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Abstract
In this paper, we study periodic boundary value problems of fractional semilinear
integro-differential equations with non-instantaneous impulses in Banach spaces. By
the measure of noncompactness, the theory of β-resolvent family, and the fixed point
theorem, we obtain several sufficient conditions on the existence of mild solutions for
such problems. Finally, an example is given to show the main results of this paper.
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1 Introduction
In the last decades, many researchers have been attracted to studying the fractional dif-
ferential equations, and a lot of good results have been obtained, see [1–17] and the refer-
ences therein. In [1–9], authors studied the fractional differential equations with instan-
taneous impulses, which have been applied to describe abrupt changes such as the shocks
and natural disasters. For more details on this subject, see [1–9]. The differential equa-
tions with instantaneous impulse cannot explain some dynamics problems of evolution
process. For instance, the drug delivery in the bloodstream is a gradual and continuous
process. However, the models with non-instantaneous impulses can explain these prob-
lems.

The differential equations with non-instantaneous impulses of the following form were
initially investigated by the authors in [18, 19]:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = Ax(t) + f (t, x(t)), t ∈ (sk , tk+1], k = 0, 1, . . . , N ,

x(t) = gk(t, x(t)), t ∈ (tk , sk], k = 1, 2, . . . , N ,

x(0) = x0 ∈ E,

where A : D(A) ⊂ E → E is the generator of a C0-semigroup {S(t)t≥0} on a Banach space E.
In [18, 19], the existence results have been established by using the fixed point theorems.
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In [20], authors investigated the following periodic boundary value problem of integer
nonlinear evolution equations with non-instantaneous impulses:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = Ax(t) + f (t, x(t)), t ∈ (sk , tk+1], k = 0, 1, . . . , N ,

x(t) = S(t – tk)gk(t, x(t)), t ∈ (tk , sk], k = 1, 2, . . . , N ,

x(0) = x(T),

where the semigroup {S(t)t≥0} is compact and the linear operator A is independent of t.
The existence results were obtained by using the fixed point theorems. Now, many re-
searchers are studying the fractional differential equations with non-instantaneous im-
pulses, and a lot of good results have been obtained [21–27]. In [21, 23], the authors stud-
ied the stability of the fractional differential equations with non-instantaneous impulses.
The existence results of the fractional differential equations with non-instantaneous im-
pulses are discussed by authors in [22, 24–26].

Inspired by the above said work, we consider the following periodic boundary value
problem for nonlinear fractional evolution equations with non-instantaneous impulses:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDβ
t u(t) = A(t)u(t) + f (t, u(t)) +

∫ t
0 q(t – s)h(s, u(s)) ds,

t ∈ (si, ti+1], i = 0, 1, . . . , m,

u(t) = Uβ (t, ti)gi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , m,

u(0) = u(T),

(1.1)

where cDβ
t is the Caputo’s fractional derivative of order β ∈ (0, 1], A(t) is dependent on t

and a closed and linear unbounded operator with domain D(A) defined on a Banach space
E, the fixed points si and ti satisfying 0 = s0 < t1 ≤ s1 < t2 ≤ · · · < tm ≤ sm < tm+1 = T are
pre-fixed numbers. f , Uβ , h, and gi (i = 1, 2, . . . , m) are to be specified later, q : [0, T] → X
is continuous.

In [18–20], differential equations are all integer order, the linear operator A is indepen-
dent of t, and the semigroup is compact. In [24–26], the linear operator A is independent
of t. In this paper, we consider the existence of mild solutions for the fractional differ-
ential equations (1.1) under the conditions of the compact and noncompact semigroup;
meanwhile, the linear operator A(t) is dependent on t. Therefore, the results presented in
this paper improve and generalize the main results in [18–20, 24–26] by using a different
method.

2 Preliminaries
Let J = [0, T], C(J , E) = {u : J → E is continuous}, PC(J , E) = {u : J → E : u ∈ C((si, ti+1], E),
and there exist u(t–

i ) and u(t+
i ) with u(t–

i ) = u(ti), i = 1, 2, . . . , m} with the PC-norm
‖u‖PC = sup{‖u(t)‖ : t ∈ J}.

Lemma 2.1 ([28]) Let E be a Banach space, D ⊂ E be a bounded closed and convex set.
Assume that Q : D → D is a strict set contraction mapping. Then Q has at least one fixed
point in D.
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Definition 2.1 ([29, 30]) The Riemann–Liouville fractional integral of f of order ν > 0 is
defined by

Jν
t f (t) =

1
�(ν)

∫ t

0
(t – s)ν–1f (s) ds, f (t) ∈ L1(J ; E).

The integral operators {Jν
t }ν≥0 have the following semigroup property:

Jν
t Jμ

t = Jν+μ
t , ν,μ ≥ 0.

Definition 2.2 ([29, 30]) The Caputo fractional derivative of order n – 1 < ν < n with the
lower limits zero for a function f ∈ Cn[0, +∞) can be written as

cDν
t f (t) =

1
�(n – ν)

∫ t

0
(t – s)n–ν–1f (n)(s) ds, t > 0, n ∈ N.

Lemma 2.2 ([31]) Let E be a Banach space and B ⊂ C[J , E] be equicontinuous and
bounded, then Co B ⊂ C[J , E] is also equicontinuous and bounded (where Co B denotes
the closed convex hull of B).

Definition 2.3 ([32]) Let S be a bounded set of E, α(S) = inf{δ > 0 : S can be expressed as
the union of a finite number of sets such that the diameter of each set does not exceed δ,
i.e., S =

⋃m
i=1 Si with diam(Si) ≤ δ, i = 1, 2, . . . , m}, α(S) is called the Kuratowski measure of

noncompactness of set S. Obviously, 0 < α(S) < ∞.

Lemma 2.3 ([33]) Let E be a Banach space, and let D ⊂ E be bounded, then there exists a
countable set D0 ⊂ D such that α(D) ≤ 2α(D0).

Lemma 2.4 ([31, 34]) Let E be a Banach space, and let B ⊂ C[J , E] be equicontinuous and
bounded, then α(B(t)) is continuous on J , and

α

(∫

J
B(s) ds

)

≤
∫

J
α
(
B(s)

)
ds, α(B) = max

t∈J
α
(
B(t)

)
.

Definition 2.4 ([5, 35]) Let A(t) be a closed and linear operator with domain D(A) defined
on a Banach space E, β > 0 be a constant. Let ρ[A(t)] be the resolvent set of A(t), we call
A(t) the generator of a β-resolvent operator family if there exist ω ≥ 0 and a strongly
continuous function Uβ : R2

+ → B(E) such that {λβ : Reλ > ω} ⊂ ρ(A) and

(
λβ I – A(s)

)–1u =
∫ ∞

0
e–λ(t–s)Uβ (t, s)u dt, Re(λ) > ω, u ∈ E.

In this case, Uβ (t, s) is called the β-resolvent family generated by A(t).

Remark 2.1 By [5, 36], the β-resolvent operator family Uβ (t, s) satisfies the following prop-
erties:

(1) Uβ (s, s) = I , Uβ (t, s) = Uβ (t, r)Uβ (r, s) for 0 ≤ s ≤ r ≤ t ≤ a.
(2) (t, s) → Uβ (t, s) is strongly continuous for 0 ≤ s ≤ t ≤ a.
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Definition 2.5 A function u ∈ PC(J , E) is said to be a mild solution of problem (1.1) if u
satisfies the following equations:

u(t) = Uβ (t, 0)
[

Uβ (T , tm)gm
(
sm, u(sm)

)

+
∫ T

sm

Uβ (t, s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
]

+
∫ t

0
Uβ (t, s)

(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds, t ∈ [0, t1],

u(t) = Uβ (t, ti)gi
(
t, u(t)

)
, t ∈ (ti, si], i = 1, 2, . . . , m,

u(t) = Uβ (t, ti)gi
(
si, u(si)

)
+

∫ t

si

Uβ (t, s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds,

t ∈ (si, ti+1], i = 1, . . . , m.

3 Uβ (t, s) is noncompact
We define an operator F : PC(J , E) → PC(J , E) by

(Fu)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uβ (t, 0)[Uβ (T , tm)gm(sm, u(sm))

+
∫ T

sm
Uβ (T , s)(f (s, u(s)) +

∫ s
0 q(s – τ )h(τ , u(τ )) dτ ) ds]

+
∫ t

0 Uβ (t, s)(f (s, u(s)) +
∫ s

0 q(s – τ )h(τ , u(τ )) dτ ) ds, t ∈ [0, t1],

Uβ (t, ti)gi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , m,

Uβ (t, ti)gi(si, u(si)) +
∫ t

si
Uβ (t, s)(f (s, u(s))

+
∫ s

0 q(s – τ )h(τ , u(τ )) dτ ) ds, t ∈ (si, ti+1], i = 1, . . . , m.

(3.1)

Theorem 3.1 Assume that the following conditions (H1) and (H2) hold.
(H1) For any R > 0, functions f , h and gi (i = 1, 2, . . . , m) : J × E → E are bounded and

continuous on J × TR, and

lim sup
R→∞

M(R)
R

<
1
�

, (3.2)

where

� = max

{

M2
(

1 + (T – sm) +
∫ T

sm

∫ s

0
q(s – τ ) dτ ds

)

+ M
(

t1 +
∫ t

0

∫ s

0
q(s – τ ) dτ ds

)

,

M, M
(

1 + (ti+1 – si) +
∫ t

si

∫ s

0
q(s – τ ) dτ ds

)

, i = 1, 2, . . . , m
}

,

M(R) = sup{‖f (t, u)‖,‖h(t, u)‖,‖gi(t, u)‖(i = 1, 2, . . . , m) : (t, u) ∈ J × TR}, TR =
{u ∈ E : ‖u‖ ≤ R}, the resolvent operator Uβ (t, s) is noncompact for t, s > 0, M =
max0≤s<t≤T ‖Uβ (t, s)‖ < +∞.

(H2) For all R > 0, there exist nonnegative Lebesgue integrable functions Lf , Lh, Lgi ∈
L1(J ,R+) (i = 1, 2, . . . , m) such that, for all equicontinuous and countable sets D ⊂
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TR = {u ∈ E : ‖u‖ ≤ R},

α(f (t, D) ≤ Lf (t)α(D), α(h(t, D) ≤ Lh(t)α(D) (3.3)

and

α(gi(t, D) ≤ Lgi (t)α(D) (3.4)

with

� = max

{

M2Lgm (t) + M2
∫ T

sm

Lf (s) ds + M
∫ t

0
Lf (s) ds

+
(
M2 + M

)
∫ t

0

∫ s

0
q(s – τ )Lh(τ ) dτ ds,

MLgi (t), Lgi (t) +
∫ t

si

Lf (s) ds +
∫ t

si

∫ s

0
q(s – τ )Lh(τ ) dτ ds,

i = 1, 2, 3, . . . , m
}

< 1. (3.5)

Then problem (1.1) has at least one mild solution u ∈ PC(J , E).

Proof By (3.2), there exist 0 < r < �–1 and R0 > 0 such that, for any R ≥ R0, we have

M(R) < rR.

Let R∗ ≥ R0. For any u ∈ BR∗ = {u ∈ PC(J , E) : ‖u‖PC ≤ R∗}, we prove that Fu ∈ BR∗ .
Step 1. By (3.2), for any t ∈ [0, t1], we have

∥
∥(Fu)(t)

∥
∥ ≤ ∥

∥Uβ (t, 0)
∥
∥
∥
∥Uβ (T , tm)gm

(
sm, u(sm)

)∥
∥

+
∥
∥Uβ (t, 0)

∥
∥

∥
∥
∥
∥

∫ T

sm

Uβ (T , s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ t

0
Uβ (t, s)

(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

≤ M2rR∗
(

1 + (T – sm) +
∫ T

sm

∫ s

0
q(s – τ ) dτ ds

)

+ MrR∗
(

t1 +
∫ t

0

∫ s

0
q(s – τ ) dτ ds

)

≤ R∗.

For any t ∈ (ti, si], i = 1, 2, . . . , m, we have

∥
∥(Fu)(t)

∥
∥ ≤ ∥

∥Uβ (t, ti)gi
(
t, u(t)

)∥
∥ ≤ MrR∗ ≤ R∗.
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For any t ∈ (si, ti+1], i = 1, 2, . . . , m, we have

∥
∥(Fu)(t)

∥
∥ ≤ ∥

∥Uβ (t, ti)gi
(
si, u(si)

)∥
∥

+
∥
∥
∥
∥

∫ t

si

Uβ (t, s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

≤ MrR∗
(

1 + (ti+1 – si) +
∫ t

si

∫ s

0
q(s – τ ) dτ ds

)

≤ R∗.

Step 2. We prove that F : BR∗ → BR∗ is continuous. Let {un}∞0 ⊂ PC(J , E) and un → u,
u ∈ PC(J , E). By the continuity of the functions f , gi (i = 1, 2, . . . , m), h, we have

lim
n→∞ sup

t∈J

∥
∥f

(
t, un(t)

)
– f

(
t, u(t)

)∥
∥ = 0,

lim
n→∞ sup

t∈J

∥
∥gi

(
t, un(t)

)
– gi

(
t, u(t)

)∥
∥ = 0,

lim
n→∞ sup

t∈J

∥
∥h

(
t, un(t)

)
– h

(
t, u(t)

)∥
∥ = 0.

For any t ∈ [0, t1], we have

∥
∥(Fun)(t) – (Fu)(t)

∥
∥

≤ M2 sup
t∈J

∥
∥gm

(
t, un(t)

)
– gm

(
t, u(t)

)∥
∥

+ M2
∫ T

sm

∥
∥f

(
s, un(s)

)
– f

(
s, u(s)

)∥
∥ds

+ M2
∫ T

sm

∫ s

0

∥
∥h

(
s, un(s)

)
– h

(
s, u(s)

)∥
∥q(s – τ ) dτ ds

+ Mt1 sup
t∈J

∥
∥f

(
t, un(t)

)
– f

(
t, u(t)

)∥
∥

+ M
∫ T

0

∫ s

0

∥
∥h

(
s, un(s)

)
– h

(
s, u(s)

)∥
∥q(s – τ ) dτ ds.

For any t ∈ (ti, si], i = 1, 2, . . . , m, we have

∥
∥(Fun)(t) – (Fu)(t)

∥
∥ ≤ M sup

t∈J

∥
∥gi

(
t, un(t)

)
– gi

(
t, u(t)

)∥
∥.

For any t ∈ (si, ti+1], i = 1, 2, . . . , m, we have

∥
∥(Fun)(t) – (Fu)(t)

∥
∥ ≤ M sup

t∈J

∥
∥gi

(
t, un(t)

)
– gi

(
t, u(t)

)∥
∥

+ M
∫ T

si

∥
∥f

(
s, un(s)

)
– f

(
s, u(s)

)∥
∥ds

+ M
∫ T

si

∫ s

0

∥
∥h

(
s, un(s)

)
– h

(
s, u(s)

)∥
∥q(s – τ ) dτ ds.
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By the above inequalities, we know that

‖Fun – Fu‖PC → 0 (n → ∞).

Therefore, the operator F : BR∗ → BR∗ is continuous.
Step 3. We will prove that F(BR∗ ) is equicontinuous. Case 1. For interval [0, t1], 0 ≤ e1 <

e2 ≤ t1, u ∈ BR∗ , we have

∥
∥(Fu)(e2) – (Fu)(e1)

∥
∥

≤ ∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥
∥
∥Uβ (T , tm)gm

(
sm, u(sm)

)∥
∥

+
∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥

×
∥
∥
∥
∥

∫ T

sm

Uβ (T , s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

+ sup
s∈[0,t1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥

×
∥
∥
∥
∥

∫ e1

0

(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ e2

e1

Uβ (e2, s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥. (3.6)

Case 2. For interval (ti, si], i = 1, 2, . . . , m, 0 ≤ e1 < e2 ≤ t1, u ∈ BR∗ , we have

∥
∥(Fu)(e2) – (Fu)(e1)

∥
∥

≤ ∥
∥Uβ (e2, ti)gi

(
e2, u(e2)

)
– Uβ (e1, ti)gi

(
e1, u(e1)

)∥
∥

≤ ∥
∥Uβ (e2, e1)Uβ (e1, ti)gi

(
e2, u(e2)

)
– Uβ (e1, ti)gi

(
e1, u(e1)

)∥
∥

≤ M
∥
∥Uβ (e2, e1)gi

(
e2, u(e2)

)
– gi

(
e1, u(e1)

)∥
∥. (3.7)

Case 3. For interval (si, ti+1], i = 1, 2, . . . , m, 0 ≤ e1 < e2 ≤ t1, u ∈ BR∗ , we have

∥
∥(Fu)(e2) – (Fu)(e1)

∥
∥

≤ ∥
∥Uβ (e2, ti) – Uβ (e1, ti)

∥
∥
∥
∥gi

(
si, u(si)

)∥
∥

+ sup
s∈(si ,ti+1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥

×
∫ e1

si

(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds

+
∥
∥
∥
∥

∫ e2

e1

Uβ (e2, s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥. (3.8)

By (1)–(2) of Remark 2.1 and the above inequalities (3.6)–(3.8), we derive that ‖(Fu)(e2) –
(Fu)(e1)‖ → 0 as e2 → e1. Therefore F(BR∗ ) is equicontinuous. From Lemma 2.2, we know
that Co F(BR∗ ) ⊂ BR∗ is bounded and equicontinuous.
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Step 4. We will prove that F : Co F(BR∗ ) → Co F(BR∗ ) is a condensing operator. For any
D ⊂ Co F(BR∗ ), by Lemma 2.3, there exists a countable set D0 = {un} ⊂ D such that

α
(
F(D)

) ≤ 2α
(
F(D0)

)
. (3.9)

From the equicontinuity of Co F(BR∗ ), we have that D0 ⊂ Co F(BR∗ ) is equicontinuous.
Case 1. For any t ∈ [0, t1], by Lemma 2.4, we get

α
(
F(D0)(t)

) ≤ M2α
(
gm

(
sm, D0(sm)

))

+ M2α

(∫ T

sm

(

f
(
s, D0(s)

)
+

∫ s

0
q(s – τ )h

(
τ , D0(τ )

)
dτ

)

ds
)

+ Mα

(∫ t

0

(

f
(
s, D0(s)

)
+

∫ s

0
q(s – τ )h

(
τ , D0(τ )

)
dτ

)

ds
)

≤ M2Lgm (t)α(D)

+ M2
(∫ T

sm

Lf (s)α
(
D0(s)

)
+

∫ s

0
q(s – τ )Lh(τ )α

(
D0(τ )

)
dτ ds

)

+ M
(∫ t

0
Lf (s)α

(
D0(s)

)
+

∫ s

0
q(s – τ )Lh(τ )α

(
D0(τ )

)
dτ ds

)

≤
(

M2Lgm (t) + M2
∫ T

sm

Lf (s) ds + M
∫ t

0
Lf (s) ds

+
(
M2 + M

)
∫ t

0

∫ s

0
q(s – τ )Lh(τ ) dτ ds

)

α(D). (3.10)

Case 2. For any t ∈ (ti, si], i = 1, 2, . . . , m, we get

α
(
F(D0)(t)

) ≤ MLgi (t)α(D). (3.11)

Case 3. For any t ∈ (si, ti+1], i = 1, 2, . . . , m, we get

α
(
F(D0)(t)

) ≤ MLgi (t)α(D)

+ M
(∫ t

si

Lf (s)α
(
D0(s)

)
+

∫ s

0
q(s – τ )Lh(τ )α

(
D0(τ )

)
dτ ds

)

≤ M
(

Lgi (t) +
∫ t

si

Lf (s) ds +
∫ t

si

∫ s

0
q(s – τ )Lh(τ ) dτ ds

)

α(D). (3.12)

By Lemma 2.4, we have

α
(
F(D0)

)
= max

t∈J
α
(
F(D0)(t)

)
.

Therefore

α
(
F(D)

) ≤ �α(D).



Zhu and Liu Boundary Value Problems  (2018) 2018:128 Page 9 of 14

By (3.5), we get that F : Co F(BR∗ ) → Co F(BR∗ ) is a strict set contraction mapping. Thus,
by Lemma 2.1, F has at least one fixed point u∗ ∈ Co F(BR∗ ) ⊂ PC(J , E), which means that
problem (1.1) has at least one mild solution. �

Remark 3.1 In Theorem 3.1, we assume that the resolvent operator Uβ (t, s) is noncompact
for t > 0. In the following Theorem 4.1, the resolvent operator Uβ (t, s) is compact for t > 0.

4 Uβ (t, s) is compact
Theorem 4.1 Assume that the following conditions (H3)–(H5) hold.

(H3) The resolvent operator Uβ (t, s) is compact for t, s > 0 and M =
max0≤s<t≤T ‖Uβ (t, s)‖ < +∞.

(H4) The functions f , h : J × E → E are continuous, and there exist nonnegative Lebesgue
integrable functions a, b, Lf , Lh ∈ L1(J ,R+) such that, for all u ∈ E, t ∈ J ,

∥
∥f (t, u)

∥
∥ ≤ a(t) + Lf (t)‖u‖γ , 0 < γ ≤ 1,

∥
∥h(t, u)

∥
∥ ≤ b(t) + Lh(t)‖u‖μ, 0 < μ ≤ 1.

(H5) The functions gi, i = 1, 2, . . . , m : J × E → E are continuous, there exist nonnegative
functions ci, Lgi , i = 1, 2, . . . , m, such that

∥
∥gi(t, u)

∥
∥ ≤ ci(t) + Lgi (t)‖u‖νi , 0 < νi ≤ 1, i = 1, 2, . . . , m,

and

C = sup
t∈[ti ,si],i=1,2,...,m

ci(t) < ∞, L = sup
t∈[ti ,si],i=1,2,...,m

Lgi (t) < ∞.

Then problem (1.1) has a mild solution on PC(J , E).

Proof The proof includes the following several steps.
Step 1. F : PC(J , E) → PC(J , E) is continuous. The proof is similar to Step 1 of Theo-

rem 3.1.
Step 2. For all R > 0, we will prove that F(BR) is equicontinuous. Case 1. For interval

[0, t1], 0 ≤ e1 < e2 ≤ t1, u ∈ BR, we get

∥
∥(Fu)(e2) – (Fu)(e1)

∥
∥

≤ ∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥
∥
∥Uβ (T , tm)gm

(
sm, u(sm)

)∥
∥

+
∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥

×
∥
∥
∥
∥

∫ T

sm

Uβ (T , s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

+ sup
s∈[0,t1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥

×
∥
∥
∥
∥

∫ e1

0

(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ e2

e1

Uβ (e2, s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥
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≤ M
(
C + LRνm

)∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥

+ M
∥
∥Uβ (e2, 0) – Uβ (e1, 0)

∥
∥

×
∫ T

sm

(

a(s) + Lf (s)Rγ +
∫ s

0
q(s – τ )

(
b(τ ) + Lh(τ )Rμ

)
dτ

)

ds

+ sup
s∈[0,t1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥

×
∫ e1

0

(

a(s) + Lf (s)Rγ +
∫ s

0
q(s – τ )

(
b(τ ) + Lh(τ )Rμ

)
dτ

)

ds

+ M
∫ e2

e1

(

a(s) + Lf (s)Rγ +
∫ s

0
q(s – τ )

(
b(τ ) + Lh(τ )Rμ

)
dτ

)

ds. (4.1)

Case 2. For interval (ti, si], i = 1, 2, . . . , m, 0 ≤ e1 < e2 ≤ t1, u ∈ BR, we have

∥
∥(Fu)(e2) – (Fu)(e1)

∥
∥ ≤ ∥

∥Uβ (e2, ti)gi
(
e2, u(e2)

)
– Uβ (e1, ti)gi

(
e1, u(e1)

)∥
∥

≤ M
∥
∥Uβ (e2, e1)gi

(
e2, u(e2)

)
– gi

(
e1, u(e1)

)∥
∥. (4.2)

Case 3. For interval (si, ti+1], i = 1, 2, . . . , m, 0 ≤ e1 < e2 ≤ t1, u ∈ BR, we have

∥
∥(Fu)(e2) – (Fu)(e1)

∥
∥

≤ ∥
∥Uβ (e2, ti) – Uβ (e1, ti)

∥
∥
∥
∥gi

(
si, u(si)

)∥
∥ + sup

s∈(si ,ti+1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥

×
∥
∥
∥
∥

∫ e1

si

(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

+
∥
∥
∥
∥

∫ e2

e1

Uβ (e2, s)
(

f
(
s, u(s)

)
+

∫ s

0
q(s – τ )h

(
τ , u(τ )

)
dτ

)

ds
∥
∥
∥
∥

≤ (
C + LRνi

)∥
∥Uβ (e2, ti) – Uβ (e1, ti)

∥
∥ + sup

s∈(si ,ti+1]

∥
∥Uβ (e2, s) – Uβ (e1, s)

∥
∥

×
∫ e1

si

(

a(s) + Lf (s)Rγ +
∫ s

0
q(s – τ )

(
b(τ ) + Lh(τ )Rμ

)
dτ

)

ds

+ M
∫ e2

e1

(

a(s) + Lf (s)Rγ +
∫ s

0
q(s – τ )

(
b(τ ) + Lh(τ )Rμ

)
dτ

)

ds. (4.3)

By Remark 2.1 and the above inequalities (4.1)–(4.3), we derive that ‖(Fu)(e2)–(Fu)(e1)‖ →
0 as e2 → e1. Therefore, F(BR) is equicontinuous.

Step 3. We will prove that F(BR) is precompact. For all fixed t (0 < t ≤ T ) and 0 < ε < t,
let u ∈ BR and define

(Fεu)(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Uβ (t, 0)[Uβ (T , tm)gm(sm, u(sm))

+
∫ T

sm
Uβ (T , s)(f (s, u(s)) +

∫ s
0 q(s – τ )h(τ , u(τ )) dτ ) ds]

+
∫ t–ε

0 Uβ (t, s)(f (s, u(s)) +
∫ s

0 q(s – τ )h(τ , u(τ )) dτ ) ds, t ∈ [0, t1],

Uβ (t, ti)gi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , m,

Uβ (t, ti)gi(si, u(si)) +
∫ t–ε

si
Uβ (t, s)(f (s, u(s)) +

∫ s
0 q(s – τ )h(τ , u(τ )) dτ ) ds,

t ∈ (si, ti+1], i = 1, . . . , m.
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By the compactness of Uβ (t, s) for t, s > 0, the set Yε(t) = {(Fεu)(t) : u ∈ BR} is relatively
compact in E for any ε (0 < ε < t). For any u ∈ BR, from the following inequalities

∥
∥(Fu)(t) – (Fεu)(t)

∥
∥ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M
∫ t

t–ε
(a(s) + Lf (s)Rγ +

∫ s
0 q(s – τ )(b(τ ) + Lh(τ )Rμ) dτ ) ds,

t ∈ [0, t1],

0, t ∈ (ti, si], i = 1, 2, . . . , m,

M
∫ t

t–ε
(a(s) + Lf (s)Rγ +

∫ s
0 q(s – τ )(b(τ ) + Lh(τ )Rμ) dτ ) ds,

t ∈ (si, ti+1], i = 1, . . . , m,

we get Y (t) = {(Fu)(t) : u ∈ BR} is totally bounded. Thus, Y (t) is relatively compact in E.
By using the Arzelá–Ascoli theorem, we have that F : PC(J , E) → PC(J , E) is completely
continuous.

For 0 < λ < 1, let u = λ(Fu), we have

u(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λUβ (t, 0)[Uβ (T , tm)gm(sm, u(sm))

+ λ
∫ T

sm
Uβ (T , s)(f (s, u(s)) +

∫ s
0 q(s – τ )h(τ , u(τ )) dτ ) ds]

+ λ
∫ t

0 Uβ (t, s)(f (s, u(s)) +
∫ s

0 q(s – τ )h(τ , u(τ )) dτ ) ds, t ∈ [0, t1],

λUβ (t, ti)gi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , m,

λUβ (t, ti)gi(si, u(si)) + λ
∫ t

si
Uβ (t, s)(f (s, u(s)) +

∫ s
0 q(s – τ )h(τ , u(τ )) dτ ) ds,

t ∈ (si, ti+1], i = 1, . . . , m,

and then

∥
∥u(t)

∥
∥ ≤

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

M2(C + LRνm ) + M2 ∫ T
sm

(a(s) + Lf (s)Rγ +
∫ s

0 q(s – τ )(b(τ ) + Lh(τ )Rμ) dτ ) ds

+ M
∫ t

0 (a(s) + Lf (s)Rγ +
∫ s

0 q(s – τ )(b(τ ) + Lh(τ )Rμ) dτ ) ds, t ∈ [0, t1],

M(C + LRνi ), t ∈ (ti, si], i = 1, 2, . . . , m,

M(C + LRνi ) + M
∫ t

si
(a(s) + Lf (s)Rγ +

∫ s
0 q(s – τ )(b(τ ) + Lh(τ )Rμ) dτ ) ds,

t ∈ (si, ti+1], i = 1, . . . , m.

Let

ρ = max

{

M2(C + LRνm
)

+ M2
∫ T

sm

(

a(s) + Lf (s)Rγ +
∫ s

0
q(s – τ )

(
b(τ ) + Lh(τ )Rμ

)
dτ

)

ds

+ M
∫ t

0

(

a(s) + Lf (s)Rγ +
∫ s

0
q(s – τ )

(
b(τ ) + Lh(τ )Rμ

)
dτ

)

ds,

M
(
C + LRνi

)
,

M
(
C + LRνi

)

+ M
∫ t

si

(

a(s) + Lf (s)Rγ +
∫ s

0
q(s – τ )

(
b(τ ) + Lh(τ )Rμ

)
dτ

)

ds,

t ∈ (si, ti+1], i = 1, . . . , m
}

.



Zhu and Liu Boundary Value Problems  (2018) 2018:128 Page 12 of 14

Then there exists a constant M∗ > ρ such that ‖u‖PC �= M∗. Let V = {u ∈ PC(J , E) : ‖u‖PC <
M∗}. Obviously there is no u ∈ ∂V such that u = λ(Fu) for λ ∈ (0, 1). It thus follows from
the nonlinear alternative for single-valued maps that F has a fixed point u in V , which is
a mild solution of problem (1.1). �

5 An example
We give an example to illustrate our main results in this paper.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

cDα
t u(x, t) = t ∂2

∂x2 u(x, t) + t
1+t2 sin u(x, t) +

∫ t
0 et–s es

‖u(x,s)‖ ds,

t ∈ [0, 1) ∪ (2, 3],
∂
∂x u(0, t) = ∂

∂x u(1, t) = 0, t ∈ [0, 1) ∪ (2, 3],

u(x, t) = Uβ (t, 1) 1
3 u(x, t), x ∈ [0,π ], t ∈ (1, 2], x ∈ (0, 1),

u(0, x) = u(3, x) = 0, x ∈ (0, 1),

(5.1)

where E = L2[0, 3], J = [0, 3], 0 = t0 = s0, t1 = 1, s1 = 2, T = 3, 0 < α ≤ 1, the operator
A : D(A) = {u ∈ E : u′′ ∈ E, u(0) = u(1) = 0} ⊂ E → E defined by A(t)(z) = t ∂2u

∂x2 . Then A(t)
generates a β-resolvent family Uβ (t, s) on E.

Denote

u(t) = u(·, t), f
(
t, u(t)

)
=

t
1 + t2 sin u(·, t), h

(
t, u(t)

)
=

es

‖u(·, t)‖ ,

q(t – s) = et–s, g1
(
t, u(t)

)
=

1
3

u(·, t).

Therefore, Eq. (5.1) takes the following abstract form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDβ
t u(t) = A(t)u(t) + f (t, u(t)) +

∫ t
0 q(t – s)h(s, u(s)) ds,

t ∈ (si, ti+1], i = 0, 1, . . . , m,

u(t) = Uβ (t, ti)gi(t, u(t)), t ∈ (ti, si], i = 1, 2, . . . , m,

u(0) = u(T).

(5.2)

If we assume that problem (5.2) satisfies the conditions of Theorems 3.1 and 4.1, then by
Theorems 3.1 and 4.1, we know that problem (5.2) has a mild solution, which means that
problem (5.1) has a mild solution.

6 Conclusion
This paper investigates the existence of periodic boundary value problems for fractional
semilinear integro-differential equations with non-instantaneous impulses by the mea-
sure of noncompactness, the theory of the resolvent family, and the fixed point theo-
rem. The main results presented in this paper improve and generalize many results in
[18–20, 24–26].
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