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Abstract
In this paper we consider the second order nonlinear elliptic system in divergence
and variational form

⎧
⎪⎨

⎪⎩

div[Fξ (|x|, |∇u|2)∇u] = [cof∇u]∇P in U,

det∇u = 1 in U,

u = ϕ on ∂U,

where F = F(r,ξ ) is a sufficiently regular Lagrangian satisfying suitable structural
properties and P is an a priori unknown Lagrange multiplier. Most notably, for a finite
symmetric n-annulus, we prove the existence of an infinite family of monotone
twisting solutions to this system in all even dimensions by linking the system to a set
of nonlinear isotropic ODEs on the Lie group SO(n). We prove the existence of
multiple closed stationary loops in the geodesic form Q(r) = exp{f (r)H} with H ∈ so(n)
to these ODEs that remarkably serve as the twist loops associated with the desired
twisting solutions u to the above system. An analysis of curl-free vector fields
generated by symmetric matrix fields plays a pivotal role.

Keywords: Nonlinear elliptic systems; Incompressible twists; Geodesics on SO(n);
Multiple stationary loops; Curl-free vector fields; Weighted Dirichlet type Lagrangians;
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1 Introduction
Let U ⊂ R

n be a bounded domain with a sufficiently smooth boundary ∂U and consider
the variational energy integral

F[u, U] :=
∫

U
F
(
x, |∇u|2)dx, (1.1)

over the space of weakly differentiable incompressible Sobolev maps A p
ϕ (U) = {u ∈

W 1,p(U ,Rn) : det∇u = 1 a.e. in U and u ≡ ϕ on ∂U} where ϕ ∈ C 1(∂U) is a prescribed
boundary map and p ≥ 1 is fixed. Here F = F(r, ξ ) is taken a twice continuously differen-
tiable Lagrangian that is bounded from below and satisfies suitable convexity and growth
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conditions (see below for a formulation of the assumptions on F), ∇u denotes the gradi-
ent of u and |∇u|2 = tr{[∇u][∇u]t}. The Euler–Lagrange equation associated with F[u, U]
over A p

ϕ (U) is given by the second order nonlinear system

EL[u; F , U] :=

⎧
⎪⎪⎨

⎪⎪⎩

LF [u] = ∇P in U ,

det∇u = 1 in U ,

u ≡ ϕ on ∂U ,

(1.2)

where the differential operator LF has the explicit form

LF [u] := (∇u)t div
[
Fξ

(|x|, |∇u|2)∇u
]

= Fξξ

(
r, |∇u|2)(∇u)t∇u∇(|∇u|2)

+ Frξ
(
r, |∇u|2)(∇u)t∇uθ + Fξ

(
r, |∇u|2)(∇u)t�u. (1.3)

System (1.2) can be formally derived by invoking the Lagrange multiplier method and
considering the unconstrained energy (see, e.g., [6, 10, 20] for more)

G[u, U] :=
∫

U

{
F
(|x|, |∇u|2) – 2P(x)[det∇u – 1]

}
dx, (1.4)

where P is an a priori unknown Lagrange multiplier – the hydrostatic pressure – corre-
sponding to the pointwise incompressibility constraint det∇u = 1. For the sake of clar-
ity, note that by a [classical] solution we hereafter mean a pair (u,P) with u of class
C 2(U ,Rn) ∩ C (U ,Rn) and P of class C 1(U) ∩ C (U) such that (1.2) holds in a pointwise
sense in U .a Now, proceeding forward and arguing either formally and in a distributional
sense, or classically, upon assuming further differentiability on LF , it is seen from (1.2)–
(1.3) that curlLF [u] = curl∇P ≡ 0 in U , that is,

curlLF [u] = curl
{

Fξξ

(
r, |∇u|2)(∇u)t∇u∇(|∇u|2) + Frξ

(
r, |∇u|2)(∇u)t∇uθ

+ Fξ

(
r, |∇u|2)(∇u)t�u

} ≡ 0. (1.5)

Note, however, that this condition alone, unless U has a particular homology, does not
imply that LF [u] is a gradient field in U , here, ∇P . For more on the background formu-
lation and applications of system (1.2)–(1.3), in particular to function theory, mechanics,
and nonlinear elasticity, see [2, 3, 5, 10, 14, 19] and [1, 4, 7, 11, 12, 15–18] as well as [20–27,
30] and [9, 13, 29, 31, 32] for related results and further applications.

Throughout the paper we specialise to the geometric set up where U = X
n = X

n[a, b] :=
{x ∈R

n : a < |x| < b} is a finite symmetric annulus with b > a > 0, and ϕ ≡ x, i.e., the identity
map. In this context by a generalised twist (or twist for brevity) we understand a map
u ∈ C (Xn,Xn) that admits the representation

u : (r, θ ) �→ (
r, Q(r)θ

)
, r = |x|, θ = x|x|–1, x ∈ X

n. (1.6)

The curve Q ∈ C ([a, b], SO(n)) here is called the twist path associated with u. Moreover,
in order to ensure u ≡ ϕ on ∂U = ∂Xn, we set Q(a) = Q(b) = In. In this event the twist path



Morrison and Taheri Boundary Value Problems  (2018) 2018:130 Page 3 of 24

forms a closed curve in SO(n), based at In, called the twist loop that in turn represents an
element of the fundamental group π1(SO(n)) ∼= Z2 (n ≥ 3) and Z (n = 2). Our aim is to
establish the existence of an infinitude of twisting solutions to the nonlinear system (1.2)
by appropriately formulating the action of LF on sufficiently regular twists u as in (1.6)
and solving the resulting PDE. We note that in this setting (cf. Proposition 2.1) this action,
and subsequently the first equation in (1.2), is given by

LF [u] = Fξξ

(
In + rQtQ̇θ ⊗ θ + rθ ⊗ QtQ̇θ + r2|Q̇θ |2θ ⊗ θ

)

× (
2r|Q̇θ |2θ + r2∇|Q̇θ |2) + Frξ

(
θ + rQtQ̇θ + r2|Q̇θ |2θ)

+ Fξ

[
(n + 1)QtQ̇ + rQtQ̈ +

{
r(n + 1)|Q̇θ |2 + r2〈Q̇θ , Q̈θ〉}In

]
θ = ∇P . (1.7)

We take a close look at (1.5)–(1.7) and formulate the conditions on the twist path Q = Q(r)
that will then result in the vector field LF [u = rQθ ] being curl-free in X

n and in fact being
the gradient field ∇P .

In the course of establishing the existence of multiple twisting solutions u = rQ(r)θ to
system (1.2), we study three interrelated classes of ODEs for the twist path Q = Q(r) (with
a ≤ r ≤ b) that are closely linked to one another and formulated solely through the La-
grangian F . The first one is given by

∫

Sn–1

d
dr

{
rn+1Fξ

(
r, n + r2|Q̇θ |2)[Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]

}
dHn–1(θ ) = 0, (1.8)

which can be extracted both from the PDE LF [u] = ∇P in X
n or directly and more natu-

rally as the Euler–Lagrange equation associated with the restriction of F[u,Xn] to the class
of twists u in A p

ϕ (Xn) (cf. Proposition 2.3 and Proposition 2.4, respectively). Naturally, if u
is a twisting solution to (1.2), then its twist path Q should satisfy (1.8). By discarding the
spherical integral in (1.8), one obtains a strengthened version of this ODE, that is,

S [Q] :=
d
dr

{
rn+1Fξ

(
r, n + r2|Q̇θ |2)[Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]

}
= 0, a < r < b. (1.9)

Evidently every solution Q = Q(r) to (1.9) is also a solution to (1.8) but in general not
vice versa. Indeed it is a complete classification of solutions to (1.9) and their relations to
geodesics on the Lie group SO(n) on the one hand and to twisting solutions u of system
(1.2) on the other which will occupy us for parts of the paper. Finally the third ODE with
intimate links to (1.9) and the PDE LF [u] = ∇P is given by

M [Q] :=
1
rn

d
dr

[
rn+1Fξ

(
r, n + r2|Q̇θ |2)QtQ̇θ

]
= 0, a < r < b. (1.10)

The connections between these ODEs and their solutions to the nonlinear system (1.2)
and its twisting solutions will be discussed at length later on in the paper. In particular it
will been shown that all these ODEs have an infinite number of geodesic type solutions
in even dimensions in the form Q(r) = exp{H (r)H} for suitable H ∈ C 2[a, b] and skew-
symmetric matrix H. The completely integrable case F(r, ξ ) = h(r)ξ is of particular interest
and will be discussed in full detail in view of a complete and explicit representation of all
solutions.
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For the sake of future reference, we end by describing the assumptions on the La-
grangian. Here we assume F ∈ C 2([a, b] × R) and that there exist c1, c2 > 0 and c0 ∈ R

such that

∣
∣Fξ

(
r, ζ 2)ζ

∣
∣ ≤ c2|ζ |p–1, ∀a ≤ r ≤ b,∀ζ ∈R, (1.11)

c0 + c1|ζ |p ≤ F
(
r, ζ 2) ≤ c2|ζ |p, ∀a ≤ r ≤ b,∀ζ ∈ R, (1.12)

with 1 < p < ∞. As a result, F is well-defined, finite, and coercive on W 1,p(U ,Rn). As for
convexity, we further assume that Fξ > 0, Fξξ ≥ 0 on [a, b]×]0,∞[ and that the twice con-
tinuously differentiable function ζ �→ F(r, ζ 2) is uniformly convex in ζ for all a ≤ r ≤ b
and ζ ∈R.

2 Kinematics of generalised twists u = rQ(r)θ and a tensorisation of LF[u]
In this section we take a closer look at the ODEs listed in the previous section and the
relationships they bear to the nonlinear system (1.2) and its generalised twist solutions.
We first begin by deriving some basic identities needed later on.

Proposition 2.1 Let u = rQ(r)θ be a generalised twist with twist path Q ∈ C 1(]a, b[,
SO(n)) ∩ C ([a, b], SO(n)). Then the following hold:

(i) ∇u = Q + rQ̇θ ⊗ θ ,
(ii) |∇u|2 = n + r2|Q̇θ |2,

(iii) det∇u = det(Q + rQ̇θ ⊗ θ ) = 1.
If, in addition, Q ∈ C 2(]a, b[, SO(n)) ∩ C ([a, b], SO(n)), then we also have

(iv) �u = [(n + 1)Q̇ + rQ̈]θ .
As a consequence, the action of the second order differential operator LF on u can be de-
scribed as follows:

LF [u] = Fξξ

(
In + rQtQ̇θ ⊗ θ + rθ ⊗ QtQ̇θ + r2|Q̇θ |2θ ⊗ θ

)

× (
2r|Q̇θ |2θ + r2∇|Q̇θ |2) + Frξ

(
θ + rQtQ̇θ + r2|Q̇θ |2θ)

+ Fξ

[
(n + 1)QtQ̇ + rQtQ̈ +

{
r(n + 1)|Q̇θ |2 + r2〈Q̇θ , Q̈θ〉}In

]
θ . (2.1)

Here, we have set Fξ = Fξ (r, |∇u|2), Frξ = Frξ (r, |∇u|2) and Fξξ = Fξξ (r, |∇u|2).

Proof The first identity is obtained by a straightforward differentiation. To justify the in-
compressibility condition (iii), using (i) we have

det∇u = det(Q + rQ̇θ ⊗ θ ) = 1 + r
〈
QtQ̇θ , θ

〉
= 1, (2.2)

where the second equality uses the rank-one affine property of the determinant to write
det(In + ζ ⊗ ξ ) = 1 + 〈ζ , ξ 〉 for every pair of vectors ζ , ξ ∈ R

n and the third equality uses
the skew-symmetry of QtQ̇. To prove (ii), we calculate the Hilbert–Schmidt norm |∇u|2 =
tr{(∇u)(∇u)t} = tr{(Q + rQ̇θ ⊗ θ )(Qt + rθ ⊗ Q̇θ )} by writing

|∇u|2 = tr
{

(Q + rQ̇θ ⊗ θ )
(
Qt + rθ ⊗ Q̇θ

)}

= tr
{

In + rQθ ⊗ Q̇θ + rQ̇θ ⊗ Qθ + r2Q̇θ ⊗ Q̇θ
}
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= n + 2r〈Qθ , Q̇θ〉 + r2|Q̇θ |2

= n + r2|Q̇θ |2. (2.3)

Next (iv) follows by taking the divergence of ∇u as given by (i). Anticipating the final iden-
tity, we first recall that LF [u] = (∇u)t div[Fξ (|x|, |∇u|2)∇u]. Now a direct differentiation
gives

div
[
Fξ

(
r, |∇u|2)∇u

]
= Fξξ

(
r, |∇u|2)∇u∇(|∇u|2)

+ Frξ
(
r, |∇u|2)∇uθ + Fξ

(
r, |∇u|2)�u. (2.4)

Moreover, referring to the description of |∇u|2 in (ii) above,

∇(|∇u|2) = ∇([
n + r2|Q̇θ |2]) =

(
2r|Q̇θ |2θ + r2∇|Q̇θ |2).

Thus upon substitution using all the fragments above, we arrive at

LF [u] =
(
Qt + rθ ⊗ Q̇θ

){
Fξξ

(
r, |∇u|2)(Q + rQ̇θ ⊗ θ )

× (
2r|Q̇θ |2θ + r2∇|Q̇θ |2) + Frξ

(
r, |∇u|2)(Qθ + rQ̇θ )

+ Fξ

(
r, |∇u|2)[(n + 1)Q̇ + rQ̈

]
θ
}

. (2.5)

Factorising Q and multiplying through the term (∇u)t = (Qt + rθ ⊗ Q̇θ ) give the desired
conclusion. �

Theorem 2.1 Let u = rQ(r)θ be a generalised twist with twist path Q ∈ C 2(]a, b[, SO(n))∩
C ([a, b], SO(n)). Then

LF [u] ⊗ θ – θ ⊗ LF [u] =
1
rn Qt d

dr
{

rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]
}

Q

+ ∇Fξ ⊗ θ – θ ⊗ ∇Fξ , (2.6)

where LF [u] is as in (2.1) and for brevity Fξ = Fξ (r, n + r2|Q̇θ |2).

Proof For the sake of convenience, let us set A = QtQ̇. Then action (2.1) of the differential
operator LF on the twist u can be rewritten as follows:

LF [u] = ∇Fξ

(
r, n + r2|Aθ |2) + A (r, θ )θ

+
1
rn

d
dr

[
rn+1Fξ

(
r, n + r2|Aθ |2)A

]
θ

+ rFξ

(
r, n + r2|Aθ |2)A2θ . (2.7)

Here, the first term on the right-hand side in the above is given by

∇Fξ

(
r, n + r2|Aθ |2) = Frξ

(
r, n + r2|Aθ |2)θ

+ Fξξ

(
r, n + r2|Aθ |2)

[
d
dr

(
r2|Aθ |2)θ – 2rA2θ – 2r|Aθ |2θ

]

,
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while we have introduced the scalar-valued function A = A (r, θ ) to denote the coefficient
of the vector θ in the description of LF [u] which is specifically given by the collection of
terms

A (r, θ ) = r
{

Fξ

(
r, n + r2|Aθ |2)[(n + 1)|Aθ |2 + r〈Aθ , Ȧθ〉]

+ rFrξ
(
r, n + r2|Aθ |2)|Aθ |2

+ rFξξ

(
r, n + r2|Aθ |2)|Aθ |2 d

dr
(
r2|Aθ |2)

}

. (2.8)

Now, moving forward by using the formulation (2.7), it is seen upon tensorisation that we
have

LF [u] ⊗ θ – θ ⊗ LF [u] = ∇Fξ ⊗ θ – θ ⊗ ∇Fξ

+ r
(
Fξ A2θ ⊗ θ – θ ⊗ Fξ A2θ

)

+
1
rn

d
dr

{
rn+1Fξ [Aθ ⊗ θ – θ ⊗ Aθ ]

}
, (2.9)

where in deducing this identity use has been made of the pointwise relation

A (r, θ )θ ⊗ θ – θ ⊗ A (r, θ )θ = A (r, θ )[θ ⊗ θ – θ ⊗ θ ] = 0. (2.10)

Next referring to the last expression on the right-hand side in (2.9), upon momentarily
ignoring the factor 1/rn, we can write

d
dr

{
rn+1Fξ [Aθ ⊗ θ – θ ⊗ Aθ ]

}

=
d
dr

{
rn+1Fξ Qt[Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]Q

}

= Qt d
dr

{
rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]

}
Q

+ Q̇trn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]Q

+ Qtrn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]Q̇

= I + II + III. (2.11)

We can next simplify the sum of the second and third terms in (2.11) by writing

(II + III)
rn+1 = Q̇tFξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]Q

+ QtFξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]Q̇

= Fξ

{
Q̇tQ̇θ ⊗ θ – Q̇tQθ ⊗ QtQ̇θ + QtQ̇θ ⊗ Q̇tQθ – θ ⊗ Q̇tQ̇θ

}
, (2.12)

and subsequently invoking the orthogonality of Q and in particular the skew-symmetry
of Q̇tQ to set the sum of the middle two terms in (2.12) to zero. Therefore, by returning
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to (2.11) and taking advantage of the above, we have

d
dr

{
rn+1Fξ [Aθ ⊗ θ – θ ⊗ Aθ ]

}
= Qt d

dr
{

rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]
}

Q

+ rn+1Fξ

{
Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ

}
. (2.13)

Hence substituting all the above in (2.9) and noting that –A2 = AtA = Q̇tQ̇ (note the skew-
symmetry of A), we can write the desired tensor quantity as

LF [u] ⊗ θ – θ ⊗ LF [u] = ∇Fξ ⊗ θ – θ ⊗ ∇Fξ

– rFξ

{
Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ

}

+
1
rn Qt d

dr
{

rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]
}

Q

+ rFξ

{
Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ

}
, (2.14)

which after cancellations leads at once to the required conclusion. �

Proposition 2.2 Let u = rQ(r)θ be a generalised twist with twist path Q ∈ C 2(]a, b[,
SO(n)) ∩ C ([a, b], SO(n)). Then, for each a < r < b,

∫

Sn–1

(
LF [u] ⊗ θ – θ ⊗ LF [u]

)
dHn–1(θ )

=
1
rn Qt

{∫

Sn–1

d
dr

{
rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]

}
dHn–1(θ )

}

Q, (2.15)

where LF [u] is as in (2.1) and for the sake of brevity Fξ = Fξ (r, n + r2|Q̇θ |2).

Proof Fix a < r < b and denote the integral on the left-hand side in (2.15) by I = I (r).
Then, using the description of the integrand as given by (2.6), we can write

I (r) =
∫

Sn–1

(
LF [u] ⊗ θ – θ ⊗ LF [u]

)
dHn–1(θ )

=
∫

Sn–1

{
1
rn Qt d

dr
{

rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]
}

Q

+ ∇Fξ ⊗ θ – θ ⊗ ∇Fξ

}

dHn–1(θ )

=
∫

Sn–1

1
rn Qt d

dr
{

rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]
}

Q dHn–1(θ ), (2.16)

where in concluding the last line we have taken advantage of Lemma 2.1 below with P =
Fξ (|x|, |∇u|2). This is the required conclusion. �

Proposition 2.3 Let u = rQ(r)θ be a generalised twist in X
n with twist path Q ∈

C 2(]a, b[, SO(n)) ∩C ([a, b], SO(n)). Then, if LF [u] = ∇P in X
n, the twist path Q satisfies,

for all a < r < b,
∫

Sn–1

d
dr

{
rn+1Fξ

(
r, n + r2|Q̇θ |2)[Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]

}
dHn–1(θ ) = 0. (2.17)
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Proof From LF [u] = ∇P it follows upon integration over the sphere and use of Lemma 2.1
below that

I (r) =
∫

Sn–1

(
LF [u] ⊗ θ – θ ⊗ LF [u]

)
dHn–1(θ )

=
∫

Sn–1
[∇P ⊗ θ – θ ⊗ ∇P] dHn–1(θ ) = 0, a < r < b. (2.18)

Now a reference to (2.15) and noting the invertibility of Q give the desired conclusion.
The proof is thus complete. �

Lemma 2.1 Let P ∈ C 1(U) with U ⊂R
n an open neighbourhood of Sn–1. Then

∫

Sn–1
[∇P ⊗ θ – θ ⊗ ∇P] dHn–1(θ ) = 0. (2.19)

If U contains the closed unit ball B and P ∈ C 2(B), then the conclusion is easily seen to
follow by an application of the divergence theorem on B. Therefore one route to justifying
(2.19) is first to extend P to a neighbourhood ofB, e.g., by multiplying P by a suitable cut-
off function φ ∈ C ∞

c (Rn) satisfying φ ≡ 1 near ∂B, then mollifying the resulting extension
and finally arguing by using the divergence theorem and passing to the limit. A more direct
route, however, avoiding any extension and approximation is given below.

Proof Firstly, by restricting to the surface of the unit sphere and splitting the gradient into
tangential and normal parts in the usual way, we can write

∇P = (In – θ ⊗ θ )∇P + 〈∇P , θ〉θ = ∇TP + ∇NP . (2.20)

It is seen that ∇NP ⊗ θ – θ ⊗ ∇NP = 0, and so to establish (2.19) it suffices to justify the
integral identity

∫

Sn–1
[∇TP ⊗ θ – θ ⊗ ∇TP] dHn–1(θ ) = 0. (2.21)

Now by a direct differentiation it is evident that ∇T (Pθ ) = θ ⊗ ∇TP + P∇Tθ , and so
referring to (2.20), we can write

∇TP ⊗ θ – θ ⊗ ∇TP =
[∇T (Pθ ) – P∇Tθ

]t –
[∇T (Pθ ) – P∇Tθ

]

=
[∇T (Pθ )

]t –
[∇T (Pθ )

]
. (2.22)

Here, in deducing the second identity, we have taken into account the symmetry ∇Tθ =
[∇Tθ ]t = In – θ ⊗ θ . The conclusion now follows by integrating (2.22) and invoking the
divergence theorem on the sphere. �

Lemma 2.2 Let A ∈ C (R) and suppose that F ∈M
n×n is fixed. Then we have

∫

Sn–1
A
(|Fθ |2)[FtFθ ⊗ θ – θ ⊗ FtFθ

]
dHn–1(θ ) = 0. (2.23)
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Proof This follows by noting that for B taken as a primitive of A upon setting P(x) =
B(|Fx|2) we have ∇P = 2A(|Fx|2)FtFx. The conclusion now follows by applying
Lemma 2.1. �

Interestingly, the conclusion of Proposition 2.3 and ODE (2.17) can be given a different
interpretation and derivation by considering a restricted energy functional E[Q, a, b] =
F[rQ(r)θ ,Xn] written as

E[Q, a, b] =
∫ b

a
E(r, Q̇)rn–1 dr. (2.24)

Here, the integrand E = E(r, H) is given for a ≤ r ≤ b and n × n matrix H in turn (we are
extending the definition from skew-symmetric H to all matrices as this is needed in the
next proposition) by a spherical integral in the form

E(r, H) =
∫

Sn–1
F
(
r, n + r2|Hθ |2)rn–1 dHn–1(θ ). (2.25)

Then upon setting Bp = {Q ∈ W 1,p(a, b; SO(n)) : Q(a) = Q(b) = In} we can formulate the
following statement.

Proposition 2.4 ODE (2.17) is precisely the Euler–Lagrange equation associated with the
energy functional E over Bp.

Proof To see this fix Q and for ε ∈ R sufficiently small set Qε = Q + ε(F – Ft)Q with
F ∈ C ∞

0 (]a, b[,Mn×n). It can be seen that Qε , up to the first order in ε, takes values
in SO(n), that is, Qt

εQε = In + O(ε2) = QεQt
ε , and so the assertion follows by setting

dE[Qε , a, b]/dε|ε=0 = 0, namely,

d
dε

E[Qε , a, b]
∣
∣
∣
∣
ε=0

=
d

dε

∫ b

a
E(r, Q̇ε)rn–1 dr

∣
∣
∣
∣
ε=0

=
∫ b

a

∫

Sn–1
rn+1Fξ

(
r, n + r2|Q̇εθ |2) d

dε
|Q̇εθ |2 dr dHn–1(θ )

∣
∣
∣
∣
ε=0

.

Now it is easily seen that [d|Q̇εθ |2/dε]|ε=0 = 2〈Q̇θ , [(Ḟ– Ḟt)Q +(F–Ft)Q̇]θ〉, and so, writing
Fξ = Fξ (r, n + r2|Q̇θ |2) for short, the integrand can be written as

rn+1Fξ

[
d|Q̇εθ |2/dε

]|ε=0 =2rn+1Fξ

[〈
Q̇θ ⊗ Qθ , Ḟ – Ḟt〉 +

〈
Q̇θ ⊗ Q̇θ , F – Ft〉].

The last term is zero by the skew-symmetry of F – Ft , and so an integration by parts on
the remaining terms followed by an application of the fundamental lemma of the calculus
of variations now gives by virtue of the arbitrariness of F the desired conclusion. �

We close this section with a study of the relationships between ODEs (1.8)–(1.10). Recall
that here M = M [Q] = 1/rnd/dr[rn+1Fξ QtQ̇θ ] [cf. (1.10)].
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Theorem 2.2 Let Q ∈ C 2(]a, b[, SO(n))∩C ([a, b], SO(n)) be an arbitrary twist path. Then
we have

M [Q] ⊗ θ – θ ⊗ M [Q] =
1
rn Qt d

dr
{

rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]
}

Q

+ rFξ

{
Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ

}
. (2.26)

In particular, for a < r < b, we have
∫

Sn–1

(
M [Q] ⊗ θ – θ ⊗ M [Q]

)
dHn–1(θ )

=
1
rn Qt

{∫

Sn–1

d
dr

{
rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]

}
dHn–1(θ )

}

Q. (2.27)

Proof These follow at once by putting together the earlier results in the section. �

Let us finish off the section by discussing some particular consequences of Theo-
rem 2.1, Proposition 2.2 and Theorem 2.2 as appearing earlier. Here LF = LF [u] and
M = M [Q] are as before and u = rQ(r)θ is a generalised twist with Q ∈ C 2(]a, b[, SO(n))∩
C ([a, b], SO(n)).

• Differential operators relation LF [u] vs. M [Q]:

(
LF [u] – ∇Fξ

) ⊗ θ – θ ⊗ (
LF [u] – ∇Fξ

)

= M [Q] ⊗ θ – θ ⊗ M [Q] ⊗ θ – rFξ

[
Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ

]
. (2.28)

• Spherical integrals: For a < r < b,
∫

Sn–1

(
LF [u] ⊗ θ – θ ⊗ LF [u]

)
dHn–1(θ )

=
∫

Sn–1

[
M [Q] ⊗ θ – θ ⊗ M [Q]

]
dHn–1(θ )

=
1
rn

{

Qt
∫

Sn–1

d
dr

{
rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]

}
dHn–1(θ )

}

Q. (2.29)

• If either of LF [u] = ∇P , M [Q] = 0 or (1.8) [in particular the strengthened ODE
(1.9)] holds, then necessarily all the above integrals vanish.

3 Curl-free vector fields generated by symmetric matrix fields in X
n[a, b]

In this section we present some results on curl-free vector fields as needed later on in
relation to the PDE LF [u] = ∇P and its twisting solutions.

Proposition 3.1 Let A, B ∈ C 1(]a, b[,Mn×n) be symmetric matrix fields. Consider the vec-
tor field v ∈ C 1(Xn,Rn) defined by

v(x) = A (r, z)x + B(r, z)B(r)x, x ∈ X
n, (3.1)

where r = |x|, z = 〈A(|x|)x, x〉 and A ,B ∈ C 1(]a, b[×R,R). Then

curl v = F(r, z)x ⊗ x – x ⊗ F(r, z)x + 2Bz(r, z)[Bx ⊗ Ax – Ax ⊗ Bx], (3.2)
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where F(r, z) is the symmetric matrix field given by

F(r, z) = – 2Az(r, z)A +
1
r
{
B(r, z)Ḃ +

[
Br(r, z) + 〈Ȧx, x〉Bz(r, z)

]
B
}

. (3.3)

A quick remark on notation: here and throughout the proof the dot notation is for the
derivatives with respect to r of the matrix fields A and B. Moreover, Ar , Az denote the
derivatives of A = A (r, z) with respect to the first and second variables respectively, with
the same notation used for B.

Proof With v = (v1, . . . , vn) and 1 ≤ i < j ≤ n, we have [curl v]ij = vi,j – vj,i. Indeed

vi,j =
[
A (r, z)xi + B(r, z)Bilxl

]

,j

= Ar(r, z)θjxi + Az(r, z)
[〈Ȧx, x〉θj + 2Ajlxl

]
xi + A (r, z)δij

+ Br(r, z)θjBilxl + Bz(r, z)
[〈Ȧx, x〉θj + 2Ajlxl

]
Bilxl

+ B(r, z)Ḃilθjxl + B(r, z)Bij, (3.4)

where we are summing over 1 ≤ l ≤ n. A similar computation for vj,i gives

vj,i = Ar(r, z)θixj + Az(r, z)
[〈Ȧx, x〉θi + 2Ailxl

]
xj + A (r, z)δji

+ Br(r, z)θiBjlxl + Bz(r, z)
[〈Ȧx, x〉θi + 2Ailxl

]
Bjlxl

+ B(r, z)Ḃjlθixl + B(r, z)Bji. (3.5)

After making the appropriate cancellations, using the symmetry of B and writing in tensor
notation, we arrive at (3.2)–(3.3). �

Proposition 3.2 Let F be a fixed n × n matrix and put SF[θ ] := Fθ ⊗ θ – θ ⊗ Fθ . Then
SF[θ ] ≡ 0 for all θ ∈ S

n–1 iff F = fIn for some f ∈R.

Proof If we first take F = fIn, then SfIn [θ ] = f[θ ⊗ θ – θ ⊗ θ ] ≡ 0. Conversely, if SF[θ ] ≡
0, then taking θ ∈ {e1, . . . , en} – the standard basis of Rn – it is seen that F is diagonal.
Proceeding with F = diag(f1, . . . , fn), the condition SF[θ ] ≡ 0 is equivalent to θiθj(fi – fj) ≡ 0
for all 1 ≤ i, j ≤ n. As such f1 = · · · = fn =: f and the result follows. �

We now look at the consequences of Proposition 3.1 in certain contexts that will be
needed or used later on.

• First consider the vector field v = 〈A(|x|)x, x〉x + B(|x|)x corresponding to taking
A (r, z) = z hence Az(r, z) ≡ 1 and B(r, z) ≡ 1 giving Br ,Bz ≡ 0. Then
curl v = Fx ⊗ x – x ⊗ Fx with F(r, z) = F(r) = –2A + Ḃ/r, and so it follows from
Proposition 3.1 and Proposition 3.2 that v is curl-free in X

n iff
F(r) = –2A + Ḃ/r = σ (r)In for some σ ∈ C (]a, b[).

• Pick v as in the previous example and suppose A(|x|) = a(|x|)S, B(|x|) = b(|x|)S with a
and b radial functions and S a constant symmetric matrix. Then here
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F = F(r) = [–2a + ḃ/r]S, and so we have

curl v ≡ 0 in X
n ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

–2a + ḃ/r ≡ 0 on ]a, b[,

or

S = fIn, f ∈R.

(3.6)

• Now assume v = B(|x|)x. Then with A (r, z) ≡ 0, B(r, z) ≡ 1 it follows from
Proposition 3.1 that curl v ≡ 0 in X

n ⇐⇒ Ḃx ⊗ x – x ⊗ Ḃx = 0, which by Proposition 3.2
is true iff Ḃ = σ In with σ ∈ C (]a, b[). Integration then gives B = s(r)In + C with ṡ = σ

and C a constant symmetric matrix. If B(r) = b(r)S with b ∈ C 1(]a, b[) and S constant,
then curl v ≡ 0 in X

n iff either B is constant or S = fIn for some f ∈R in which case
B(r) = fb(r)In. In particular the conclusion above holds with s(r) = fb(r) and C = 0.

• Finally, consider the vector field v = f (r, |Hx|2)x + g(r, |Hx|2)H2x, where H is a
constant skew-symmetric matrix and f , g ∈ C 1(]a, b[×R,R). Then we are in the
setting of Proposition 3.1 with A (r, z) = f (r, z), B(r, z) = g(r, z), B = H2 and A = –B.
The symmetric vector field F(r, z) in (3.3) here reduces to F(r, z) = [2fz + gr/r]H2 as
Ȧ = Ḃ = 0, while in (3.2) we have Ax ⊗ Bx – Bx ⊗ Ax = 0. Therefore a further
application of Proposition 3.2 gives

curl v ≡ 0 in X
n ⇐⇒

⎧
⎪⎪⎨

⎪⎪⎩

2fz(r, z) + gr(r, z)/r ≡ 0 on ]a, b[,

or

H2 = fIn, f ∈R.

(3.7)

4 Explicit solutions for the weighted Dirichlet type Lagrangians F(r, ξ ) = h(r)ξ
In this section we take on the case F(r, ξ ) = h(r)ξ with h > 0 in C 1[a, b]. The Euler–
Lagrange equation for the restricted functional here takes the form (cf. Proposition 2.4)

d
dr

{

rn+1h(r)
∫

Sn–1
[Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ] dHn–1(θ )

}

= 0. (4.1)

Upon directly evaluating the spherical integral by invoking the divergence theorem on
the unit ball, it is seen that

∫

Sn–1
[Q̇θ ⊗ Qθ ]ij dHn–1(θ ) =

n∑

l,k=1

Q̇ilQjk

∫

Sn–1
θlθk dHn–1(θ ) =

n∑

l,k=1

ωnQ̇ilQjkδlk ,

where ωn is the volume of the unit ball B. This therefore by noting the skew-symmetry of
Q̇Qt and after suppressing a factor of 2ωn leads to the ODE

d
dr

{
rn+1h(r)Q̇Qt} = 0, a < r < b, (4.2)

which is exactly the counterpart of (1.10) for the choice of Lagrangian F here. [Note that
d/dr[rn+1Fξ Q̇Qt] = Qd/dr[rn+1Fξ QtQ̇]Qt by skew-symmetry and a direct differentiation.]
The next proposition characterises all solutions to this equation subject to the endpoint
conditions Q(a) = Q(b) = In.
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Proposition 4.1 The general solution Q = Q(r) to (4.2) subject to Q(a) = In has the form
Q(r) = exp{H (r)H} where H ∈ C 2[a, b] is given by the integral

H (r) =
H(r)
H(b)

, H(r) =
∫ r

a

ds
sn+1h(s)

, (4.3)

and H is an arbitrary skew-symmetric matrix. Additionally, Q(b) = In iff H has the form

H =

⎧
⎨

⎩

P diag(2m1πJ, . . . , 2mk–1πJ, 0)Pt , n = 2k – 1,

P diag(2m1πJ, . . . , 2mk–1J, 2mkπJ)Pt , n = 2k.
(4.4)

Here, m1, . . . , mk ∈ Z, P ∈ O(n) is arbitrary and J =
√

–I2 is the 2 × 2 skew-symmetric ro-
tation matrix in (4.5).

Proof Integrating (4.2) twice yields Q(r) = exp{H (r)H} with H being n × n skew-
symmetric and H = H (r) ∈ C 2[a, b] – the profile of Q – being as in (4.3). Now Q(a) = In

is immediately seen to be satisfied by virtue of H (a) = 0. For Q(b) = In, we first consider
the orthogonal diagonalisation of H. Here, depending on n being even or odd, we can write
H = P diag(c1J, . . . , ckJ)Pt when n = 2k and H = P diag(c1J, . . . , ck–1J, ck)Pt when n = 2k – 1
(with ck = 0 for n odd). Moreover, P ∈ O(n) and the 2 × 2 matrices J and R are given
respectively by

J = R[π/2] =

(
0 –1
1 0

)

, R[t] = exp{tJ} =

(
cos t – sin t
sin t cos t

)

. (4.5)

Note that the string of scalars c1, . . . , ck ⊂ R describe the spectrum of H. Specifically,
when n is even, ±icj with 1 ≤ j ≤ k, and when n is odd, ±icj, 0 with 1 ≤ j ≤ k – 1 are the
eigenvalues of H. Now Q(b) = In ⇐⇒ exp{H} = In since H (b) = 1. From this it follows at
once that cj = 2mjπ where mj ∈ Z for all 1 ≤ j ≤ k as described. �

Moving forward we now turn our attention to the counterpart of (1.9) (the stronger form
of (4.1) without the spherical integral) that has the formulation

d
dr

{
rn+1h(r)[Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]

}
= 0, a < r < b. (4.6)

By the reasoning given at the start of the section (see also below) solutions Q = Q(r)
to this with Q(a) = In must come from amongst those characterised in the first part of
Proposition 4.1. A full description of these is given below.

Proposition 4.2 For a twist path Q ∈ C 2(]a, b[, SO(n)) ∩ C ([a, b], SO(n)) with Q(a) = In,
the following assertions are equivalent:

(i) Q is a solution to (4.6).
(ii) Q solves (4.2) and Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ = 0.

In either case Q(r) = exp{H (r)H}, where H is as in (4.3) and H2 = –c2In.

Proof For the implication (i) �⇒ (ii), assume Q solves (4.6). Then integration over the
sphere gives (4.1) and hence (4.2). As seen earlier, solutions here subject to the endpoint
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condition Q(a) = In are given by Q(r) = exp{H (r)H} with H = H (r) as in (4.3) and H
skew-symmetric. Substituting this into (4.6) and noting Q̇ = Ḣ HQ and that Q and H
commute gives

0 =
d
dr

{
rn+1h(r)Ḣ (r)[HQθ ⊗ Qθ – Qθ ⊗ HQθ ]

}

=
d
dr

{
rn+1h(r)Ḣ

}
[HQθ ⊗ Qθ – Qθ ⊗ HQθ ]

+ rn+1h(r)Ḣ 2[H2Qθ ⊗ Qθ – Qθ ⊗ H2Qθ
]

⇐⇒ Q
[
H2θ ⊗ θ – θ ⊗ H2θ

]
Qt = 0, (4.7)

where we have used (4.2). Now, as Ḣ 2[H2θ ⊗ θ – θ ⊗ H2θ ] = 0 is precisely the condition
Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ = 0, this justifies the first part.

For the reverse implication (ii) �⇒ (i), we first suppose that Q solves (4.2). Then ten-
sorising as in (2.13) gives

0 =
1
rn

{
d
dr

[
rn+1h(r)QtQ̇

]
θ ⊗ θ – θ ⊗ d

dr
[
rn+1h(r)QtQ̇

]
θ

}

=
1
rn

d
dr

{
rn+1h(r)

[
QtQ̇θ ⊗ θ – θ ⊗ QtQ̇θ

]}

=
1
rn Qt d

dr
{

rn+1h(r)[Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]
}

Q

+ rh(r)
[
Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ

]
. (4.8)

Now, taking advantage of the additional assumption Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ = 0
and the invertibility of Q, we conclude. For the final assertion, it suffices to note that
(4.7) ⇐⇒ H2 = –c2In. �

Having satisfactorily resolved ODEs (4.2) and (4.6), we next move to the PDE LF [u] =
∇P and system (1.2) for suitable (u,P) with u = rQ(r)θ . By Proposition 2.3, (4.1) and
Proposition 4.1, it is plain that the twist path here must take the form Q(r) = exp{H (r)H},
and so u = r exp{H (r)H}θ . Now the action of LF on u, upon invoking ODE (4.2), is first
seen to reduce to

LF [u] = (∇u)t div
[
h
(|x|)∇u

]
= (∇u)t[ḣ(r)∇uθ + h(r)�u

]

=
(
Qt + rθ ⊗ Q̇θ

){
ḣ(r)(Qθ + rQ̇θ ) + h(r)

[
(n + 1)Q̇θ + rQ̈θ

]}

= ḣ(r)
[
1 + r2|Q̇θ |2]θ + h(r)

[
(n + 1)r|Q̇θ |2θ + r2〈Q̇θ , Q̈θ〉θ]

+ Qt[(n + 1)hQ̇Qt + rḣQ̇Qt + rhQ̈Qt]Qθ

= ḣ(r)
[
1 + r2|Q̇θ |2]θ + h(r)

[
(n + 1)r|Q̇θ |2 + r2〈Q̇θ , Q̈θ〉]θ

– rh(r)Q̇tQ̇θ . (4.9)

Therefore, by making the substitution Q(r) = exp{H (r)H} and noting that by differen-
tiation Q̇ = Ḣ HQ, Q̈ = Ḧ HQ + Ḣ 2H2Q, Q̇tQ̇ = –Ḣ 2H2 and 〈Q̇θ , Q̈θ〉 = Ḣ Ḧ 〈HQθ ,



Morrison and Taheri Boundary Value Problems  (2018) 2018:130 Page 15 of 24

HQθ〉 + Ḣ 3〈HQθ , H2Qθ〉 = Ḣ Ḧ |Hθ |2, the action (4.9) simplifies to

LF [u] = ∇h
(|x|) + r

[
(n + 1)h(r) + rḣ(r)

]
Ḣ 2|Hθ |2θ

+ r2h(r)Ḣ Ḧ |Hθ |2θ + rh(r)Ḣ 2H2θ . (4.10)

We are now in a position to apply Proposition 3.1 to the vector field LF [u] – ∇h. In the
context of (3.6), here we have S = –H2, and the scalar functions a, b are in turn

a(r) =
Ḣ (r)

r2

{
(n + 1)h(r)Ḣ (r) + rḣ(r)Ḣ (r) + rh(r)Ḧ (r)

}
,

b(r) = –h(r)Ḣ 2(r).

A further use of ODE (4.2) gives a = 0, and so Proposition 3.1 and (3.6) imply that subject
to –2a + ḃ/r = Ḣ 2/r2[rḣ(r) + 2(n + 1)h(r)] �≡ 0 on ]a, b[ we have

LF [u] = ∇P �⇒ curl
(
LF [u] – ∇h

)
= 0 (4.11)

�⇒ H2 = –c2In �⇒ LF [u] = ∇P

for some c ∈R. Note that the final implication in (4.11) follows by substituting H2 = –c2In

in (4.10) and observing that, as a result, LF [u] is a gradient field. So it follows that for n
even c2

1 = · · · = c2
k = c2 and for n odd c1 = · · · = ck = 0 due to the presence of (at least one)

zero eigenvalue for H. In particular for n odd this gives Q(r) ≡ In. Lastly, to satisfy the
endpoint condition Q(b) = In, we note that for n odd we already have Q(b) = In and for n
even we write

Q(b) = exp
{
H (b)H

}
= exp

{
P diag(cJ, . . . , cJ)Pt}

= P diag
(
R[c], . . . ,R[c]

)
Pt = In ⇐⇒ c = 2πm, m ∈ Z. (4.12)

In conclusion, we have shown that subject to rḣ(r) + 2(n + 1)h(r) �≡ 0, the twist u = rQ(r)θ
is a solution to system (1.2) iff Q(r) = P exp{2mπH (r)Jn}Pt for some m ∈ Z when n is
even and Q ≡ In when n is odd.b Combining this with Proposition 4.2, we have proved the
following statement.

Proposition 4.3 Assume that u = rQ(r)θ is a generalised twist with twist path Q ∈
C 2(]a, b[, SO(n)) ∩ C ([a, b], SO(n)) verifying Q(a) = Q(b) = In. Consider

(i) u satisfies LF [u] = ∇P .
(ii) Q is a solution to (1.9).
(iii) Q satisfies (1.10) and Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ = 0.

Then (ii) ≡ (iii) �⇒ (i). If rḣ + 2(n + 1)h �≡ 0 the above are all equivalent.

5 General Lagrangians F = F(r, ξ ): ODEs (1.9)–(1.10) vs the PDE LF[u] = ∇P

Motivated by the results and the explicit description of solutions for the weighted Dirichlet
Lagrangians in the previous section, in seeking solutions to system (1.2) as well as ODEs
(1.9)–(1.10), here we focus on geodesic type twist paths Q(r) = exp{G (r)H} for suitable G ∈
C 2[a, b] and H = PJnPt with P ∈ O(n), Jn = diag(J, . . . , J) for n even and Jn = diag(J, . . . , J, 0)
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for n odd. It is seen that here Q̇ = Ġ HQ, QtQ̇ = Ġ H (note QH = HQ), and so (1.10) reduces
to

M [Q] =
1
rn

d
dr

{
rn+1Fξ

(
r, n + r2Ġ 2|Hθ |2)Ġ Hθ

}
= 0. (5.1)

Likewise Q̇θ ⊗ Qθ = Ġ HQθ ⊗ Qθ and Q̈θ ⊗ Qθ = G̈ HQθ ⊗ Qθ + Ġ 2H2Qθ ⊗ Qθ , and so
(1.9) reduces to

S [Q] =
d
dr

{
rn+1Fξ

(
r, n + r2Ġ 2|Hθ |2)Ġ }

[HQθ ⊗ Qθ – Qθ ⊗ HQθ ]

+ rn+1Fξ

(
r, n + r2Ġ 2|Hθ |2)Ġ 2[H2Qθ ⊗ Qθ – Qθ ⊗ H2Qθ

]
= 0. (5.2)

Thus, upon taking into account the endpoint conditions Q(a) = Q(b) = In, it follows that
for n even the twist path Q(r) = exp{G (r)H} satisfies ODEs (1.9)–(1.10) iff G is a solution
to the boundary value problem (with m ∈ Z)c

BVP[G ; F , m] =

⎧
⎪⎪⎨

⎪⎪⎩

d
dr [rn+1Fξ (r, n + r2Ġ 2)Ġ ] = 0,

G (a) = 0,

G (b) = 2mπ .

(5.3)

This therefore leads to the existence of an infinite family of solutions to ODEs (1.9)–
(1.10) for n even, of course, subject to justifying the solvability of the boundary value prob-
lem BVP[G ; F , m] above. Setting the existence question aside for now (cf. Theorem 5.2
below), let us move forward and justify the above choice of Q by taking a twist path
Q ∈ C 1([a, b], SO(n)) and considering for θ ∈ S

n–1 the integral

I(Q, θ ) =
∫ b

a
|Q̇θ |dr. (5.4)

Evidently, this integral represents the length of the curve γ ∈ C 1([a, b],Sn–1) given by
γ (r) = Q(r)θ . Now in the event Q(r) = exp{G (r)H} for some function G ∈ C 1[a, b] and
some skew-symmetric matrix H = PJnPt , by virtue of Q̇ = Ġ HQ, we have |Q̇θ | = |Ġ θ�|
where θ� = Hθ . In particular when n is even, |θ�| = |θ | = 1, and so |Q̇θ | = |Ġ | and integral
(5.4) is independent of θ . The following theorem gives a complete characterisation of solu-
tions Q = Q(r) to ODEs (1.9)–(1.10) when additionally the integral I(Q, θ ) is independent
of θ . Note that this last condition is implied by Q̇tQ̇θ ⊗ θ – θ ⊗ Q̇tQ̇θ ≡ 0.

Theorem 5.1 Let Q ∈ C 1([a, b], SO(n))∩C 2(]a, b[, SO(n)) satisfy the endpoint conditions
Q(a) = Q(b) = In. Assume that Q satisfies either of ODEs (1.9) or (1.10) and that the integral
I(Q, θ ) in (5.4) is independent of θ . Then, depending on the dimension n being even or odd,
Q has the following form:

• (n even): For some m ∈ Z and P ∈ O(n), we have

Q(r) = exp
{
G (r; m)H

}
, a ≤ r ≤ b,

= P diag
(
R[G ](r; m), . . . ,R[G ](r; m)

)
Pt , (5.5)
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where H = PJnPt , Jn = diag(J, . . . , J) and G = G (r; m) ∈ C 2[a, b] is the unique solution to
the boundary value problem (5.3).

• (n odd): Q(r) ≡ In on [a, b].
Conversely, if Q has the form above, then the integral I(Q, θ ) is independent of θ and Q is
a solution to ODEs (1.9) and (1.10).

Referring to the discussion at the start of the section, in either of the cases above, Q is a
solution to ODEs (1.9)–(1.10). Moreover, by an easy inspection, the integral I(Q, θ ) is seen
to be independent of θ ; indeed, for n even, noting that Ġ does not change sign (in fact, as
a result of Fξ > 0 and (5.3), Ġ (r; m) has the same sign as m ∈ Z), it is seen that

I(Q, θ ) = I
(
exp

{
G (r; m)H

}
, θ

)
=

∫ b

a

∣
∣Ġ (r; m)HQθ

∣
∣dr

=
∫ b

a

∣
∣Ġ (r; m)

∣
∣
∣
∣θ�

∣
∣dr =

∣
∣
∣
∣

∫ b

a
Ġ (r; m) dr

∣
∣
∣
∣ = 2π |m|, (5.6)

while for n odd, I(Q, θ ) ≡ 0.d This therefore immediately gives the converse part of the
theorem and justifies the existence of infinitely many solutions to either ODEs (1.9) and
(1.10) for n even. Hence in the following we focus entirely on the direct implication in the
theorem.

Proof As I(Q, θ ) = 0 implies |Q̇θ | = 0 and therefore Q ≡ In, we hereafter assume
I(Q, θ ) > 0. We now consider the two cases (1.9) and (1.10) separately.

(Part 1) First assume that Q is a solution to (1.10) and set

F (r, θ ) =
∫ r

a

∣
∣Q̇(s)θ

∣
∣ds, a ≤ r ≤ b, |θ | = 1. (5.7)

We aim to show that F satisfies the ODE in (5.3) for each fixed θ . Towards this end, we
first note that (1.10) �⇒ 〈M [Q], QtQ̇θ〉 = 0, and so

d
dr

{
rn+1Fξ

(
r, n + r2|Q̇θ |2)|Q̇θ |2} – rn+1Fξ

(
r, n + r2|Q̇θ |2)〈Q̇θ , Q̈θ〉 = 0, (5.8)

where we have used the identity 〈QtQ̇θ , (Q̇tQ̇ +Q̇tQ̈)θ〉 = 〈QtQ̇θ , Q̇tQ̈θ〉 that follows from
〈QtQ̇θ , Q̇tQ̇θ〉 = 0 and the skew-symmetry of Q̇Qt . Proceeding directly therefore we can
write

LHS of (5.8) =
d
dr

{
rn+1Fξ

(
r, n + r2|Q̇θ |2)|Q̇θ |}|Q̇θ |

+ rn+1Fξ

(
r, n + r2|Q̇θ |2)|Q̇θ | 〈Q̇θ , Q̈θ〉

|Q̇θ |
– rn+1Fξ

(
r, n + r2|Q̇θ |2)〈Q̇θ , Q̈θ〉

=
d
dr

{
rn+1Fξ

(
r, n + r2|Q̇θ |2)|Q̇θ |}|Q̇θ | = 0. (5.9)

Note that this argument shows that, as a function of r, rn+1Fξ (r, n + r2|Q̇θ |2)|Q̇θ | is a posi-
tive constant on any interval on which |Q̇θ | is non-zero, and so a basic continuity argument
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implies that either |Q̇θ | ≡ 0 on [a, b] or |Q̇θ | > 0 on [a, b]. Furthermore, it also shows that
F (r, θ ) is a [non-zero] solution to the ODE in (5.3) for every fixed |θ | = 1 as claimed.

Next we see that F (a, θ ) = 0 and F (b, θ ) = I[Q, θ ] which is independent of θ by assump-
tion. Given that solutions of (5.3) are extremisers of the energy functional

� : G �→
∫ b

a
F
(
r, n + r2Ġ 2)rn–1 dr, (5.10)

it follows from standard convexity arguments that these solutions are the unique minimis-
ers of this energy functional with respect to their own Dirichlet boundary conditions (note
that this functional is strictly convex given the assumptions F). Since F has been shown
to be independent of θ at its end-points, it follows that F (r, θ ) ≡ F (r) is independent of
θ for all a ≤ r ≤ b. Now, since Fξ > 0, all solutions of (5.3) are monotone and hence invert-
ible. Denoting F –1(s) = r(s) put K(s) = Q(r(s)) for K ∈ C 2(]0, l[, SO(n)) ∩ C ([0, l], SO(n))
where l = F (b). Thus Q(r) = K(F (r)) and Q̇ = K′Ḟ (with prime denoting d/ds). Return-
ing to ODE (1.10), we have, after a change of variables,

d
ds

{
rn+1Fξ

(
r, n + r2Ḟ 2)ḞKtK′} = 0, K′ =

d
ds

K. (5.11)

Since rn+1Fξ (r, n + r2Ḟ 2)Ḟ ≡ c, as F solves (5.3), the above equation is then seen to be
equivalent to

c
d
ds

(
KtK′) = 0, 0 < s < l. (5.12)

This ODE has solutions K(s) = exp{sL} with L skew-symmetric. As such with s(r) =
F (r), we have Q(r) = exp{G (r)L} where G solves (5.3). To ensure that the integral
I[Q, θ ] is independent of θ , we need |Lθ | to be independent of θ . For this we orthog-
onally diagonalise L by writing L = P diag(c1J, . . . , ckJ)Pt when n = 2k is even and L =
P diag(c1J, . . . , ck–1J, 0)Pt when n = 2k – 1 is odd with J as defined in (4.5). It is then easily
seen that |Lθ | is independent of θ iff |c1| = · · · = |ck| =: |c|, that is, L = 0 when n is odd and
L = cPJnPt when n is even. Finally, for n even, since G (a) = 0, we have Q(a) = In, and then
Q(b) = exp{cG (b)PJnPt} = In follows by setting c = 1 and l = G (b) = 2πm. This therefore
completes the first part of the proof.

(Part 2) For the second part of the proof, assume that Q is a solution to (1.9). Then,
writing Fξ = Fξ (r, n + r2|Q̇θ |2) for brevity, we observe that

d
dr

{
rn+1Fξ Q̇θ

}
=

d
dr

{
rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]Qθ

}

=
d
dr

{
rn+1Fξ [Q̇θ ⊗ Qθ – Qθ ⊗ Q̇θ ]

}
Qθ – rn+1Fξ |Q̇θ |2Qθ . (5.13)

The first term is zero since Q by assumption is a solution to (1.9), and so

d
dr

{
rn+1Fξ

(
r, n + r2|Q̇θ |2)Q̇θ

}
+ rn+1Fξ

(
r, n + r2|Q̇θ |2)|Q̇θ |2Qθ = 0. (5.14)
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Let F = F (r, θ ) be as defined in (5.7). As in Part 1 we proceed by showing that F is a
solution to (5.3) for each fixed |θ | = 1. Indeed here we can write

d
dr

{
rn+1Fξ

(
r, n + r2|Q̇θ |2)|Q̇θ |} =

d
dr

[
rn+1Fξ

(
r, n + r2|Q̇θ |2)]|Q̇θ |

+ rn+1Fξ

(
r, n + r2|Q̇θ |2) 〈Q̈θ , Q̇θ〉

|Q̇θ |
= – rn+1Fξ

(
r, n + r2|Q̇θ |2)〈Q̇θ , Qθ〉|Q̇θ | = 0,

where we have used 〈LHS of (5.14), Q̇θ〉 = 0 and 〈Q̇θ , Qθ〉 = 0 by virtue of QtQ̇ being
skew-symmetric. It therefore follows from this that again F (r, θ ) ≡ F (r). Next, given that
F solves (5.3), we have rn+1Fξ (r, n + r2|Q̇θ |2)|Q̇θ | ≡ c, and so (5.14) can be written as

d
dr

{
rn+1Fξ

(
r, n + r2|Q̇θ |2)Q̇θ

}
+ c|Q̇θ |Qθ = 0. (5.15)

Now, invoking the invertibility of F on [a, b] and setting r(s) = F –1(s), write K(s) =
Q(r(s)) for K ∈ C 2(]0, l[, SO(n)) ∩C 1([0, l], SO(n)) where l = F (b). Thus from (5.15) upon
changing variables it follows that

c
(

d
ds

K′ +
∣
∣K′θ

∣
∣2K

)

θ = 0, 0 < s < l, (5.16)

which is easily seen to be the geodesic equation on S
n–1 for the curve s �→ K(s)θ . Referring

to Lemma 7.1 (see the Appendix), it is seen that for n odd, K(s) ≡ In (i.e., Q ≡ In) and
for n even, K(s) = P diag(R[H(s, m, l)], . . . ,R[H(s, m, l)])Pt , where H(s, m, l) = (2mπ )s/l for
m ∈ Z. This therefore upon changing variables gives Q(r) = P diag(R[G ](r), . . . ,
R[G ](r))Pt , where G is a solution to (5.3) with G (a) = 0 and G (b) = 2mπ . The proof is
thus complete. �

Theorem 5.2 For each m ∈ Z, the boundary value problem BVP[G ; F , m] as given by (5.3)
has a unique solution G ∈ C 2[a, b].

Proof It is easily seen that (5.3) is the Euler–Lagrange equation associated with the energy
functional

�[G ; a, b] :=
∫ b

a
F
(
r, n + r2Ġ 2)rn–1 dr, (5.17)

over the Dirichlet space Bp
m(a, b) = {G ∈ W 1,p(a, b) : G (a) = 0,G (b) = 2mπ}. The exis-

tence of a minimiser follows by an application of the direct methods of the calculus of
variations and the C 2 regularity of the minimiser from the Tonelli–Hilbert–Weierstrass
differentiability theorem (see, e.g., [8], pp. 55–61). A basic convexity argument upon not-
ing the uniform convexity of the function ξ �→ F(r, n + r2ξ 2) on [a, b] for ξ ∈ R shows
that firstly any solution to the Euler–Lagrange equation (5.3) is a minimiser of � with re-
spect to its own boundary conditions and secondly that minimisers of � over Bp

m(a, b)
are unique. �
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Proposition 5.1 Let u = rQ(r)θ be a generalised twist with twist path Q(r) = exp{G (r)H},
where H is a constant skew-symmetric matrix and G ∈ C 2[a, b]. Then with θ = x|x|–1 and
θ� = Hθ the following hold:

(i) ∇u = Q(In + rĠ θ� ⊗ θ ),
(ii) |∇u|2 = n + r2Ġ 2|θ�|2,

(iii) det∇u = det[Q(In + rĠ θ� ⊗ θ )] = 1.
As a result, the action of the differential operator LF on u can be described as

LF [u]

= Fξξ

(
r, n + r2Ġ 2∣∣θ�

∣
∣2)

× {(
In + rĠ θ ⊗ θ� + rĠ θ� ⊗ θ + r2Ġ 2∣∣θ�

∣
∣2

θ ⊗ θ
)(

2rĠ 2∣∣θ�
∣
∣2

θ + r2∇[
Ġ 2∣∣θ�

∣
∣2])}

+ Frξ
(
r, n + r2Ġ 2∣∣θ�

∣
∣2)(

θ + rĠ θ� + r2Ġ 2∣∣θ∗∣∣2
θ
)

+ Fξ

(
r, n + r2Ġ 2∣∣θ�

∣
∣2)

× [
(n + 1)Ġ θ� + r

(
G̈ θ� + Ġ 2Hθ�

)
+ (n + 1)rĠ 2∣∣θ�

∣
∣2

θ + r2Ġ G̈
∣
∣θ�

∣
∣2

θ
]
. (5.18)

Proof Noting QH = HQ and 〈θ�, θ〉 = 0, by virtue of H being skew-symmetric, we have
Q̇ = Ġ HQ, Q̈ = (G̈ H + Ġ 2H2)Q and |Q̇θ |2 = Ġ 2〈Hθ , Hθ〉 = Ġ 2|θ�|2. The first three identi-
ties now follow immediately from those in Proposition 2.1. For the last identity, referring
to Proposition 2.1, we can write

LF [u] = LF
[
r exp

{
G (r)H

}
θ
]

=
(
In + rĠ θ ⊗ θ�

)

× {
Fξξ

(
r, n + r2Ġ 2∣∣θ�

∣
∣2)(In + rĠ θ� ⊗ θ

)(
2rĠ 2∣∣θ�

∣
∣2

θ + r2∇[
Ġ 2∣∣θ�

∣
∣2])

+ Frξ
(
r, n + r2Ġ 2∣∣θ�

∣
∣2)(

θ + rĠ θ�
)

+ Fξ

(
r, n + r2Ġ 2∣∣θ�

∣
∣2)[(n + 1)Ġ θ� + r

(
G̈ θ� + Ġ 2Hθ�

)]}
.

The conclusion follows by a straightforward calculation. �

Theorem 5.3 For n ≥ 2 even and m ∈ Z put Q(r; m) = exp{G (r; m)H} (with a ≤ r ≤ b)
where H is the skew-symmetric matrix H = PJnPt and G = G (r; m) is the unique solution
to (5.3). Then the vector field v = LF [rQ(r; m)θ ] is a gradient field. In particular the gener-
alised twist u = rQ(r; m)θ is a solution to system (1.2). Thus system (1.2) admits a countably
infinite family of monotone twisting solutions.

Proof By referring to the formulation of LF [u = rQ(r)θ ] with the twist path Q(r) =
exp{G (r)H} and H = PJnPt hence Q̇ = Ġ HQ, Q̈ = (G̈ H – Ġ 2In)Q and |θ�|2 = 1 where
θ� = Hθ , we can write

LF [u] = LF
[
r exp

{
G (r)H

}
θ
]

= Fξξ

(
r, n + r2Ġ 2)

× (
2rĠ 2 + 2r2Ġ G̈

)(
θ + rĠ Hθ + r2Ġ 2θ

)

+ Frξ
(
r, n + r2Ġ 2)(θ + rĠ Hθ + r2Ġ 2θ

)
+ Fξ

(
r, n + r2Ġ 2)

× {[
(n + 1)Ġ + rG̈

]
Hθ +

[
(n + 1)rĠ 2 – rĠ 2 + r2Ġ G̈

]
θ
}

. (5.19)
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Now a straightforward calculation and rearrangement of terms enable us to write the
above action in the convenient form

LF
[
u = r exp

{
G (r)H

}
θ
]

= A (r)θ + B(r)Hθ , (5.20)

where

A (r) =
[
Fξξ

(
r, n + r2Ġ 2)(2rĠ 2 + 2r2Ġ G̈

)
+ Frξ

(
r, n + r2Ġ 2)](1 + r2Ġ 2)

+ Fξ

(
r, n + r2Ġ 2)[(n + 1)rĠ 2 – rĠ 2 + r2Ġ G̈

]

=
Ġ

rn–1
d
dr

[
rn+1Fξ

(
r, n + r2Ġ 2)Ġ

]
+ Fξξ

(
r, n + r2Ġ 2)(2rĠ 2 + 2r2Ġ G̈

)

+ Frξ
(
r, n + r2Ġ 2) – rFξ

(
r, n + r2Ġ 2)Ġ 2, (5.21)

and

B(r) = rFξξ

(
r, n + r2Ġ 2)Ġ

(
2rĠ 2 + 2r2Ġ G̈

)
+ rFrξ

(
r, n + r2Ġ 2)Ġ

+ Fξ

(
r, n + r2Ġ 2)[(n + 1)Ġ + rG̈

]

=
1
rn

d
dr

[
rn+1Fξ

(
r, n + r2Ġ 2)Ġ

]
. (5.22)

Thus, as the function G is chosen as a solution of (5.3), this immediately gives B(r) ≡ 0,
and so we have

LF [u] = Fξξ

(
r, n + r2Ġ 2)(2rĠ 2 + 2r2Ġ G̈

)
θ

+ Frξ
(
r, n + r2Ġ 2)θ – rFξ

(
r, n + r2Ġ 2)Ġ 2θ

= ∇Fξ

(
r, n + r2Ġ 2) – rFξ

(
r, n + r2Ġ 2)Ġ 2θ . (5.23)

We thus conclude that LF [u] is a gradient field, and so as a result the twist u =
r exp{G (r)H}θ is a solution to system (1.2) with P = Fξ (r, n + r2Ġ 2) – G(r), where ∇G =
rFξ (r, n + r2Ġ 2)Ġ 2θ . �

6 Conclusions
We have proved the existence of an infinite scale of topologically distinct twisting solutions
to a nonlinear elliptic system in divergence and variational form in a finite symmetric
annulus subject to suitable boundary conditions and a hard incompressibility constraint.
This is done by connecting the system to a set of nonlinear isotropic types ODEs on the
compact Lie group SO(n) and proving the existence of multiple closed stationary loops
in the geodesic form to these ODEs. The resulting stationary loops then remarkably serve
as the twist loops associated with the sought twisting solutions to the system. Particular
attention is paid to a totally integrable case where a complete and explicit description of
all the infinite scale of twisting solutions is given.
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Appendix
In this appendix we give the proof of a result that was used earlier in the paper in the
course of the proof of Theorem 5.1. We believe that this characterisation of twist paths in
relation to geodesics on the sphere and SO(n) is of independent interest.

Lemma 7.1 Let K ∈ C 1([0, l], SO(n)) ∩C 2(]0, l[, SO(n)) for some 0 < l < ∞ satisfy the end-
point conditions K(0) = K(l) = In. Then the curve s �→ K(s)θ with 0 ≤ s ≤ l is a geodesic on
the sphere S

n–1 for every θ ∈ S
n–1 iff depending on the dimension n being even or odd, K

takes one of the following forms:
• (n even) For some m ∈ Z and P in O(n), we have

K(s) = K(s; m) = exp
{
H(s; m, l)H

}
(7.1)

= P diag
(
R[H](s), . . . ,R[H](s)

)
Pt , 0 ≤ s ≤ l,

where H = H(s; m, l) := (2mπ )s/l and R is given by (4.5). Here the skew-symmetric
matrix H is a square root of –In and has the form H = PJnPt with Jn = diag(J, J, . . . , J)
and J = R[π/2].

• (n odd) K(s) ≡ In for all s ∈ [0, l].

Proof On a round sphere geodesics are segments of great circles and satisfy the geodesic
equation γ ′′ + |γ ′|2γ = 0 : γ ∈ C 2([0,�],Sn–1). Hence, if s �→ K(s)θ is a geodesic for every
θ , then K satisfies

(
K′′ +

∣
∣K′θ

∣
∣2K

)
θ = 0, 0 < s < l, ′ =

d
ds

, (7.2)

for every |θ | = 1. It is now seen that if K satisfies (7.2) then |K′θ |2 is constant in θ and s.
Indeed, differentiating with respect to s yields

1
2

d
ds

∣
∣K′θ

∣
∣2 =

〈
K′′θ , K′θ

〉
=

〈
–
∣
∣K′θ

∣
∣2Kθ , K′θ

〉
= –

∣
∣K′θ

∣
∣2〈K′tKθ , θ

〉
= 0

by the skew-symmetry of K′tK. Thus |K′θ |2 = f (θ ) for some f ∈ C (Sn–1), and so rearrang-
ing (7.2) we obtain KtK′′θ = –f (θ )θ . For fixed s this asserts that –f (θ ) is an eigenvalue of
KtK′′. However, as KtK′′ has at most n eigenvalues, it follows, by the continuity of f , that
f must be constant, say f (θ ) = |K′θ |2 = t2. Thus summarising we conclude that if K(s)θ is
a geodesic for all θ , then K must satisfy the second order ODE:

K′′ + t2K = 0, 0 < s < l. (7.3)

Now the general solution to this ODE, taking into account K(0) = In, is given by K(s) =
exp{sA} where A is a constant skew-symmetric matrix. Indeed by differentiating K it is
seen that A satisfies (A2 + t2In)K = 0, and so, in view of K being invertible, A2 = –t2In.
Now, upon diagonalising, we can write A = P diag(t1J, . . . , tk–1J, tkJ)Pt when n = 2k and
A = P diag(t1J, . . . , tk–1J, tk)Pt when n = 2k – 1, where P ∈ O(n), (tj)k

j=1 ⊂R and tk = 0 when
n = 2k – 1. Therefore, by returning to the identity A2 = –t2In, it is seen that:
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• when n = 2k, we have

A2 = –P diag
(
t2
1I2, . . . , t2

k I2
)
Pt

= –t2In �⇒ |t1| = |t2| = · · · = |tk| = |t|. (7.4)

• when n = 2k – 1, we have

A2 = –P diag
(
t2
1I2, . . . , t2

k–1I2, tk
)
Pt

= –t2In �⇒ |t1| = |t2| = · · · = |tk| = |t| = 0. (7.5)

We now finish off by choosing A so that the endpoint condition K(�) = In is satisfied and
this is done by writing exp{�A} in a block diagonal form and then comparing with In (cf.
also [28] Theorem 2.1). �
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Endnotes
a A solution to system (1.2) for any n≥ 2 is the identity map u ≡ x. This follows by noting

LF [u≡ x] = (∇u)t div[Fξ (|x|, |∇u|2)∇u] = ∇Fξ (|x|,n) = ∇P with the choice of the hydrostatic pressure
P(x) = Fξ (|x|,n) modulo an additive constant.

b When n = 2k, (4.11) gives c1, . . . , ck ∈ {±c}. By adjusting P ∈ O(n), we can arrange and assume without loss of
generality that c1 = · · · = ck . Note also that rḣ + 2(n + 1)h ≡ 0 ⇐⇒ h(r) = αr–2(n+1) ; thus, referring to (4.10),
LF [u] –∇h = h(r)Ḣ 2H2x = –∇|Hx|2/(2αH(b)2) regardless of the choice of c1, . . . , ck . (See [20, 21] for further
extensions of these results.)

c Note that for n even H =
√
–In .

d It is useful to contrast this with Proposition 4.1 and the further restriction on H as a result of (5.4).
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