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Abstract
This paper is devoted to studying a nonlocal parabolic equation with logarithmic
nonlinearity u log |u| – ffl� u log |u|dx in a bounded domain, subject to homogeneous
Neumann boundary value condition. By using the logarithmic Sobolev inequality and
energy estimate methods, we get the results under appropriate conditions on
blow-up and non-extinction of the solutions, which extend some recent results.
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1 Introduction
In this paper, we consider the Neumann problem to the following parabolic equation:

⎧
⎪⎪⎨

⎪⎪⎩

ut – �u = u log |u| –
ffl

�
u log |u|dx, x ∈ �, t > 0,

∂u
∂n = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �,

(1.1)

where � ⊂ Rn is a bounded domain with smooth boundary,
ffl

�
u0 dx = 1

|�|
´

�
u0 dx = 0

with u0 �≡ 0. It is easy to check that the solution u of (1.1) is L1-conservative and hence

ˆ

�

u dx =
ˆ

�

u0 dx = 0. (1.2)

In fact, problem (1.1) has been studied by many other authors in a more general form:

⎧
⎪⎪⎨

⎪⎪⎩

ut – �u = f (u) –
ffl

�
f (u) dx, x ∈ �, t > 0,

∂u
∂n = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �.

(1.3)

Here, � is a bounded smooth domain in Rn (n ≥ 1) with |�| denoting its Lebesgue mea-
sure, n is the outer normal vector of ∂�, and the function f (u) is usually taken to be a
power of u. Problem (1.3) is also interesting in its own right, due to the fact that the com-
parison principle does not always hold for it. So it is often necessary to introduce some
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new techniques. The negative solutions of (1.3) with f (u) = |u|p are studied in [1]. When
f (u) = u|u|p and

´
�

u dx > 0 are studied in [2], the non-global existence result is discussed
by using a convexity argument and under the energy condition

E(u0) =
ˆ

�

[
1
2
|∇u0|2 –

1
p + 1

|u0|p+1
]

dx ≤ –C.

When
´

�
u dx = 0, their conclusion can be found in [3, 4].

Further, the nonlocal p-Laplace equation

⎧
⎪⎪⎨

⎪⎪⎩

ut – div(|∇u|p–2∇u) = uq –
ffl

�
uq dx, x ∈ �, t > 0,

∂u
∂n = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �,

(1.4)

is given in [5, 6], where a critical blow-up solution is determined by q and the sign of the
initial energy. In particular, the conditions under which the changing sign solutions vanish
in finite time are obtained. At the same time, a thin-film has also received much attention,
and it reads as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ut + uxxxx = |u|p–1u –
ffl

�
up–1u dx, x ∈ �, t > 0,

ux = uxxx = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0(x), x ∈ �.

(1.5)

We can find it in [7, 8], where the threshold results of global existence and non-existence
for the sign-changing weak solutions are given by the potential well method. Further, the
conditions under which the global solutions become extinct in finite time are obtained
and the asymptotic behavior of non-extinct solutions is studied.

To our knowledge, there have been few works concerned with the blow-up and extinc-
tion for the nonlocal parabolic equation with logarithmic nonlinearity. It is a remarkable
fact that a nonlocal parabolic equation with logarithmic nonlinearity does not admit the
usual maximum principle and the comparison principle. Because of this main difficulty,
some most effective methods, such as the method of upper and lower solutions, are not
valid here anymore. Inspired by the ideas in [9–18], the threshold results for the global
existence and blow-up of the weak solutions are given by the potential well method, the
classical Galerkin method, and the logarithmic Sobolev inequality. Further we discuss the
non-extinction properties and the asymptotic behavior of the global solutions.

On the other hand, to handle logarithmic nonlinear term, we need the following loga-
rithmic Sobolev inequality, which was introduced by [10, 19, 20].

Proposition 1.1 ([10, 19, 20]) Let u be any function in H1(Rn) and a > 0 be any number.
Then

2
ˆ

Rn

∣
∣u(x)

∣
∣2

log

( |u(x)|
‖u‖L2(Rn)

)

dx + n(1 + log a)‖u‖2
L2(Rn) ≤ a2

π

ˆ

Rn

∣
∣∇u(x)

∣
∣2 dx. (1.6)
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For u ∈ H1
0 (�), we can define u(x) = 0 for x ∈ Rn \ �. Then u ∈ H1(Rn), that is to say, for a

general domain �, we have the following logarithmic Sobolev inequality:

2
ˆ

�

∣
∣u(x)

∣
∣2

log

( |u(x)|
‖u‖L2(�)

)

dx + n(1 + log a)‖u‖2
L2(�) ≤ a2

π

ˆ

�

∣
∣∇u(x)

∣
∣2 dx, (1.7)

where u is any function in H1(�), a > 0 is any number.

To state our main results, we need the following definitions.

Definition 1.1 (Weak solution) A function u(x, t) is called a weak solution of (1.1), if u ∈
L∞(0, T ; H2(�)), ut ∈ L2(0, T ; L2(�)), and satisfies (1.1) in the distribution sense, i.e.,

(ut ,ϕ)2 + (∇u,ϕ)2 =
(
u log |u|,ϕ)

2 –
( 

�

u log |u|,ϕ
)

2
(1.8)

for any ϕ ∈ H1
0 (�), t ∈ (0, T), where u(0, x) = u0(x) ∈ H1

0 (�), and (·, ·)2 means the inner
product (·, ·)L2(�).

Definition 1.2 (Finite time blow-up) Let u(x, t) be a weak solution of (1.1). We call u(x, t)
blow-up in finite time if the maximal existence time T is finite and

lim
t→T–

∥
∥u(·, t)

∥
∥

L2(�) = +∞.

Definition 1.3 (Blow-up at +∞) Let u(x, t) be a weak solution of (1.1). We call u(x, t)
blow-up at +∞ if the maximal existence time T = +∞ and

lim
t→+∞

∥
∥u(·, t)

∥
∥

L2(�) = +∞.

For convenience, we introduce some notations here. Denote by ‖ · ‖p the Lp(�) norm
for 1 ≤ p ≤ ∞ and define

J(u) =
1
2
‖∇u‖2

2 –
1
2

ˆ

�

u2 log |u|dx +
1
4

ˆ

�

u2 dx,

I(u) = ‖∇u‖2
2 –

ˆ

�

u2 log |u|dx.
(1.9)

Then it is obvious that

J(u) =
1
2

I(u) +
1
4
‖u‖2

2,

� =
{

u ∈ H2
0 (�); I(u) = 0,‖u‖2

2 �= 0
}

,

d = inf
u∈�

J(u),

M =
1
4

(2π )
n
2 en.

(1.10)

From [10], we know d ≥ M.

W =
{

u ∈ H1
0 ; I(u) > 0, J(u) < d

} ∪ {0}, V =
{

u ∈ H1
0 ; I(u) < 0, J(u) < d

}
,
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and for δ > 0, we define

Iδ(u) = δ‖∇u‖2
2 –

ˆ

�

u2 log |u|dx,

Nδ =
{

u ∈ H2
0 (�); Iδ(u) = 0,‖u‖2

2 �= 0
}

,

dδ = inf
u∈Nδ

J(u),

Wδ =
{

u ∈ H1
0 ; Iδ(u) > 0, J(u) < d(δ)

} ∪ {0},
Vδ =

{
u ∈ H1

0 ; Iδ(u) < 0, J(u) < d(δ)
}

.

(1.11)

The local existence of the weak solutions can be obtained via the standard parabolic
theory. It is easy to obtain the following equality:

ˆ t

0
‖uτ‖2

2 dτ = J(u0) – J(u), 0 < t < T . (1.12)

Theorem 1.1 If u0 ∈ H1
0 , 0 < J(u0) < M, and I(u0) > 0. Then problem (1.1) has a unique

global weak solution, which does not blow up in finite time. Moreover,

‖u‖2
2 ≤ 2eet

log
1
2
‖u0‖2

2.

Theorem 1.2 Assume J(u0) < 0, then the solution u(x, t) of problem (1.1) is blow-up at +∞.
Moreover, if ‖u0‖2

2 ≤ –2J(u0), the lower bound for blow-up rate can be estimated by

‖u‖2
2 ≥ 2‖u0‖2

2, (1.13)

which is independent of t.

Theorem 1.3 Assume 0 < J(u0) < M, then the solution u(x, t) of problem (1.1) is non-extinct
in finite time; moreover, ‖u‖2

2 can be estimated by

‖u‖2
2 ≥ ‖u0‖2

2e–bt , b = n(1 + log
√

2π ). (1.14)

‖·, ·‖2 means ‖·, ·‖L2(�).

Remark 1.1 For a nonlocal parabolic equation, [5–8, 21] get the results under appropriate
conditions on blow-up in finite time. However, if f (u) is the logarithmic nonlinear term
u log |u| in (1.3), then Theorem 1.2 tells us that the weak solution is blow-up at +∞.

Our paper is organized as follows. In Sect. 2, we establish new lemmas relative to the
logarithmic nonlinear term. Next, in Sect. 3, we prove Theorem 1.1 (global existence and
decay estimate). Finally, we give the proof of Theorems 1.2 (blow-up at +∞ and the lower
bound for blow-up rate) and 1.3 (non-extinction and estimate).

2 Preliminaries
In this section, we briefly collect some important properties of the functions and sets de-
fined in the Introduction.
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Lemma 2.1 ([9]) Suppose that θ > 0, α > 0, β > 0 and h(t) is a nonnegative and absolutely
continuous function satisfying h′(t) + αhθ (t) ≥ β , then for 0 < t < ∞, it holds

h(t) ≥ min

{

h(0),
(

β

α

) 1
θ
}

.

Lemma 2.2 If 0 < J(u0) < E1 = 1
4 eb, where b = n(1 + log

√
2π ), then there exists a positive

constant α2 > α1 such that

‖u‖2 ≥ α2. (2.1)

Proof Using the logarithmic Sobolev inequality in Proposition 1.1, for any a > 0, we have

J(u) =
1
2
‖∇u‖2

2 –
1
2

ˆ

�

u2
(

log
|u|

‖u‖2
+ log‖u‖2

)

dx +
1
4
‖u‖2

2,

≥
(

1
2

–
a2

4π

)

‖∇u‖2
2 +

1
4

n(1 + log a)‖u‖2
2 –

1
2

log‖u‖2‖u‖2
2 +

1
4
‖u‖2

2. (2.2)

Let a =
√

2π in (2.2), we have

J(u) ≥
(

1
4

n(1 + log a) –
1
2

log‖u‖2 +
1
4

)

‖u‖2
2. (2.3)

Denote α = ‖u‖2, b = n(1 + log
√

2π ), we have

h(α) =
(

b
4

–
logα

2
+

1
4

)

α2. (2.4)

Let

h′(α1) = 0, E1 = h(α1).

Furthermore, we get h(α) is increasing in (0,α1) and decreasing in (α1,∞). Since J(u0) < E1,
there exists a positive constant α2 > α1 such that J(u0) = h(α2). Let α0 = ‖u0‖2, from (2.3)
and (2.4), we have

h(α0) ≤ J(u0).

Since α0,α2 ≥ α1, we get α0 ≥ α2, so (2.1) holds for t = 0.
To prove (2.1) for t > 0, we assume the contrary that ‖u(·, t)‖2 < α2 for some t0 > 0. By

the continuity of ‖u(·, t)‖2 and α1 < α2, we may choose t0 such that ‖u(·, t0)‖2 > α1, then it
follows from (2.3)

J(u0) = h(α2) < h
(∥
∥u(·, t0)

∥
∥

2

) ≤ J(u)(t0),

which contradicts the fact that J(u) is nonincreasing in t by (1.12), so (2.1) is true. �
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Lemma 2.3 Let H(u) = E1 – J(u), J(u0) < E1, then H(u) satisfies the following estimates:

0 < H(u0) ≤ H(u).

Proof It is obvious that H(u) is nondecreasing in t, by (1.12), then it follows from J(u0) < E1

that

H(u) ≥ H(u0) = E1 – J(u0) > 0. �

Remark 2.1 From Lemma 2.4 in [10], M can be obtained by the definition of d, but in this
paper, E1 = h(α1), α1 = e b

2 , so we can get from (2.4)

E1 =
1
4

eb = M.

3 Proofs of Theorem 1.1

Proof of Theorem 1.1 We choose wj(x) to be the orthogonal basis of H1
0 and construct the

following approximate solution um(x, t) of problem (1.1):

um(x, t) =
m∑

j=1

gi(t)wj(x), for m = 1, 2, . . . ,

which satisfies

(umt , ws)2 + (∇um,∇ws)2 =
(
um log |um|, ws

)

2 –
( 

�

um log |um|, ws

)

2
(3.1)

um(x, 0) =
m∑

j=1

ajwj(x) → u0 (3.2)

and (·, ·)2 means the inner product (·, ·)L2(�).
Next we need some a priori estimates on the approximate solutions um, multiplying by

gs(t) and summing for s, for sufficiently large m. From (1.11), we obtain

ˆ t

0
‖umτ‖2

2 dτ + J
(
um(t)

)
= J

(
um(0)

)
< M ≤ d, 0 ≤ t < ∞. (3.3)

From the proof of Theorem 1.1 in [10], we have

‖um‖2
2 < 4M,

‖∇um‖2
2 < CM,

ˆ

�

(
um log |um|)2 dx ≤ e–2|�| +

(
n – 2

2

)2

S2∗‖∇um‖2∗
2 ≤ C′M,

where S is the best constant of the Sobolev embedding H1
0 (�) ↪→ L 2n

n–2 (�).
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Denote → (w∗) as the weakly star convergence. Therefore, we obtain a subsequence of
um, which is still denoted by itself, our sending m → ∞,

um → u
(
w∗) in L∞(

0,∞; H1
0 (�)

)
in � × [0, +∞),

umt → ut
(
w∗) in L2(0,∞; L2(�)

)
,

um log |um| → u log |u|(w∗) in L∞(
0,∞; L2(�)

)
,

 

�

um log |um| →
 

�

u log |u|(w∗) in L∞(
0,∞; L2(�)

)
.

Hence, we have

(ut , ws)2 + (∇u,∇ws)2 =
(
u log |u|, ws

)

2 –
( 

�

u log |u|, ws

)

2
. (3.4)

Next, we prove the uniqueness of the weak solution. Suppose that problem (1.1) admits
two weak solutions u1 and u2, set w = u1 – u2, and w solves

⎧
⎪⎪⎨

⎪⎪⎩

wt – �w = f (u1) – f (u2), (x, t) ∈ � × (0.T),
∂w
∂n = 0, (x, t) ∈ � × (0.T),

w(x, 0) = 0, x ∈ �,

(3.5)

where f (u) = u log |u| –
ffl

�
u log |u|. Multiplying both sides of the first equation of (3.5) by

w and integrating the result over � × (0, t), we have

ˆ t

0

ˆ

�

(
wtw + |∇w|2)dx ds

=
ˆ t

0

ˆ

�

(
u1 log |u1| – u2 log |u2|

)
w dx ds

–
ˆ t

0

ˆ

�

( 

�

u1 log |u1| – u2 log |u2|
)

w dx ds

=
ˆ t

0

ˆ

�

(
u1 log |u1| – u2 log |u2|

)
w dx ds

≤ C
ˆ t

0

ˆ

�

w2 dx ds,

where C is a positive constant.
Noticing that w(x, 0) = 0, we have

ˆ

�

w2(x, t) dx ≤ C
ˆ t

0

ˆ

�

w2(x, t) dx dt.

Using Gronwall’s inequality, we get that

ˆ

�

w2(x, t) dx = 0.

Thus w = 0 a.e. in � × (0, T).
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We define M(t) = 1
2‖u‖2

2, then

M′(t) = (ut , u)2 =
(

(
u log |u|, u

)

2 –
( 

�

u log |u|dx, u
)

2
+ ‖∇u‖2

2

)

= –I(u). (3.6)

By using (1.9) and Proposition 1.1, we know

I(u) ≥
(

n(2 + log(2π )
4

– log‖u‖2
2

)

‖u‖2
2, (3.7)

where a =
√

2π .
From (3.6) and (3.7)

M(t) log M(t) – M′(t) ≥
(

n(2 + log(2π )
4

– log‖u‖2
2

)

‖u‖2
2 ≥ 0,

we have

(
log M(t)

)′ ≤ log M(t).

This means

M(t) ≤ eet
log

1
2
‖u0‖2

2,

then

‖u‖2
2 ≤ 2eet

log
1
2
‖u0‖2

2 for all t ≥ 0,

which implies that u(x, t) does not blow up in finite time. �

4 Proofs of Theorems 1.2 and 1.3

Proof of Theorem 1.2 By the definition of J(u), J(u0) < 0 and (1.12), M(t) satisfies

M′(t) =
ˆ

�

u · ut dx

=
ˆ

�

u
(

�u + u log |u| –
 

�

u log |u|
)

dx

=
ˆ

�

(
–|∇u|2 + u2 log |u|)dx

≥ –2J(u)

≥ 2
ˆ t

0
‖uτ‖2

2 dτ . (4.1)

And by the definition of weak solution, we know that u ∈ L∞(0, T ; H2(�)). For any t0 > 0,
we claim that

ˆ t0

0
‖uτ‖2

2 dτ > 0. (4.2)
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Otherwise, there exists t0 > 0 such that
´ t0

0 ‖uτ‖2
2 dτ = 0, and hence ut = 0 for a.e. (x, t) ∈

� × (0, t0). Then it follows from (4.1) that

–|∇u|2 + u2 log |u| = 0

for a.e. t ∈ (0, t0), and then we get from (1.9)

J(u) =
ˆ

�

1
4

u2 dx.

Combining it with J(u) ≤ J(u0) ≤ 0, we obtain ‖u‖2 = 0 for all t ∈ [0, t0], which contradicts
the definition of u. Then (4.2) follows.

Fix t0 > 0 and let δ =
´ t

0 ‖uτ‖2
2 dτ , then we know that δ is a positive constant. Integrating

(4.1) over (t0, t), we obtain

M(t) ≥ M(t0) +
ˆ t

t0

ˆ s

0
‖uτ‖2

2 dτ ds ≥ δ(t – t0). (4.3)

Hence,

lim
t→∞ H ′(t) = lim

t→∞ M(t) = ∞. (4.4)

And from (4.1), we know

M′(t) =
ˆ

�

u · ut dx

=
ˆ

�

u
(

�u + u log |u| –
 

�

u log |u|
)

dx

=
ˆ

�

(
–|∇u|2 + u2 log |u|)dx

= –2J(u) +
1
2
‖u‖2

2

≥ –
1
2
‖u‖2

2 – 2J(u0). (4.5)

By using Lemma 2.1, J(u0) < 0, and ‖u0‖2
2 ≤ –2J(u0), we have

M(t) ≥ min
{‖u0‖2

2, –2J(u0)
}

≥ ‖u0‖2
2,

which means (1.13) is true. �

Proof of Theorem 1.3 We define β = α2
α1

> 1, M(t) = 1
2‖u‖2

2. Then, by the definitions of J(u),
M(t), and Lemma 2.3, we have

M′(t) =
ˆ

�

u · ut dx

=
ˆ

�

u
(

�u + u log |u| –
 

�

u log |u|
)

dx
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=
ˆ

�

(
–|∇u|2 + u2 log |u|)dx

= –2J(u) +
1
2

ˆ

�

u2 dx

= –2E1 + H(u) +
1
2

ˆ

�

u2 dx. (4.6)

By using (2.1) and (2.2) in Lemma 2.2, we get

E1 =
(

1
4

b –
1
2

log
α2

β
+

1
4

)
α2

2
β2

≤
(

1
4

b +
1
4

)
α2

2
β2

≤
(

1
4

b +
1
4

)

‖u‖2
2. (4.7)

Then it follows from (4.6), (4.7), and Lemma 2.3 that

M′(t) ≥ –2E1 +
1
2
‖u‖2

2

≥ –
1
2

b‖u‖2
2

≥ –bM(t), (4.8)

which means (1.14) is true. �
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