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Abstract
Under the necessary compatibility condition and some mild regularity assumptions
on the interior and the boundary data, we prove the existence, uniqueness, and
stability of solution in [Lm+1(�)]d × (W1,m+1

m (�)∩ L20(�)) for a generalized
Darcy–Forchheimer model, governing a non-Darcy flows in porous media with
dimension d = 2, 3 andm ∈ (1, 2].

Keywords: Porous media; Darcy–Forchheimer; Monotone-type; Existence; Stability

1 Introduction
The applications of nonlinear differential equations are seen in many fields (see [1–4]).
In the field of fluid dynamics, the nonlinear correction to Darcy’s law has been an active
area of research for many years. Theoretical, experimental, and numerical analyses [5–7]
have been performed to ascertain the exact form and magnitude of the nonlinearity effect.
However, until now, no single correction seems to be acceptable by all (see [7]). Non-Darcy
effects are prevalent in fluid transport through porous media, especially for high velocity
flows [8, 9]. Worthy of note includes Darcy–Forchheimer which serves as a mathematical
model for many high velocity flows in porous media, most especially for gas reservoirs
and hydrodynamic flows [10–12]. The generalized nonlinear Darcy–Forchheimer equa-
tion takes the form

G(ρ, u) + ∇p = f in �. (1)

In (1), p is the pressure, u and ρ are the velocity and density of the fluid, respectively,
f is a vector function, usually the gradient of the depth function. Different forms of (1)
have been considered by several researchers, see, for example, [10–15]. Forchheimer in
his work [5] established three empirical nonlinear formulas: –∇p = αv + β|v|v, –∇p =
αv + β|v|v + γ |v|2v, and –∇p = αv + β|v|m–1v, m ∈ (1, 2), to account for the inadequacies
of Darcy law with α, β , and γ empirical constants deduced from experimental data. The
model of interest in this article is the following generalized flow law:

μ

ρ
K–1u +

β

ρ
|u|m–1u + ∇p = f in �, m ∈ (1, 2], (2)
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where � is an open bounded domain of Rd (d = 2 or 3) with a Lipschitz boundary �,
u : � −→ R

d and p : � −→ R denote the unknown velocity vector and scalar pressure
field, respectively, and f is a given function. The permeability tensor is assumed to be
uniformly positive definite and bounded, while the parameters μ, ρ , and β are assumed
to be constants. We denote by | · | the Euclidean norm such that |u|m–1 = (u · u) m–1

2 . For
m = 2, Equation (2) reduces to the classical Darcy–Forchheimer law [5, 16, 17].

We solve (2) subject to the following conditions:

div u = b in � and u · n = g on �. (3)

In (3), b and g are the interior and boundary data, respectively, satisfying the compatibility
condition

∫
�

b(x) dx =
∫

�

g(σ ) dσ . (4)

Equation (2)–(4) is a reliable model for describing a single-phase strong inertia flow [18,
19] in simple and complex porous media.

In this article, we establish the well-posedness of (2)–(4). Our technique of proof is sim-
ilar to the one in [20] with some necessary modifications due to the nature of the nonlinear
term. We now state our main result, which will be proved by a combination of classical
arguments for saddle point problems [21, 22] and monotone nonlinear elliptic problems
[23, 24].

Theorem 1.1 Provided b ∈ L
d(m+1)

d+(m+1) (�) and g ∈ L
(d–1)(m+1)

d (�) satisfy (4), Problem (2)–(4)
has a unique solution (u, p), with u ∈ [Lm+1(�)]d and p ∈ W 1, m+1

m (�) ∩ L2
0(�).

The remainder of the article is organized as follows: Some preliminaries are presented in
Sect. 2. The variational formulation will be given in Sect. 3. We prove the existence and
uniqueness of solution in Sect. 4, while the stability is established in Sect. 5.

2 Preliminaries
This section is devoted to recalling some notations, definitions, and some classical results.
Let � be a measurable subset of Rd ,

Lp(�) =
{

u : � −→ R is measurable and
∫

�

|u|p dx < ∞, 1 ≤ p < ∞
}

.

The Lp norm of a function f is given by

‖u‖Lp(�) =
(∫

�

|u|p
) 1

p
.

For a given domain � and for any k ∈ N, let ‖ · ‖W k,p(�) and | · |W k,p(�), 1 ≤ p < ∞, be the
norm and semi-norm, respectively, on the standard Sobolev space W k,p(�) (see [25]). For
a vector-valued function v = (v1, v2, . . . , vd) ∈ [W k,p(�)]d , the norm

‖v‖[W k,p(�)]d =

( d∑
i=1

‖vi‖p
W k,p(�)

) 1
p

. (5)
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Similarly, the semi-norm is given by

|v|[W k,p(�)]d =

( d∑
i=1

|vi|pW k,p(�)

) 1
p

. (6)

Note that ‖ · ‖[W k,p(�)]d reduces to ‖ · ‖[Lp(�)]d when k = 0.
The following inequalities will be useful in our calculations and can be found in [24, 25]:

(a + b)p ≤ 2p–1(ap + bp), ∀a, b ∈ [0,∞), p ∈ (1,∞), (7)

ab ≤ ap

p
+

bq

q
, a, b ∈ [0,∞),

1
p

+
1
q

= 1, p, q ∈ (0,∞). (8)

Lemma 2.1 ([26]) Let (X,‖ · ‖X) and (M,‖ · ‖M) be two reflexive Banach spaces. Let (X∗,
‖ · ‖X∗ ), (M∗,‖ · ‖M∗ ) be their corresponding duals. Let B: X −→ M∗ be a linear continuous
operator and B∗ : M −→ X∗ be the dual of B. Let V = ker(B) be a kernel of B. Denote by
V 0 ⊂ X the polar subspace of V , V 0 = {x∗ ∈ X∗|〈x∗, v〉 = 0,∀v ∈ X} and Ḃ : X/V −→ M∗ the
quotient operator associated with B. Then the following properties are equivalent:

(i) There exists a constant α > 0 such that

inf
q∈M\{0} sup

u∈X\{0}
〈Bu, q〉

‖q‖M‖u‖X
≥ α; (9)

(ii) B∗ is an isomorphism from M onto V 0 and

∥∥B∗q
∥∥

X∗ ≥ α‖q‖M, ∀q ∈ M; (10)

(iii) Ḃ is an isomorphism from X/V onto M∗ and

‖Ṁu̇‖M∗ ≥ α‖u̇‖X/V , ∀u̇ ∈ X/V . (11)

3 Variational formulation
We define the following spaces:

L2
0(�) =

{
v : v ∈ L2(�),

∫
�

v(x) dx = 0
}

,

X =
[
Lm+1(�)

]d,

M = W 1, m+1
m (�) ∩ L2

0(�).

The zero mean condition is required to guarantee the uniqueness of the pressure p. We
consider the following variational formulation:

For any f ∈ X∗, find a pair of functions (u, p) ∈ X × M such that

μ

ρ

∫
�

(
K–1u

) · ϕ dx +
β

ρ

∫
�

|u|m–1u · ϕ dx +
∫

�

∇p · ϕ dx =
∫

�

f · ϕ dx, (12)
∫

�

∇q · u dx = –
∫

�

bq dx +
∫

�

gq dσ , (13)

∀ϕ ∈ X, ∀q ∈ M, with b ∈ L
d(m+1)

d+(m+1) (�) and g ∈ L
(d–1)(m+1)

d (�) satisfying (4).
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Problems (12)–(13) and (2)–(4) are equivalent. To see this, we multiply equation (2) by
ϕ ∈ X and integrate over �. We then apply the conditions in equation (3) to the Green’s
formula (14):

∫
�

v · ∇q dx = –
∫

�

q div v dx + 〈q, v · n〉� , ∀q ∈ M,∀v ∈ H , (14)

with

H =
{

v ∈ [
Lm+1(�)

]d; div v ∈ L
d(m+1)

d+(m+1) (�)
}

.

Define the following operators:

A : X → X∗,
〈
A(u),ϕ

〉
X∗×X := a(u,ϕ), ∀ϕ ∈ X,

B : X → M∗, 〈Bu, q〉M∗×M := b(u, q), q ∈ M,

B∗ : M → X∗,
〈
B∗(p),ϕ

〉
X∗×X := b(ϕ, p), ϕ ∈ X.

With these operators, an equivalent form of (12)–(13) is as follows:
Given (f , g) ∈ X∗ × M∗, we want to find a pair (u, p) ∈ X × M such that

⎧⎨
⎩

a(u,ϕ) + b(ϕ, p) = 〈f ,ϕ〉X∗ ,X , ∀ϕ ∈ X,

b(u, q) = 〈g, q〉M∗×M, ∀q ∈ M.
(15)

Problem (15) can also be rewritten as

⎧⎨
⎩
A(u) + B∗(p) = f in X∗,

Bu = g in M∗,
(16)

where

A(u) =
μ

ρ
K–1u +

β

ρ
|u|m–1u, (17)

〈Bu, q〉 =
∫

�

∇q · u dx, (18)

〈
B∗(p), u

〉
=

∫
�

∇p · u dx, (19)

F(q) = 〈g, q〉M∗×M = –
∫

�

bq dx +
∫

�

gq dσ . (20)

In the sequel, Problems (15) and (16) are used interchangeably just for convenience.

Lemma 3.1 The following inf-sup condition holds:

inf
q∈M\{0} sup

u∈X\{0}
b(u, q)

‖q‖M‖u‖X
= 1. (21)
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Proof By representation of a dual norm,

‖v‖
[L

m+1
m (�)]d = sup

u∈[Lm+1(�)]d

∫
�

v · u dx
‖u‖[Lm+1(�)]d

, ∀v ∈ [
L

m+1
m (�)

]d. (22)

By setting v = ∇q, we get

‖∇q‖
[L

m+1
m (�)]d = sup

‖u‖[Lm+1(�)]d

∫
�

∇q · u dx
‖u‖[Lm+1(�)]d

, ∀q ∈ M. (23)

Since q belongs to the space of zero mean, we have the following:

‖∇q‖
[L

m+1
m (�)]d = ‖q‖M, ∀q ∈ M.

Equivalently,

inf
q∈M\{0}

‖∇q‖
[L

m+1
m (�)]d

‖q‖M
= 1. (24)

Now substituting (23) in (24) yields the required result. �

Proposition 3.1 For each b ∈ L
d(m+1)

d+(m+1) (�) and g ∈ L
(d–1)(m+1)

d (�) satisfying (4), there is
unique u	 ∈ [Lm+1(�)]d/V satisfying

∫
�

u	 · ∇q dx = –
∫

�

bq dx +
∫

�

gq dσ , ∀q ∈ M. (25)

Furthermore,

‖u	‖Lm+1/V ≤ C
(‖b‖

L
d(m+1)

d+(m+1) (�)
+ ‖g‖

L
(d–1)(m+1)

d (�)

)
, (26)

where C is a constant depending on � only.

Proof Denote

V := Ker B = {u ∈ X, Bu = 0}

=
{

u ∈ X, b(u, q) =
∫

�

∇q · u dx = 0,∀q ∈ M
}

. (27)

Equation (15)2 can be written as follows:

b(u, q) = F(q), ∀q ∈ M, (28)

where F(q) = –
∫
�

bq dx +
∫
�

gq dσ . Now let us estimate the right-hand side of (28).

∣∣F(q)
∣∣ =

∣∣∣∣–
∫

�

bq dx +
∫

�

gq dσ

∣∣∣∣
≤ ‖b‖

L
d(m+1)

d+(m+1) (�)
‖q‖

L
d(m+1)

m(d–1)–1 (�)
+ ‖g‖

L
(d–1)(m+1)

d (�)
‖q‖

L
(d–1)(m+1)
m(d–1)–1 (�)

. (29)
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This implies

∣∣F(q)
∣∣ ≤ (‖b‖

L
d(m+1)

d+(m+1) (�)
+ ‖g‖

L
(d–1)(m+1)

d (�)

)(‖q‖
L

d(m+1)
m(d–1)–1 (�)

+ ‖q‖
L

(d–1)(m+1)
m(d–1)–1 (�)

)
. (30)

By the trace theorem and Sobolev embeddings [25], we obtain

∣∣F(q)
∣∣

≤ (‖b‖
L

d(m+1)
d+(m+1) (�)

+ ‖g‖
L

(d–1)(m+1)
d (�)

)(
c1‖q‖W 1, m+1

m (�) + c2‖q‖
W 1, m+1

m (�)

)

≤ C
(‖b‖

L
d(m+1)

d+(m+1) (�)
+ ‖g‖

L
(d–1)(m+1)

d (�)

)‖q‖W 1, m+1
m (�). (31)

The map q �→ –
∫
�

bq dx +
∫
�

gq dσ is a bounded linear map, so it belongs to M∗. Therefore,
using the inf-sup condition in Lemma (3.1) and the equivalence statements in Lemma 2.1,
there is unique u	 ∈ [Lm+1(�)]d/V satisfying (25). Hence,

b(u	, q) ≤ C
(‖b‖

L
d(m+1)

d+(m+1) (�)
+ ‖g‖

L
(d–1)(m+1)

d (�)

)‖∇q‖
[L

m+1
m (�)]d . (32)

Applying Lemma 3.1 in (32), (26) is established. �

Based on Proposition 3.1, we split the solution u into u0 + u	, where u0 ∈ V and u	 ∈
[Lm+1(�)]d . An equivalence variational formulation of (12)–(13) is as follows: For any f ∈
X∗, find u0 ∈ V such that

∫
�

A(u0 + u	) · ϕ dx =
∫

�

f · ϕ dx, ∀ϕ ∈ V . (33)

Proposition 3.2 Problem (12)–(13) is equivalent to Problem (33).

Proof Suppose (u, p), with u ∈ X, p ∈ M, is a solution of (12)–(13). Then we write u =
u0 + u	, where u	 ∈ [Lm+1(�)]d/V solves (26). It follows that u0 satisfies (33).

Conversely, take u0 to be a solution of (33); then
∫

�

(
f – A(u0 + u	)

) · ϕ dx = 0, ∀ϕ ∈ V .

Equivalently, f – A(u0 + u	) ∈ V 0, where

V 0 =
{

v ∈ [
L

m+1
m (�)

]d;∀w ∈ V ,
∫

�

v · w dx = 0
}

= (Ker B)0.

It follows from the closed range theorem [27] that f – A(u0 + u	) ∈ Image(B∗).
Thanks to the inf-sup condition in Lemma 3.1 and the isomorphism in Lemma 2.1, there

exists unique p ∈ M such that

B∗p = f – A(u0 + u	).

Consequently,

∇p = f – A(u0 + u	). (34)
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Hence,

μ

ρ

∫
�

A(u0 + u	) · ϕ dx +
∫

�

∇p · ϕ dx =
∫

�

f · ϕ dx, ∀ϕ ∈ X.

Since u = u0 + u	, (12) is satisfied. Furthermore, since u0 ∈ V , we have

Bu = Bu0 + Bu	

= Bu	 = g. (35)

This implies that (13) is satisfied. �

In view of the equivalence in Proposition (3.2), Problem (33) will be the focus of our
analysis.

Lemma 3.2 For any pair (v, w) ∈R
n ×R

n,

∣∣|v|m–1v – |w|m–1w
∣∣ ≤ m2m–2[|v|m–1 + |w|m–1]|v – w|, m ≥ 1. (36)

Proof Let (v, w) ∈R
n ×R

n, ψ(v) := |v|m–1v,ψ(w) := |w|m–1w.
For n = 2, set

ψ(v) =

[
ψ1(v)
ψ2(v))

]
=

[
|v|m–1v1

|v|m–1v2

]
.

It follows that

ψ ′(v) =

[
∂ψ1(v)

∂v1
∂ψ1(v)

∂v2
∂ψ2(v)

∂v1
∂ψ2(v)

∂v2

]
,

ψ ′(v) =

[
(m – 1)|v|m–3v2

1 + |v|m–1 (m – 1)|v|m–3v1v2

(m – 1)|v|m–3v1v2 (m – 1)|v|m–3v2
2 + |v|m–1

]
.

The Jacobian matrix ψ ′(v) is 2 × 2 symmetric, so its norm ‖ψ ′(v)‖ is the larger eigenvalue
(spectral radius). The eigenvalues are computed by the following formula:

λ1,2 =
1
2
[
(a11 + a22) ±

√
4a12a21 + (a11 – a22)2

]
.

We have

√
4a12a21 + (a11 – a22)2 =

√
4(m – 1)2|v|2(m–3)v2

1v2
2 + (m – 1)2|v|2(m–3)

(
v2

1 – v2
2
)2

= (m – 1)|v|(m–3)
√

4v2
1v2

2 +
(
v2

1 – v2
2
)2

= (m – 1)|v|(m–3)
√(

v2
1 + v2

2
)2

= (m – 1)|v|(m–3)|v|2

= (m – 1)|v|m–1. (37)

Then λ1,2 = 1
2 [(m – 1)|v|m–1 + 2|v|m–1 ± (m – 1)|v|m–1].
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The larger eigenvalue is given by

λ1 =
1
2
[
(m – 1)|v|m–1 + 2|v|m–1 + (m – 1)|v|m–1] = m|v|m–1.

Therefore, the norm of the Jacobian matrix is given by ‖ψ ′(v)‖ = m|v|m–1.
Application of the mean value theorem for vector-valued functions [28] yields

∣∣ψ(v) – ψ(w)
∣∣ ≤ sup

0≤t≤1

∥∥ψ ′(w + t(v – w)
)∥∥|v – w|

≤ sup
0≤t≤1

m
∣∣w + t(v – w)

∣∣m–1|v – w|

≤ m sup
0≤t≤1

[∣∣w(1 – t)
∣∣ + t|v|]m–1|v – w|

≤ m
[|w| + |v|]m–1|v – w|.

So, in view of inequality (7), we obtain

∣∣ψ(v) – ψ(w)
∣∣ ≤ m2m–2[|v|m–1 + |w|m–1]|v – w|. (38)

�

4 Existence and uniqueness
To prove the existence and uniqueness of solution for (33), it suffices to demonstrate that
the map A defined in (17) satisfies the following properties in [Lm+1(�)]d : boundedness,
strict monotonicity, coercivity, and hemi-continuity [23, 24]. We let the least eigenvalue
of K be λs. Therefore,

K(x)u · u ≥ λs|u|2, for all u ∈R
d and for all x ∈ �. (39)

Lemma 4.1 The operator A : [Lm+1(�)]d → [L m+1
m (�)]d satisfies the following bounds:

∀v,∀w ∈ [Lm+1(�)]d ,

∥∥A(v)
∥∥

[L
m+1

m (�)]d ≤ μ

ρ

∥∥K–1∥∥‖v‖
[L

m+1
m (�)]d +

β

ρ
‖v‖m

[Lm+1(�)]d (40)

and

∣∣A(v) – A(w)
∣∣

≤
(

μ

ρ

∥∥K–1∥∥
L∞(�) +

β

ρ
m2m–2[|v|m–1 + |w|m–1])|v – w|, a.e. (41)

Proof Let u, v ∈ [Lm+1(�)]d . v ∈ [Lm+1(�)]d �⇒ A(v) ∈ L m+1
m (�). Therefore,

∣∣〈A(v), u
〉
[L

m+1
m (�)]d×[Lm+1(�)]d

∣∣

=
∣∣∣∣
∫

�

[
μ

ρ
K–1v +

β

ρ
|v|m–1v

]
u dx

∣∣∣∣
≤ μ

ρ

∥∥K–1∥∥
L∞(�)

∫
�

|uv|dx +
β

ρ

∫
�

|v|m|u|dx
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≤ μ

ρ

∥∥K–1∥∥
L∞(�)‖u‖[Lm+1(�)]d‖v‖

[L
m+1

m (�)]d

+
β

ρ
‖u‖[Lm+1(�)]d‖v‖m

[Lm+1(�)]d .

Hence,

∣∣〈A(v), u
〉
[L

m+1
m (�)]d×[Lm+1(�)]d

∣∣

≤
[

μ

ρ

∥∥K–1∥∥
L∞(�)‖v‖

[L
m+1

m (�)]d +
β

ρ
‖v‖m

[Lm+1(�)]d

]
‖u‖[Lm+1(�)]d .

Using dual norm representation (22) and the last line above, we deduce (40). The estimate
in (41) follows from (38). �

Lemma 4.2 The map u �→ A(u + u	) defined in (17) is strongly monotone, that is, for all
u, v ∈ [Lm+1(�)]d , we have

∫
�

(
A(u + u	) – A(v + v	)

) · (u – v) dx ≥ μ

ρ
λs‖u – v‖2

[Lm(�)]d . (42)

Proof Define F : [Lm+1(�)]d −→R by

F(v) =
μ

2ρ

∫
�

K–1v · v dx +
β

ρ(m + 1)

∫
�

|v|m+1 dx, ∀v ∈ [
Lm+1(�)

]d.

For all v, w ∈ [Lm+1(�)]d and h ∈R, we have

F(v + hw) – F(v)
h

=
μ

ρ

∫
�

(
K–1v

) · w dx +
hμ

2ρ

∫
�

K–1w · w dx

+
β

ρ(m + 1)

∫
�

(|v + hw|m+1 – |v|m+1)
h

dx.

Therefore,

lim
h→0

F(v + hw) – F(v)
h

=
μ

ρ

∫
�

K–1v · w dx

+
β

ρ(m + 1)
lim
h→0

∫
�

(|v + hw|m+1 – |v|m+1)
h

dx.

Thanks to the Lebesgue convergence theorem [29], we get

F ′(v) · w =
μ

ρ

∫
�

K–1v · w dx +
β

ρ(m + 1)

∫
�

lim
h→0

(|v + hw|m+1 – |v|m+1)
h

dx

=
μ

ρ

∫
�

K–1v · w dx +
β

ρ(m + 1)

∫
�

d
dh

|v + hw|m+1
∣∣∣
h=0

=
μ

ρ

∫
�

K–1v · w dx +
β

ρ(m + 1)

∫
�

d
dh

[
(v + hw) · (v + hw)

] m+1
2

∣∣∣
h=0

=
μ

ρ

∫
�

K–1v · w dx +
β

ρ(m + 1)

∫
�

m + 1
2

|v|m–1(v · w + v · w) dx.
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Hence,

F ′(v) · w =
μ

ρ

∫
�

K–1v · w dx +
β

ρ

∫
�

|v|m–1(v · w) dx. (43)

We have

F ′′(v) · (z, w) = lim
h→0

f ′(v + hz)w – f ′(v)w
h

=
μ

ρ

∫
�

K–1z · w dx +
β

ρ

∫
�

|v|m–1(z · w) dx

+
β

ρ

∫
�

lim
h→0

[ |v + hz|m–1(v · w) – |v|m–1

h

]
(v · w) dx

=
μ

ρ

∫
�

K–1z · w dx +
β

ρ

∫
�

|v|m–1(z · w) dx

+
∫

�

d
dh

|v + hz|m–1
∣∣∣
h=0

(v · w) dx

=
μ

ρ

∫
�

K–1z · w dx +
β

ρ

∫
�

|v|m–1(z · w) dx

+
∫

�

d
dh

[
(v + hz) · (v + hz)

] m–1
2

∣∣∣
h=0

(v · w) dx.

Consequently,

F ′′(v) · (z, w) =
μ

ρ

∫
�

K–1z · w dx +
β

ρ

∫
�

|v|m–1(z · w) dx

+
β

ρ

∫
�

m – 1
2

|v + hz|m–3[(v + hz) · z + (v + hz) · z
]∣∣∣

h=0
(v · w) dx.

It follows that

F ′′(v) · (z, w) =
μ

ρ

∫
�

K–1z · w dx +
β

ρ

∫
�

|v|m–1(z · w) dx

+
β

ρ
(m – 1)

∫
�

|v|m–3(v · z)(v · w) dx. (44)

Therefore,

F ′′(0) · (w, z) =
μ

ρ

∫
�

K–1z · w dx, ∀w,∀z ∈ [
Lm+1(�)

]d. (45)

Now we observe that F ′′ is positive definite and symmetric. Indeed,

F ′′(v) · (w, w) ≥ μ

ρ
λs‖w‖2

L2 , ∀v, w ∈ [
Lm+1(�)

]d. (46)

Let u, v be in [Lm+1(�)]d . Set û = u + u	 and v̂ = v + u	, where u	 is fixed in [Lm+1(�)]d .
Then

(
F ′(û) – F ′(v̂)

) · (û – v̂)
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= F ′(û) · (û – v̂) – F ′(v̂) · (û – v̂)

=
μ

ρ

∫
�

(
K–1û

) · (û – v̂) dx +
β

ρ

∫
�

|û|m–1(û · (û – v̂)
)

dx

–
[

μ

ρ

∫
�

(
K–1v̂

) · (û – v̂) dx +
β

ρ

∫
�

|v̂|m–1(v̂ · (û – v̂)
)

dx
]

=
μ

ρ

∫
�

(K–1(û – v̂) · (û – v̂) dx

+
β

ρ

∫
�

(|û|m–1û – |v̂|m–1v̂
) · (û – v̂) dx. (47)

That is,

(
F ′(û) – F ′(v̂)

) · (û – v̂) =
∫

�

(
A(û) – A(v̂)

) · (u – v) dx. (48)

Furthermore, by the mean value theorem, we have

(
F ′(û) – F ′(v̂)

) · (û – v̂) =
∫ 1

0
F ′′(v̂ + α(û – v̂)

) · (û – v̂, û – v̂) dα.

Therefore, (47) becomes

∫
�

(
A(û) – A(v̂)

) · (u – v) dx =
∫ 1

0
F ′′(v̂ + α(û – v̂)

) · (û – v̂, û – v̂) dα. (49)

Thanks to (46), equation (49) becomes

∫
�

(
A(û) – A(v̂)

) · (u – v) dx ≥
∫ 1

0

μ

ρ
λs‖û – v̂‖2

L2 dα ≥ μ

ρ
λs‖û – v̂‖2

[Lm(�)]d . (50)

Hence, we have (42) since û – v̂ = u – v. �

Lemma 4.3 The map u �→ A(u + u	) in (17) is coercive in [Lm+1(�)]d , for any u	 fixed in
[Lm+1(�)]d ,

lim‖u‖[Lm+1(�)]d→∞

(
1

‖u‖[Lm+1(�)]d

∫
�

A(u + u�) · u dx
)

= ∞. (51)

Proof Let u ∈ [Lm+1(�)]d be arbitrary chosen and assign û = u + u	. Then

∫
�

A(û) · u dx =
∫

�

A(û)û dx –
∫

�

A(û)u	 dx. (52)

Thanks to (43), we see that

F ′(û) · û =
μ

ρ

∫
�

K–1û · û dx +
β

ρ

∫
�

|û|m–1(û · û) dx

=
∫

�

(
μ

ρ
K–1û +

β

ρ
|u|m–1û

)
· û dx
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=
∫

�

A(û) · û dx.

With the last line above, (52) becomes
∫

�

A(û) · u dx = F ′(û) · û –
∫

�

A(û)u	 dx. (53)

We have

F ′(û) · û =
μ

ρ

∫
�

(
K–1û

) · û dx +
β

ρ

∫
�

|û|m–1(û · û) dx

=
μ

ρ

∫
�

(
K–1û

) · û dx +
β

ρ

∫
�

|û|m+1 dx.

This implies

F ′(û) · û ≥ μ

ρ
λs‖û‖2

L2 +
β

ρ
‖û‖m+1

[Lm+1(�)]d

≥ Cμ

ρ
λs‖û‖2

[Lm(�)]d +
β

ρ
‖û‖m+1

[Lm+1(�)]d , m ≤ 2. (54)

Now, we estimate the second term on the right-hand side of (53).
∫

�

A(û)u	 dx ≤ ∥∥A(û)
∥∥

[L
m+1

m (�)]d‖u	‖[Lm+1(�)]d

≤
(

μ

ρ

∥∥K–1∥∥
L∞(�)‖û‖

[L
m+1

m (�)]d +
β

ρ
‖û‖m

[Lm+1(�)]d

)
‖u	‖[Lm+1(�)]d

≤ μ

ρ

∥∥K–1∥∥
L∞(�)‖û‖

[L
m+1

m (�)]d‖u	‖[Lm+1(�)]d

+
β

ρ
‖û‖m

[Lm+1(�)]d‖u	‖[Lm+1(�)]d . (55)

Substituting (54) and (55) into (53), we get
∫

�

A(û) · u dx ≥ Cμ

ρ
λs‖û‖2

[Lm(�)]d +
β

ρ
‖û‖m+1

[Lm+1(�)]d

–
μ

ρ

∥∥K–1∥∥
L∞(�)‖û‖

[L
m+1

m (�)]d‖u	‖[Lm+1(�)]d

–
β

ρ
‖û‖m

[Lm+1(�)]d‖u	‖[Lm+1(�)]d . (56)

Hence,
∫

�

A(û) · u dx ≥ β

ρ
‖û‖m

[Lm+1(�)]d

(‖û‖[Lm+1(�)]d – ‖u	‖[Lm+1(�)]d
)

+
μ

ρ
Cλs‖û‖[Lm(�)]d

(
‖û‖[Lm(�)]d –

‖K–1‖L∞(�)‖u	‖[Lm+1(�)]d

Cλs

)
. (57)

If ‖u‖[Lm(�)]d −→ ∞, then

μ

ρ
Cλs‖û‖[Lm(�)]d

(
‖û‖[Lm(�)]d –

‖K–1‖L∞(�)‖u	‖[Lm+1(�)]d

Cλs

)
≥ 0.
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Therefore,
∫

�

A(û)u dx ≥ β

ρ
‖û‖[Lm+1(�)]d‖û‖m–1

[Lm+1(�)]d

(‖û‖[Lm+1(�)]d – ‖u	‖[Lm+1(�)]d
)
.

Recalling that

û = u + u	 �⇒ ‖û‖[Lm+1(�)]d ≥ ‖u‖[Lm+1(�)]d – ‖u	‖[Lm+1(�)]d .

As ‖u‖[Lm(�)]d −→ ∞, we obtain

‖u‖[Lm+1(�)]d – ‖u	‖[Lm+1(�)]d ≥ 1
2
‖u‖[Lm+1(�)]d ,

since ‖u‖[Lm+1(�)]d ≥ 2‖u	‖[Lm+1(�)]d .
Hence,

∫
�

A(û)u dx ≥ β

2ρ
‖u‖[Lm+1(�)]d‖û‖m–1

[Lm+1(�)]d

(‖û‖[Lm+1(�)]d – ‖u	‖[Lm+1(�)]d
)
.

It follows that

1
‖u‖[Lm+1(�)]d

∫
�

A(û)u dx ≥ ‖û‖m–1
[Lm+1(�)]d

(‖û‖[Lm+1(�)]d – ‖u	‖[Lm+1(�)]d
)
.

Letting ‖u‖[Lm+1(�)]d −→ ∞, the desired result (51) is achieved. �

Proposition 4.1 For u	 fixed in [Lm+1(�)]d , the map

θ �→
∫

�

A(u + u	 + θv) · w dx,

is continuous on R for all u, v, w ∈ [Lm+1(�)]d . In other words, A is hemi-continuous in
[Lm+1(�)]d .

Proof Let u and v in [Lm+1(�)]d be arbitrary functions and assign û = u + u	.
For any θ1, θ2 ∈R,

∫
�

A(û + θ1v) · v dx =
∫

�

(
μ

ρ
K–1(û + θ1v) +

β

ρ
|û + θ1v|m–1 · (û + θ1v)

)
· v dx

=
μ

ρ

∫
�

K–1(û + θ1v) · v dx +
β

ρ

∫
�

|û + θ1v|m–1(û + θ1v) · v dx.

Thanks to (43), the last line becomes

∫
�

A(û + θ1v) · v dx = F ′(û + θ1v) · v.

Similarly,

∫
�

A(û + θ2v) · v dx = F ′(û + θ2v) · v.
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Therefore,
∫

�

(
A(û + θ1v) – A(û + θ2v)

) · v dx =
(
F ′(û + θ1v) – F ′(û + θ2v)

) · v. (58)

Now, we define

H(θ ) = F ′(θ (û + θ1v) + (1 – θ )(û + θ2v)
)
, θ ∈ [0, 1].

By the mean value theorem [29],

H(1) – H(0) = H ′(α), α ∈ (0, 1). (59)

In fact,

H ′(α) = F ′′(α(û + θ1v) + (1 – α)(û + θ2v)
) · (θ1 – θ2)v

= F ′′(û + θ2v – α(θ2 – θ1)v
) · (θ1 – θ2)v. (60)

Therefore, (59) becomes

(
F ′(û + θ1v) – F ′(û + θ2v)

) · v = F ′′(û + θ2v – α(θ2 – θ1)v
) · (θ1 – θ2)v, α ∈ (0, 1). (61)

Using (61), it follows from (58) that

∫
�

(
A(û + θ1v) – A(û + θ2v)

) · v dx

= –(θ2 – θ1)
∫ 1

0
F ′′(û + θ2v – α(θ2 – θ1)v

) · (v, v) dα. (62)

In view of (44), the term on the RHS of (62) goes to zero as θ2 – θ1 goes to zero. Thus
Proposition (4.1) is proved. �

4.1 Proof of the main result (Theorem 1.1)
In view of Lemmas 4.1, 4.2, 4.3 and Proposition 4.1, the existence and uniqueness of u fol-
lows from the Minty–Browder theorem [23]. The inf-sup condition in Lemma 3.1 guar-
antees the existence and uniqueness of p [21, 26], so that the pair (u, p) solves Problem
(12)–(13).

5 Stability
In this section, we prove the stability of the solution in Theorem 1.1.

Theorem 5.1 For any lifting u	 in [Lm+1(�)]d satisfying (26), the pair of functions (u, p) in
Theorem 1.1 satisfies the following estimates:

‖u‖[Lm+1(�)]d ≤
(

‖u�‖m+1
[Lm+1(�)]d +

C(m + 1)
4

μ

β

‖K–1‖L∞(�)

λs
‖u�‖2

[Lm+1(�)]d

+
ρ(m + 1)

β
‖f‖

[L
m+1

m (�)]d‖u0‖[Lm+1(�)]d

) 1
m+1

, (63)
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where u	 satisfies the bound in (26) and

‖∇p‖
[L

m+1
m (�)]d ≤ μ

ρ

∥∥K–∥∥
L∞‖u‖

[L
m+1

m (�)]d +
β

ρ
‖u‖2

[Lm+1(�)]d + ‖f‖
[L

m+1
m (�)]d . (64)

Proof Setting ϕ = u0 in (33) gives

∫
�

A(u0 + u	) · u0 dx =
∫

�

f · u0 dx. (65)

Therefore,
∫

�

A(u) · u dx =
∫

�

A(u0 + u	) · u0 dx +
∫

�

A(u0 + u	) · u	 dx

=
∫

�

f · u0 dx +
∫

�

A(u0 + u	) · u	 dx. (66)

We estimate the LHS of (66) as follows:
∫

�

A(u) · u dx =
∫

�

μ

ρ
K–1u · u dx +

∫
�

β

ρ
|u|m–1u · u dx

≥ μλs

ρ
‖u‖2

[L2(�)]d +
β

ρ
‖u‖m+1

[Lm+1(�)]d . (67)

The RHS of (66) gives the following bound:

∫
�

f · u0 dx +
∫

�

A(u) · u	 dx ≤ ‖f‖
[L

m+1
m (�)]d‖u0‖[Lm+1(�)]d

+
∥∥A(u)

∥∥
[L

m+1
m (�)]d‖u	‖[Lm+1(�)]d .

In view of (40), we get

∫
�

f · u0 dx +
∫

�

A(u) · u	 dx ≤ ‖f‖
[L

m+1
m (�)]d‖u0‖[Lm+1(�)]d

+
μ

ρ

∥∥K–1∥∥
L∞(�)‖u‖

[L
m+1

m (�)]d‖u	‖[Lm+1(�)]d

+
β

ρ
‖u‖m

[Lm+1(�)]d‖u	‖[Lm+1(�)]d . (68)

Substituting (67) and (68) into (66) yields

μ

ρ
λs‖u‖2

L2 +
β

ρ
‖u‖m+1

[Lm+1(�)]d ≤ μ

ρ

∥∥K–1∥∥
L∞(�)‖u‖

[L
m+1

m (�)]d‖u	‖[Lm+1(�)]d

+
β

ρ
‖u‖m

[Lm+1(�)]d‖u	‖[Lm+1(�)]d

+ ‖f‖
[L

m+1
m (�)]d‖u0‖[Lm+1(�)]d . (69)

Then, for any ε > 0 and m > 1,

μ

ρ
λs‖u‖2

L2 +
β

ρ
‖u‖m+1

[Lm+1(�)]d
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≤ μ

2ρ

∥∥K–1∥∥
L∞(�)

(
ε‖u‖2

[L
m+1

m (�)]d
+

1
ε
‖u	‖2

[Lm+1(�)]d

)

+
β

ρ(m + 1)
(
m‖u‖m+1

[Lm+1(�)]d + ‖u	‖m+1
[Lm+1(�)]d

)

+ ‖f‖
[L

m+1
m (�)]d‖u0‖[Lm+1(�)]d . (70)

It follows that

μ

ρ
λs‖u‖2

[L2(�)]d +
β

ρ
‖u‖m+1

[Lm+1(�)]d

≤ μ

2ρ

∥∥K–1∥∥
L∞(�)

(
Cε‖u‖2

[L2(�)]d] +
1
ε
‖u	‖2

[Lm+1(�)]d

)

+
β

ρ(m + 1)
(
m‖u‖m+1

[Lm+1(�)]d + ‖u	‖m+1
[Lm+1(�)]d

)

+ ‖f‖
[L

m+1
m (�)]d‖u0‖[Lm+1(�)]d . (71)

We choose ε = 2λs
C‖K–1‖L∞(�)

and (71) becomes

β

ρ(m + 1)
‖u‖m+1

[Lm+1(�)]d

≤ β

(m + 1)
‖u	‖m+1

[Lm+1(�)]d +
C
4

μ

ρ

‖K–1‖2
L∞(�)

λs
‖u	‖2

[Lm+1(�)]d

+ ‖f‖
[L

m+1
m (�)]d‖u0‖[Lm+1(�)]d . (72)

Hence (63) is established.
In view of (34), we have

‖∇p‖
[L

m+1
m (�)]d ≤ ∥∥A(u0 + u	)

∥∥
[L

m+1
m (�)]d + ‖f‖

[L
m+1

m (�)]d . (73)

Now, applying (40) to the RHS of (73), we get

‖∇p‖
[L

m+1
m (�)]d

≤ μ

ρ

∥∥K–1∥∥
L∞(�)‖u0 + u	‖[L

m+1
m (�)]d +

β

ρ
‖u0 + u	‖m

[Lm+1(�)]d + ‖f‖
[L

m+1
m (�)]d .

Thus (64) is established, since u = u0 + u	. �

6 Conclusion
The well-posedness of Darcy–Forchheimer model was first established in [20]. In this pa-
per, we extended the well-posedness results to the generalized Darcy–Forchheimer model
in a two- or three-dimensional porous domain using classical arguments for nonlinear
monotone saddle point problems.
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