 ≤ j ≤ 2, (3.20)

‖Att‖0 � ‖ut‖1 + ‖u‖2. (3.21)

Since δ is sufficiently small, we have the following relation:

AT = I – ∇η + (∇η)2
∞∑

i=0

(–∇η)i = I – ∇η + (∇η)2AT ,

which yields that

ÃT = (∇η)2AT – ∇η. (3.22)

Using (3.22), (3.19), and (3.10), we can estimate that

‖Ã‖j � ‖∇η‖2
2‖A‖j + ‖η‖j � ‖η‖j+1 for 0 ≤ j ≤ 2. (3.23)

In addition, exploiting (3.23), (3.19), and (3.8), we can easily deduce that, for any w ∈ H1
0 ,

∥
∥DA(w)

∥
∥� ‖w‖1, (3.24)

‖w‖1 �
∥
∥D(w)

∥
∥

0 �
∥
∥DÃ(w)

∥
∥

0 +
∥
∥DA(w)

∥
∥

0 � ‖η‖3‖w‖1 +
∥
∥DA(w)

∥
∥

0, (3.25)
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which yield that, for sufficiently small δ,

‖w‖1 �
∥
∥DA(w)

∥
∥

0 � ‖w‖1 for any w ∈ H1
0 . (3.26)

Finally, we estimate the nonlinear terms N and M. Recalling the definition of N , we
use (3.23), (3.19), and (3.10) to infer that

‖N ‖1 =
∥
∥κρ div

(∇η∇ηT)
+ μdivDÃ(u) + μdivÃDA(u)

+ κρ divÃD(η) – divÃ(qI) + κρ divÃ
(∇η∇ηT)∥

∥
1

�
∥
∥∇η∇ηT∥

∥
2 +

∥
∥DÃ(u)

∥
∥

2 + ‖Ã‖2
∥
∥DA(u)

∥
∥

2

+ ‖Ã‖2
∥
∥D(η)

∥
∥

2 + ‖Ã‖2‖∇q‖1 + ‖Ã‖2
∥
∥∇η∇ηT∥

∥
2

� ‖η‖2
3 + ‖Ã‖2‖u‖3 + ‖Ã‖2‖A‖2‖u‖3 + ‖Ã‖2‖η‖3

+ ‖Ã‖2‖∇q‖1 + ‖Ã‖2‖η‖2
3

� ‖η‖3
(∥
∥(u,η)

∥
∥

3 + ‖∇q‖1
)
. (3.27)

Following the argument of (3.27), one has

‖N ‖0 � ‖η‖2‖η‖3 + ‖Ã‖2
(‖u‖2 + ‖A‖2‖u‖2 + ‖η‖2 + ‖∇q‖0 + ‖η‖2‖η‖3

)

� ‖η‖3
(∥
∥(u,η)

∥
∥

2 + ‖∇q‖0
)
. (3.28)

Since we have the following relation

Ae3 = ∂1(η + y) × ∂2(η + y) = e3 + e1 × ∂2η + ∂1η × e2 + ∂1η × ∂2η, (3.29)

making use of (3.29), (3.10), and (3.7), we find that, for sufficiently small δ,

∥
∥|Ae3|–1∥∥

2 � 1 and
∥
∥1 – |Ae3|

∥
∥

2 � ‖η‖3. (3.30)

Exploiting (3.30), (3.23), (3.19), and (3.10), one estimates that

∥
∥
∥
∥
Ae3

|Ae3|
∥
∥
∥
∥

2
� 1 and

∥
∥
∥
∥
Ae3

|Ae3| – e3

∥
∥
∥
∥

2
� ‖η‖3. (3.31)

Consequently, exploiting the estimates (3.31), (3.23), (3.19), (3.15), (3.11), and (3.10), one
has

|M| 3
2

≤ ∣
∣

�
μDÃ(u) + κρ∇η∇ηT �

e3
∣
∣ 3

2

+
∣
∣

�
SA(0, u,∇η + I) – gρη3I

�
(e3 – n)

∣
∣ 3

2
+

∣
∣�qI �(e3 – n)

∣
∣ 3

2

�
∥
∥μDÃ(u) + κρ∇η∇ηT∥

∥
2

+
∥
∥
∥
∥

(
SA(0, u,∇η + I) – gρη3I

)
(

e3 –
Ae3

|Ae3|
)∥

∥
∥
∥

2
+

∣
∣�qI �(e3 – n)

∣
∣ 3

2

� ‖η‖3
(∥
∥(u,η)

∥
∥

3 +
∣
∣�q�

∣
∣ 3

2

)
. (3.32)
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Similarly, we can derive from (3.14) and (3.13) that

|M| 1
2
� ‖η‖3

(∥
∥(u,η)

∥
∥

2 +
∣
∣�q�

∣
∣ 1

2

)
. (3.33)

4 Estimates of η and u
In this section, we aim to deduce some estimates of η and u.

4.1 Estimates of η

This subsection is devoted to the derivation of the yh-derivative estimates of η, the H3-
norm estimate of η, and some positive definiteness estimate under the stability condition.

Lemma 4.1 We have, for 0 ≤ i ≤ 2,

d
dt

(∫

�

ρ∂ i
hη · ∂ i

hu dy +
1
4
∥
∥√

μD
(
∂ i

hη
)∥
∥2

0

)

– Ẽ
(
∂ i

hη
)

� ‖u‖2
i,0 + ‖η‖i,0‖u‖i,0 +

√
ED. (4.1)

Proof Applying ∂ i
h to (3.2), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ρ∂ i
hut + ∇∂ i

hq – div ∂ i
hD(μu + κρη) + 2ρa∂ i

h(u1e2 – u2e1) = ∂ i
hN in �,

div ∂ i
hu = –∂ i

h divÃ u in �,
�∂ i

hu� = �∂ i
hη� = 0, �∂ i

h(qI – D(μu + κρη) – gρη3)e3 � = ∂ i
hM on �,

∂ i
hu = 0, ∂ i

hη = 0 on �+
–.

(4.2)

Multiplying (4.2)1 by ∂ i
hη in L2, one obtains

d
dt

∫

�

ρ∂ i
hη · ∂ i

hu dy =
∫

�

∂ i
h
(
divD(μu + κρη) – ∇q

) · ∂ i
hη dy +

∫

�

ρ
∣
∣∂ i

hu
∣
∣2 dy

+
∫

�

∂ i
hN · ∂ i

hη dy + 2
∫

�

ρa∂ i
h(u2e1 – u1e2) · ∂ i

hη dy

:=
4∑

k=1

Ik . (4.3)

Next, we estimate for I1–I4.
Using the integration by parts, the boundary conditions in (4.2)4, and the second jump

condition in (4.2)3, we have

I1 =
∫

�

div ∂ i
h
(
D(μu + κρη) – qI

) · ∂ i
hη dy

=
∫

�

�
∂ i

h
(
qI – D(μu + κρη) – gρη3

)
e3

� · ∂ i
hη dyh +

∫

�

�
∂ i

h(gρη3)
�

e3 · ∂ i
hη dyh

+
∫

�

∂ i
h(qI) : ∇(

∂ i
hη

)
dy –

∫

�

μ∂ i
hD(u) : ∇(

∂ i
hη

)
dy

–
∫

�

κρ∂ i
hD(η) : ∇(

∂ i
hη

)
dy

= Ẽ
(
∂ i

hη
)

–
1
4

d
dt

∥
∥√

μD
(
∂ i

hη
)∥
∥2

0 + I5 + I6, (4.4)
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where

I5 =
∫

�

∂ i
hM · ∂ i

hη dyh, (4.5)

I6 =
∫

�

∂ i
hq div ∂ i

hη dy. (4.6)

Therefore, putting (4.4) into (4.3) and using Hölder’s inequality, we have

d
dt

(∫

�

ρ∂ i
hη · ∂ i

hu dy +
1
4
∥
∥√

μD
(
∂ i

hη
)∥
∥2

0

)

– Ẽ
(
∂ i

hη
)

� ‖u‖2
i,0 + ‖η‖i,0‖u‖i,0 + I3 + I5 + I6. (4.7)

Exploiting the formula of integration by parts, (3.32), and (3.27), one obtains

I3 =

{
–

∫

�
∂hN · ∂3

hη dy � ‖N ‖1‖η‖3 for i = 2,
∫

�
∂ i

hN · ∂ i
hη dy � ‖N ‖i‖η‖i for i = 0, 1,

� ‖N ‖1‖η‖3 �
√
ED, (4.8)

and

I5 =

{
–

∫

�
∂hM · ∂3

hη dyh � |∂hM| 1
2
|∂3

hη|– 1
2

for i = 2,
∫

�
∂ i

hM · ∂ i
hη dyh � |M|i|η|i for i = 0, 1,

� |M| 3
2
|η| 5

2
�

√
ED. (4.9)

Using Hölder’s inequality and (3.18), we can get that

I6 �
∥
∥∂ i

hq
∥
∥

0

∥
∥div ∂ i

hη
∥
∥

0 �
√
ED for i = 1, 2. (4.10)

Next we turn to estimate for I6 with i = 0. We can deduce from (3.17) that

divη =
1
2
(
tr(∇η)2 – (divη)2) – det∇η

= ∂1η2∂2η1 + ∂2η3∂3η2 + ∂3η1∂1η3 – ∂1η1∂2η2 – ∂1η1∂3η3 – ∂2η2∂3η3

+ ∂1η1(∂2η3∂3η2 – ∂2η2∂3η3) + ∂2η1(∂1η2∂3η3 – ∂1η3∂3η2)

+ ∂3η1(∂1η3∂2η2 – ∂1η2∂2η3), (4.11)

which yields that

divη = divψ , (4.12)

where we have defined that

ψ :=

⎛

⎜
⎝

–η1(∂2η2 + ∂3η3) + η1(∂2η3∂3η2 – ∂2η2∂3η3)
η1∂1η2 – η2∂3η3 + η1(∂1η2∂3η3 – ∂1η3∂3η2)
η1∂1η3 + η2∂2η2 + η1(∂1η3∂2η2 – ∂1η2∂2η3)

⎞

⎟
⎠ .
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Using the integration by parts, (3.15), and (3.10), we obtain that

I6 = –
∫

�

�q�e3 · ψ dyh –
∫

�

ψ · ∇q dy

� ‖ψ‖1
(‖∇q‖0 +

∣
∣�q�

∣
∣ 1

2

)
� ‖η‖2

3
(‖∇q‖0 +

∣
∣�q�

∣
∣ 1

2

)
�

√
ED. (4.13)

Finally, inserting (4.8)–(4.10) and (4.13) into (4.7), we immediately deduce (4.1). �

In order to estimate η in H3-norm, problem (3.2) shall be rewritten as the following two
one-phase steady Stokes problems:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–μ±�w± + ∇q± = G± in �,
div w± = H± in �,
w± = w±|� on �,
w± = 0 on �+

–,

(4.14)

where

H± :=
(

κρ

μ
divη – divÃ u

)

χ�± , (4.15)

G± :=
(
μ∇H± + N – ρut + 2ρa(u2e1 – u1e2)

)
χ�± , (4.16)

w± :=
(

u +
κρ

μ
η

)

χ�± , (4.17)

and (w±, w±|�) enjoys the following relation:

∫

�±
H± dy =

∫

�

w±|� · (∓e3) dyh. (4.18)

Lemma 4.2 We have

d
dt

∥
∥
∥
∥

√
κρ

μ
η

∥
∥
∥
∥

2

3
+

∥
∥(η, u)

∥
∥2

3 + ‖∇q‖2
1 �

2∑

i=0

∥
∥(η, u)

∥
∥2

i,1 + ‖ut‖2
1 + ED. (4.19)

Proof Applying the classical regularity of one-phase Stokes problem in [35] to (4.14), one
has

‖w±‖2
3 + ‖∇q±‖2

1 � ‖G±‖2
1 + ‖H±‖2

2 + |w±|� |25
2

, (4.20)

which yields that

‖w‖2
3 + ‖∇q‖2

1 � ‖G‖2
1 + ‖H‖2

2 + |w|25
2

, (4.21)

where we have defined that w = w+χ�+ + w–χ�– , G = G+χ�+ + G–χ�– , and H = H+χ�+ +
H–χ�– .

Since

‖w‖2
3 =

d
dt

∥
∥
∥
∥

√
κρ

μ
η

∥
∥
∥
∥

2

3
+ ‖u‖2

3 +
∥
∥
∥
∥
κρ

μ
η

∥
∥
∥
∥

2

3
, (4.22)
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inserting the above equation into (4.20) yields

d
dt

∥
∥
∥
∥

√
κρ

μ
η

∥
∥
∥
∥

2

3
+ ‖u‖2

3 +
∥
∥
∥
∥
κρ

μ
η

∥
∥
∥
∥

2

3
+ ‖∇q‖2

1 � ‖G‖2
1 + ‖H‖2

2 + |w|25
2

. (4.23)

Making use of (3.27), (3.23), (3.18), (3.15), and (3.7), we have

‖G‖1 � ‖u‖1 + ‖ut‖1 + ‖H‖2 + ‖N ‖1

� ‖u‖1 + ‖ut‖1 + ‖divη‖2 + ‖divÃ u‖2 + ‖N ‖1

� ‖u‖1 + ‖ut‖1 + ‖η‖3
(∥
∥(u,η)

∥
∥

3 + ‖∇q‖1
)

� ‖u‖1 + ‖ut‖1 +
√
ED, (4.24)

‖H‖2
2 =

∥
∥
∥
∥
κρ

μ
divη – divÃ u

∥
∥
∥
∥

2

2
�

(‖η‖2
3 + ‖η‖3‖u‖3

)2 � ED (4.25)

and

|w|25
2

= |w|22+ 1
2
�

2∑

i=0

‖w‖2
i,1 �

2∑

i=0

∥
∥(η, u)

∥
∥2

i,1. (4.26)

Putting (4.24)–(4.26) into (4.23) yields (4.19). �

In order to control the negative terms containing g and η, we will establish the following
positive definiteness estimate.

Lemma 4.3 We have

∥
∥∂ i

hη
∥
∥2

1 � –Ẽ
(
∂ i

hη
)

+ ‖η‖3
3 for 0 ≤ i ≤ 2. (4.27)

Proof It is obvious that (4.27) holds with any ϕ ∈ H1
σ in place of ∂ i

hη. In fact, recalling the
definition of Cr in (2.6), we have

–g�ρ�|ϕ3|20 ≥ –
Cr

2
∥
∥√

κρD(u)
∥
∥2

0, (4.28)

which implies that

–Ẽ(ϕ) ≥ 1
2
∥
∥√

κρD(ϕ)
∥
∥2

0 –
Cr

2
∥
∥√

κρD(ϕ)
∥
∥2

0 �
∥
∥D(ϕ)

∥
∥2

0.

Therefore, together with Cr < 1 and Korn’s inequality (3.8), it implies that

‖ϕ‖2
1 �

∥
∥D(ϕ)

∥
∥2

0 � –Ẽ(ϕ) for any ϕ ∈ H1
σ . (4.29)

To further deduce (4.27) from (4.29), we shall introduce Bogovskii’s function with the
standing-wave form. We have the following conclusion:

Let �′ be a bounded Lipschitz domain. For any given f ∈ L2(�′) satisfying
∫

�′ f dy = 0,
there exists a Bogovskii’s function B̃ ∈ H1

0 (�′) such that div B̃[f ] = f and

∥
∥B̃[f ]

∥
∥

H1(�′) ≤ c‖f ‖L2(�′), (4.30)
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where the constant c only depends on the domain �′ (see [6], Theorem 10.11 or [7],
Lemma III.3.1).

The above Bogovskii’s function defined on a bounded domain can be extended to the
horizontal periodic domain �. In fact, we define that

C :=
{

(y1, y2, y3) ∈R
3|0 < y1 < 2πL1, 0 < y2 < 2πL2, –l < y3 < τ

}
. (4.31)

Then C is a bounded Lipschitz domain. We can use Bogovskii’s function defined on C

and an approach of horizontally translational extension to infer that, for any given g ∈ L2

satisfying
∫

C
g dy = 0, there exists a horizontally periodic Bogovskii’s function B[g] ∈ H1

0

such that

divB[g] = g, (4.32)
∥
∥B[g]

∥
∥

1 ≤ c‖g‖0, (4.33)
(
B[g]

)
(2πk1L1, 2πk2L2, y3) = 0 (4.34)

for any integers k1 and k2. We call B[g] Bogovskii’s function in a standing-wave form due
to property (4.34).

Since div ∂ i
hη ∈ L2 and

∫

�
div ∂ i

hη dy = 0, then we can apply Bogovskii’s function to divη.
Thus, using (4.30) and (3.18), we can infer that

∥
∥B

[
div ∂ i

hη
]∥
∥

1 �
∥
∥div ∂ i

hη
∥
∥

0 � ‖η‖2
3. (4.35)

Obviously, –Ẽ(∂ i
hη) can be rewritten as follows:

–Ẽ
(
∂ i

hη
)

= –Ẽ
(
∂ i

hη – B
[
div ∂ i

hη
]

+ B
[
div ∂ i

hη
])

= –Ẽ
(
∂ i

hη – B
[
div ∂ i

hη
])

+
1
2

(

2
∫

�

κρD
(
∂ i

hη
)

: D
(
B

[
div ∂ i

hη
])

dy –
∥
∥√

κρD
(
B

[
div ∂ i

hη
])∥

∥2
0

)

– g�ρ�

(

2
∫

�

∂ i
hη3B3

[
div ∂ i

hη
]

dyh –
∣
∣B3

[
div ∂ i

hη
]∣
∣2
0

)

=: I7 + I8 + I9. (4.36)

Since ∂ i
hη – B[div ∂ i

hη] ∈ H1
σ , thus, using (4.29) and the Cauchy–Schwarz inequality, we

obtain

1
2
∥
∥D

(
∂ i

hη
)∥
∥2

0 –
∥
∥D

(
B

[
div ∂ i

hη
])∥

∥2
0

≤ ∥
∥D

(
∂ i

hη
)∥
∥2

0 +
∥
∥D

(
B

[
div ∂ i

hη
])∥

∥2
0 – 2

∫

�

D
(
∂ i

hη
)

: D
(
B

[
div ∂ i

hη
])

dy

=
∥
∥D

(
∂ i

hη – B
[
div ∂ i

hη
])∥

∥2
0 � I7. (4.37)
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In addition, we use (4.35), (3.15), and (3.1) to estimate that

|I8 + I9| +
∥
∥D

(
B

[
div ∂ i

hη
])∥

∥2
0

�
∣
∣B

[
div ∂ i

hη
]∣
∣
0

(∣
∣∂ i

hη3
∣
∣
0 +

∣
∣B

[
div ∂ i

hη
]∣
∣
0

)

+
∥
∥D

(
B

[
div ∂ i

hη
])∥

∥
0

(∥
∥D

(
∂ i

hη
)∥
∥

0 +
∥
∥D

(
B

[
div ∂ i

hη
])∥

∥
0

)

�
∥
∥B

[
div ∂ i

hη
]∥
∥

1

(∥
∥∂ i

hη
∥
∥

1 +
∥
∥B

[
div ∂ i

hη
]∥
∥

1

)

� ‖η‖3
3. (4.38)

Thanks to (4.37) and (4.38), we deduce from (4.36) that

1
2
∥
∥D

(
∂ i

hη
)∥
∥2

0 � –Ẽ
(
∂ i

h
)

+ ‖η‖3
3,

which, together with Korn’s inequality (3.8), yields (4.27). �

4.2 Estimates of u
In this subsection, we deduce the yh-derivative estimate of u, the temporal derivative es-
timates, and the elliptic estimates for (u, q) in sequence.

Lemma 4.4 We have

d
dt

(∫

�

ρ
∣
∣∂ i

hu
∣
∣2 dy – Ẽ

(
∂ i

hη
)
)

+ c
∥
∥√

μD
(
∂ i

hu
)∥
∥2

0 �
√
ED for i = 1, 2. (4.39)

Proof The derivation of Lemma 4.4 is very similar to the one of Lemma 4.1. Multiplying
(4.2) by ∂ i

hu, and integrating the resulting identity over �, we have

1
2

d
dt

∫

�

ρ
∣
∣∂ i

hu
∣
∣2 dy = –

∫

�

∂ i
h
(∇q – divD(μu + κρη)

) · ∂ i
hu dy +

∫

�

∂ i
hN · ∂ i

hu dy

+ 2
∫

�

ρa∂ i
h(u2e1 – u1e2) · ∂ i

hu dy. (4.40)

Noting that

2
∫

�

ρa∂ i
h(u2e1 – u1e2) · ∂ i

hu dy = 0,

following the argument of (4.7), we have

1
2

d
dt

(∫

�

ρ
∣
∣∂ i

hu
∣
∣2 dy – Ẽ

(
∂ i

hη
)
)

+
1
2
∥
∥√

μD
(
∂ i

hu
)∥
∥2

0 := I10 + I11, (4.41)

where we have defined that

I10 :=
∫

�

N · ∂ i
hu dy +

∫

�

∂ i
hM · ∂ i

hu dyh, (4.42)

I11 :=
∫

�

∂ i
hq div ∂ i

hu dy. (4.43)
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Following the argument of (4.8) and (4.9), we have

I10 �
√
ED. (4.44)

By (3.2)2, one further gets

I11 = –
∫

�

∂ i
hq∂ i

h divÃ u dy � ‖∇q‖1‖divÃ u‖2 �
√
ED. (4.45)

Finally, we put the result (4.44) and (4.45) into (4.41), and get (4.39). This completes the
proof of Lemma 4.4. �

Lemma 4.5 We have

d
dt

(
∥
∥√

ρ
(
u(t), ut

)∥
∥2

0 – Ẽ(u) – Ẽ(η) –
∫

�

∂lq∂tAkluk dy –
∫

�

�q�Ate3 · u dyh

)

+ c
∥
∥(u, ut)

∥
∥2

1 �
√
ED. (4.46)

Proof Since �η� = 0, one has

�Ae3 � = 0. (4.47)

Recalling the definition of n in (1.11) and the second jump condition in (1.9)4, we get

�
SA(q, u,∇η + I)Ae3

�
=

�
SA(q, u,∇η + I)

�
Ae3 = g�ρ�η3Ae3 on �. (4.48)

Hence, multiplying (1.9)2 by u in L2 and using (1.19), the jump condition (4.48), and the
relation

2
∫

�

ρa(u1e2 – u2e1) · u dy = 0,

we have

1
2

d
dt

(‖√ρu‖2
0 – Ẽ(η)

)
+

1
2
∥
∥√

μDA(u)
∥
∥2

0

= –
∫

�

κρ
(∇η∇ηT : ∇AuT + D(η) : ∇ÃuT)

dy + g�ρ�

∫

�

η3Ãe3 · u dyh =: K1. (4.49)

It is easy to estimate that

K1 � ‖η‖2
3‖A‖2‖u‖1 + ‖η‖3‖Ã‖2‖u‖1 + ‖η‖2‖Ã‖1‖u‖1 �

√
ED. (4.50)

Inserting the above estimate into (4.49) yields that

1
2

d
dt

(‖√ρu‖2
0 – Ẽ(η)

)
+

1
2
∥
∥√

μDA(u)
∥
∥2

0 �
√
ED. (4.51)
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Next we turn to estimate ut . Differentiating (1.9)2–(1.9)4 and the jump condition (4.48),
we use (1.20) to deduce that

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ρutt + divA V + 2∂t(ρa(u1e2 – u2e1))
= – divAt SA(q, u,∇η + I) – μdivADAt (u) in �,

divA ut = –∂l(∂tAkluk) in �,
�V – gρu3I �Ae3 = �gρη3I – SA(q, u,∇η + I)�Ate3 + �μDAt (u)�Ae3 on �,
ut = 0, ηt = 0 on �+

–,

(4.52)

where we have defined that

V := SA(qt , ut , 0) – κρ
(
D(u) + ∇u∇ηT + ∇η∇uT)

. (4.53)

Multiplying (4.52)1 by ut in L2 and exploiting (4.52)2–(4.52)4, we have

1
2

d
dt

(‖√ρut‖2
0 – Ẽ(u)

)
+

1
2
∥
∥√

μDA(ut)
∥
∥2

0

= –
∫

�

qt∂l(∂tAkluk) dy –
∫

�

(
κρ

(∇u∇ηT + ∇η∇uT)
: ∇AuT

t + κρD(u) : ∇ÃuT
t
)

dy

–
∫

�

(
divAt SA(q, u,∇η + I) + μdivADAt (u)

) · ut dy

+
∫

�

(�
gρη3I – DA(q, u,∇η + I)

�
Ate3 +

�
μDAt (u)

�
Ae3 + gρu3Ãe3

) · ut dyh

+ 2
∫

�

ρa∂t(u2e1 – u1e2) · ut dy

=:
6∑

i=2

Ki. (4.54)

We can estimate the integrals K3–K6 as follows:

K3 �
∥
∥∇u∇ηT + ∇η∇uT∥

∥
0

∥
∥∇AuT

t
∥
∥

0 +
∥
∥D(u)

∥
∥

0

∥
∥∇ÃuT

t
∥
∥

0 �
√
ED, (4.55)

K4 � ‖ut‖0
∥
∥divAt SA(q, u,∇η + I)

∥
∥

0 + ‖ut‖0
∥
∥divADAt (u)

∥
∥

0

� ‖ut‖0‖At‖2
(‖∇q‖0 +

∥
∥DA(u)

∥
∥

1 +
∥
∥D(η)

∥
∥

1 +
∥
∥∇η∇ηT∥

∥
1

)

+ ‖ut‖0‖A‖2‖At‖2‖u‖2 �
√
ED, (4.56)

K5 � |ut|0
(∣
∣

�
gρη3I – SA(0, u,∇η + I)

�
Ate3

+
�
μDAt (u)

�
Ae3 + g�ρ�u3Ãe3

∣
∣
0 +

∣
∣�q�At

∣
∣
0

)

� ‖ut‖1
(‖η3At‖1 +

∥
∥SA(0, u,∇η + I)At

∥
∥

1

+
∥
∥DAt (u)A

∥
∥

1 + ‖u3Ã‖1 +
∣
∣�q�

∣
∣ 1

2
‖At‖W 1,4(T)

)

� ‖ut‖1
(‖At‖1

(‖η3‖2 + ‖A‖2‖u‖3 + ‖η‖3 + ‖η‖2
3
)

+ ‖Ã‖2‖u‖1 +
∣
∣�q�

∣
∣ 1

2
‖At‖2

)

�
√
ED, (4.57)
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K6 = 2
∫

�

ρa∂t(u2e1 – u1e2) · ut dy = 0. (4.58)

By (4.47), one has

�Ate3 � = 0.

In order to estimate K2, we use partial integrations and get

K2 =
∫

�

∂lqt∂tAkluk dy +
∫

�

�qt �Ate3 · u dyh

=
d
dt

(∫

�

∂lq∂tAkluk dy +
∫

�

�q�Ate3 · u dyh

)

+ K7, (4.59)

where we have defined that

K7 := –
(∫

�

∂lq∂t(∂tAkluk) dy +
∫

�

�q�Ate3 · ut dyh

)

–
∫

�

�q�Att · u dyh

=: K8 + K9. (4.60)

Exploiting (3.21) for Att , we have

K8 � ‖∇q‖0
(‖ut‖1‖At‖1 + ‖Att‖0‖u‖2

)
+ ‖At‖2‖ut‖1

∣
∣�q�

∣
∣
0 �

√
ED. (4.61)

Since

Atte3 = e1 × ∂2ut + ∂1ut × e2 + ∂1ut × ∂2η + 2∂1u × ∂2u + ∂1η × ∂2ut ,

one can exploit (3.14) and (3.12) to derive that

K9 � |ut|0
(‖u‖2

(∣
∣�∂1q�

∣
∣
0 +

∣
∣�∂2q�

∣
∣
0

)
+ ‖u‖3

∣
∣�q�

∣
∣
0

)(
1 + ‖η‖3

)

+ ‖u‖2
∥
∥ut(yh, 0)

∥
∥

L4(T)

∥
∥∂1∂2η(yh, 0)

∥
∥

L4(T)

∣
∣�q�

∣
∣
0

+ ‖u‖2‖u‖3|∂2u|0
∣
∣�q�

∣
∣
0

�
√
ED. (4.62)

Exploiting (4.55)–(4.62), we can derive from (4.54) that

1
2

d
dt

(

‖√ρut‖2
0 – Ẽ(u) –

∫

�

∂lq∂tAkluk dy –
∫

�

�q�Ate3 · u dyh

)

+
1
2
∥
∥√

μDA(ut)
∥
∥2

0 �
√
ED. (4.63)

Finally, adding (4.63) to (4.51) and exploiting (3.26), we get (4.46). �
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Next, we use the stratified steady Stokes regularity theory to estimate (u, q). Problem (3.2)
can be rewritten as the following standard form of the stratified steady Stokes problem:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

–μ�u – κρ�η + ∇q = G in �,
div u = – divÃ u in �,
�u� = 0, �(qI – μD(u))e3 � = K on �,
u = 0 on �+

–,

(4.64)

where

K := g�ρ�η3e3 +
�
κρD(η)e3

�
+ M.

Next, we obtain the following regularity result for problem (4.64).

Lemma 4.6 Let δ be sufficiently small, we have

‖u‖2
2 + ‖∇q‖2

0 +
∣
∣�q�

∣
∣2

1
2
� ‖η‖2

3 +
∥
∥(u, ut)

∥
∥2

0, (4.65)

‖u‖2
3 + ‖∇q‖2

1 +
∣
∣�q�

∣
∣2

3
2
� ‖η‖2

3 +
∥
∥(u, ut)

∥
∥2

1. (4.66)

Proof Applying the classical regularity of stratified Stokes problem in [37, Theorem 3.1]
to (4.64), we obtain that, for k = 2 and k = 3,

‖u‖k + ‖∇q‖k–2 +
∣
∣�q�

∣
∣
k– 3

2

� ‖G‖k–2 + ‖divÃ u‖k–1 + |K|k– 3
2

� ‖η‖k +
∥
∥(u, ut)

∥
∥

k–2 + ‖N ‖k–2 + ‖H‖k–1 + |M|k– 3
2

+ ‖η‖3‖u‖k , (4.67)

where we have exploited (3.23), (3.10), and (3.15) to estimate the second inequality in
(4.67).

Since

‖H‖1 � ‖divη‖1 + ‖divÃ ‖1 � ‖η‖2
3 + ‖η‖3‖u‖2, (4.68)

then, making use of (4.68), (3.33), and (3.28), for sufficiently small δ, we derive from (4.67)
with k = 2 that

‖u‖2 + ‖∇q‖0 +
∣
∣�q�

∣
∣ 1

2
�

∥
∥(u, ut)

∥
∥

0 + ‖η‖3
(
1 +

∣
∣�q�

∣
∣ 1

2
+ ‖∇q‖0

)
, (4.69)

which immediately implies (4.65).
Similarly, exploiting the estimates (3.32) and (3.27), for sufficiently small δ, we also get

from (4.67) with k = 3 that

‖u‖3 + ‖∇q‖1 +
∣
∣�q�

∣
∣ 3

2
�

∥
∥(u, ut)

∥
∥

1 + ‖η‖3
(
1 + ‖u‖3 +

∣
∣�q�

∣
∣ 3

2
+ ‖∇q‖1

)
, (4.70)

which implies (4.66). �

Next we establish an estimate for ut(0).
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Lemma 4.7 Let δ be sufficiently small, we have

∥
∥ut(0)

∥
∥� ‖η0‖3 + ‖u0‖2. (4.71)

Proof We denote w := AT u as in [2], then

div w = 0, w|�+– = 0, �∂tw3 � = 0, (4.72)

‖wt‖0 � ‖ut‖0 + ‖u‖2
2. (4.73)

Now, multiplying (3.2)1 by wt in L2 and exploiting condition (4.72), we get

∫

�

ρ|ut|2 dy =
∫

�

�q�∂tw3 dyh

+
∫

�

(
divD(μu + κρη) + 2ρa(u1e2 – u2e1) + N

) · wt dy

–
∫

�

ρut · ((ÃT ut
)

+ AT
t u

)
dy

=: K10 + K11 + K12. (4.74)

Exploiting (4.73), (3.33), (3.28), and (3.16), we have

K10 �
∣
∣�q�

∣
∣ 1

2
|∂tw3|– 1

2
�

∣
∣�q�

∣
∣ 1

2
‖wt‖0 �

∣
∣�q�

∣
∣ 1

2

(‖ut‖0 + ‖u‖2
)

�
∣
∣
(�(

D(μu + κρη) + gρη3
)
e3

�
+ M

)∣
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, (4.75)

K11 �
(∥
∥(u,η)

∥
∥

2 + ‖N ‖0
)‖wt‖0 �

(∥
∥(u,η)

∥
∥

2 + ‖η‖3‖∇q‖0
)‖wt‖0

�
(∥
∥(u,η)

∥
∥

2 + ‖η‖3‖∇q‖0
)(‖ut‖0 + ‖u‖2

2
)
, (4.76)

K12 � ‖Ã‖2‖ut‖2
0 + ‖u‖2‖At‖0‖ut‖0 � ‖η‖3‖ut‖2

0 + ‖u‖2
2‖ut‖0. (4.77)

Therefore, making use of (4.75), (4.77), (4.65), the smallness condition (3.1), and Young’s
inequality, we deduce that

‖ut‖2
0 � ‖u‖2

2 + ‖η‖2
3, (4.78)

which yields (4.71). Furthermore, by (4.65) and (3.1), we deduce that

E ≤ c2
e
(‖u‖2

2 + ‖η‖2
3
) ≤ c2

eδ
2, (4.79)

where ce depends on the domain and other known physical parameters. �

5 Exponential stability
We are in the position to deduce (2.7). By Lemmas 4.1–4.5, (3.26), (4.27), and Young’s
inequality, there exist positive constants c1–c4 such that

c1
∥
∥∂ i

hη
∥
∥2

1 ≤ –Ẽ
(
∂ i

hη
)

+ ‖η‖3
3, (5.1)
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d
dt
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∂ i
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∥∂ i

hu
∥
∥2

1 +
√
ED

)
, (5.2)

d
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κρ

μ
η

∥
∥
∥
∥

2

3
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d
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√
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Thus, we can derive from the above four inequalities (5.2)–(5.5) that

d
dt

Ẽ(t) + D̃(t) ≤ c2(1 + c5 + c6 + c7)
√
ED, (5.6)

where we have defined that
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(
∂ i

hη
)
)

+ c7

(
∥
∥√

ρ
(
u(t), ut

)∥
∥2
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(5.7)

and

D̃(t) := –
c5

2
Ẽ
(
∂ i

hη
)

– c2

2∑
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∥
∥∂ i

hη
∥
∥2
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∥
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1. (5.8)

By (4.66) and (4.27), there exist constants c̃5–c̃7 and c8 such that

c8D(t) ≤ D̃(t)

for any c5 > c̃5, c6 > c̃6, and c7 > c̃7. Thus, by (4.79), for any δ ≤ c8/2cec2(1 + c5 + c6 + c7), we
have

d
dt

Ẽ(t) +
c8

2
D(t) ≤ 0. (5.9)

Noting that

∣
∣
∣
∣

∫

�

∂lq∂tAkluk dy +
∫

�

�q�Ate3 · u dyh

∣
∣
∣
∣ � ‖u‖2

2
(‖∇q‖0 +

∣
∣�q�

∣
∣
0

)
,
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we utilize (4.65), (4.29), (4.27), (3.8), and the Cauchy–Schwarz inequality to see that there
exist sufficiently large c6 and sufficiently small c7 such that

E(t) � Ẽ(t) (5.10)

for any sufficiently small δ. Obviously, Ẽ �D. Thus, by (5.9), we can deduce that

d
dt

Ẽ + cẼ(t) ≤ 0,

from which, together with (5.10), we have

E(t) � Ẽ(0)e–ct , (5.11)

where we have defined that

Ẽ(0) := ‖η0‖2
3 + ‖u0‖2

2 +
∥
∥ut(0)

∥
∥2

0.

On the other hand, by (4.71) we obtain

Ẽ(0) � ‖u0‖2
2 + ‖η0‖2

3,

which, together with (5.11), yields

E(t) �
(‖u0‖2

2 + ‖η0‖2
3
)
e–ct . (5.12)

Consequently, we get Theorem 2.1 from the above a priori stability estimate (5.12) and
the following local well-posedness of the transformed SRVRT problem.

Proposition 5.1 Let (u0,η0) satisfy assumptions (1)–(4) in Theorem 2.1 and δ be suffi-
ciently small, then the transformed SRVRT problem (1.9) possesses a unique global strong
solution (u,η) ∈ C0([0, T), H2 × H3) with an associated perturbation pressure q for some
T > 0. Moreover, (u,η, q) enjoys the following estimate:

sup
0≤t≤T

E(t) +
∫ T

0
D(τ ) dτ < ∞. (5.13)

Proof Xu et al. [39] have established the local and global well-posedness results of the one-
layer viscoelastic fluid model with upper free boundary. Exploiting the regularity theory
for the stratified viscous flows in [38], we can easily extend the well-posedness results in
[39] to the transformed SRVRT problem by a standard iteration method, and thus obtain
Proposition 5.1. �

6 Conclusion
We investigate the stability of RT problem of the stratified incompressible viscoelastic
fluids under the rotation and the gravity in a horizontal periodic domain, in which the
rotation axis is parallel to the direction of gravity, the two fluids are immiscible, and the
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heavier fluid lies on the lighter one. We establish a stability condition for the RT problem.
Moreover, we prove that, under the stability condition, the RT problem enjoys a unique
solution which exponentially decays with respect to time. In addition, we note that the sta-
bility condition is independent of rotation angular velocity and the rotation has no desta-
bilizing effect. However, we can observe that the rotation has no stabilizing effect from
the experiment of Baldwin et al. Hence we will try to prove mathematically the stabilizing
effect of the rotation in the future.
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