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Abstract
We study the Hölder continuity of weak solution u to an equation arising in the
stationary motion of electrorheological fluids. To this end, we first obtain higher
integrability of Du in our case by establishing a reverse Hölder inequality. Next, based
on the result of locally higher integrability of Du and difference quotient argument,
we derive a Nikolskii type inequality; then in view of the fractional Sobolev
embedding theorem and a bootstrap argument we obtain the main result. Here, the
analysis and the existence theory of a weak solution to our equation are similar to the
weak solution which has been established in the literature with
3d
d+2 ≤ p∞ ≤ p(x) ≤ p0 < ∞, and in this paper we confine ourselves to considering
p(x) ∈ ( 3d

d+2 , 2) and space dimension d = 2, 3.

Keywords: Higher integrability; Hölder continuity; Nonlinear problem; Fractional
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1 Introduction
Let � ⊂ R

d (d = 2, 3) be a bounded Lipschitz domain. This paper deals with a nonlin-
ear problem (1.6) which arises in the steady motions of a special incompressible non-
Newtonian fluid: electrorheological fluids, one example of smart fluids that change their
viscosity rapidly when an electric field is applied. In the field of mechatronics, this fluid
is actively being researched and numerous research activities on this fluid have been per-
formed in various engineering applications. Also in the mathematical community such
materials are intensively investigated being non-Newtonian fluids [9, 10, 12–14, 34]. Note
that one of the first mathematical investigations of non-Newtonian models was carried
out by Ladyzhenskaya in 1966 [26–28]; the author considered the modified Navier–Stokes
equations

⎧
⎨

⎩

ut – div a(Du) + Dφ = – div(u ⊗ u) + f in �,

div u = 0 in �,
(1.1)

where u : � −→R
d,φ : � −→R, are the unknown velocity, pressure, respectively. f : � −→

R
d is a given density of the bulk force. Du denotes the symmetric part of the velocity

gradient ∇u, namely Du = 1
2 (∇u + (∇u)T ), a : Rd×d −→ R

d×d depends in a nonlinear way
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by Du. We note that there is abundant literature on the power-law model

a(Du) = ν0
(
ν1 + |Du|2)

q–2
2 Du + ν2Du, (1.2)

with ν0 > 0,ν1,ν2 ≥ 0, here q > 1 is a positive constant. For example, the existence of
measure-valued solutions was shown to (1.1)–(1.2) for q > 2d

d+2 in [29, 36], for q > 2d
d+2 ,

the existence of a weak solution has been studied in [6, 15, 30–32]. In [46], Wolf con-
structed a weak solution u ∈ Lq(0, T ; Vq(�)) ∩ Cw(0, T ; L2(�)) to (1.1)–(1.2) for the power
with q > 2 d+1

d+2 . In 2014, Bae and Jin [5] studied the local in time existence of a weak solu-
tion to (1.1)–(1.2) for 3d

d+2 < q < 2 when d = 2, 3 and the global in time existence of a weak
solution for q ≥ 11

5 , when d = 3.
When q as a positive constant is replaced by a variable exponent p(x), then the model

of (1.2) can be seen as the variable exponent power-law model. According to the model
proposed by Rajagopal and Růžička [38, 41], the system of electrorheological fluids reads

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

div E = 0, curl E = 0 in �,

E · n = E0 · n on ∂�,

ut – div S(Du, E) + u · ∇u + ∇φ = f + χEE · ∇E in QT ,

div u = 0, u|t=0 = u0 in QT ,

u = 0 on ∂�,

(1.3)

with f , E0, u0 are given. QT = [0, T] × �, E : QT −→ R
d is the electric field, u : QT −→ R

d

is the velocity, φ : QT −→ R is the pressure, f : QT −→ R
d is the mechanical force and χE

is the positive constant dielectric susceptibility. S(D, E) : Rd×d
sym ×R

d −→ R
d×d
sym denotes the

stress tensor, which is under non-standard growth conditions

S(Du, E) = α21
((

1 + |Du|2)
p(|E|2)–1

2 – 1
)
E ⊗ E

+
(
α31 + α33|E|2)(1 + |Du|2)

p(|E|2)–2
2 Du

+ α51
(
1 + |Du|2)

p(|E|2)–2
2

(
(Du)E ⊗ E + E ⊗ (Du)E

)
. (1.4)

Here αij are material constants such that

α31 > 0, α33 > 0, α33 +
4
3
α51 > 0,

and p = p(|E|2) > 1 is continuous. We shall note that the system (1.4) is separated into the
quasi-static Maxwell’s equation (1.4)1–(1.4)2 (cf. [25]) and the equation of motion and the
conservation of mass (1.4)3-(1.4)5, where E can be viewed as a parameter.

Note that the higher differentiability of weak solutions to (1.3)–(1.4) had been obtained
in [40, 41], the first regularity result for the model of electrorheological fluids proposed in
[41], and in any case the first in a point-wise sense. A further step, the Hausdorff dimension
of the singular set �\�0 has been studied in [3]. Related regularity results in the stationary
case can also be found in [1, 2, 10, 45] and the references therein. For the non-stationary
case, one can refer [4, 41].
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In this paper, we are interested in the (interior) regularity properties of weak solutions
to the stationary case of (1.3)–(1.4):

div u = 0, – div S(Du, E) + u · ∇u + ∇φ = f + χEE · ∇E. (1.5)

The issue of regularity of solutions to (1.5) has been performed in [41] where the author
proves the existence of a W 2,2 solution to (1.5). Here we analyze the system arising from
(1.5) as

⎧
⎪⎪⎨

⎪⎪⎩

– div S(Du) + u · ∇u + ∇φ = f in �,

div u = 0 in �,

u = 0 on ∂�,

(1.6)

where f : � −→R
d , and

S(Du) =
(
μ0 + |Du|2)

p(x)–2
2 Du, (1.7)

with μ0 > 0. p(·) : � −→ [1,∞) is a given Hölder (log-Hölder) continuous function that
satisfies

3d
d + 2

< p∞ ≤ p(x) ≤ p0 < 2,
∣
∣p(x) – p(y)

∣
∣ ≤ ω

(|x – y|) ≤ c0|x – y|2θ1 , (1.8)

for all x, y ∈ �̄, where c0 ≥ 1 is a constant, θ1 = Ad(d+2)–3d
2Ad

∈ (0, 1) and Ad be a constant
defined in (3.29), p∞ := minx∈�̄ p(x) and p0 := maxx∈�̄ p(x), ω : R+ −→ R

+ is the modulus
of p(·), which satisfies

ω(6R) < 1, ω(R) log
1
R

≤ L, (1.9)

for all 0 < R ≤ 1 and L > 0 is a constant. In this paper, we assume μ0 = 1, then from the
definition of S(Du),

∣
∣S(Du)

∣
∣ ≤ (

1 + |Du|2)
p(x)–1

2 . (1.10)

The purpose of this paper is to study the Hölder continuity of a weak solution u to (1.6),
to this end, various higher integrability results are important to overcome the lack of stan-
dard growth conditions of the system. Thus, we first improve the power of integrability of
Du ∈ Lp(x)

loc , p(x) ∈ (1, 2) by establishing a reverse Hölder inequality, and at this point, us-
ing the Gerhing lemma 2.4, we can deduce that Du ∈ Lp(x)(1+δ1) for some positive constant
δ1 > 0. Next, by a difference quotient argument, we proceed to show the fractional differ-
entiability of Du. For this purpose, we construct a Nikolskii type inequality (3.38), from
which, by the fractional order Sobolev embedding theorem and a standard bootstrap ar-
gument, we have Du ∈ Lη with η ≥ d. Note that the self-improving property to a class of
elliptic system was first observed by Elcrat and Meyers in [33] (see also [20] and [43]), but
their argument is based on the reverse Hölder inequality and a modification of the Gehring
lemma. Finally, by the Sobolev embedding theorem, we derive the Hölder continuity of u.
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In the whole paper, the key point is to suppose that p(·) satisfies the log-Hölder conditions
(1.8)–(1.9), which implies that

1
r

∼ 1
rp2/p1

and
1
r

∼ 1
rp2

2/p2
1

,

for all r ∈ (0, 1] when p1 := infx∈B3r p(x), p2 := supx∈B3r p(x). Moreover, when p(x) satisfies
the log-Hölder continuous conditions, one can use the Korn inequality with variable ex-
ponent case (Lemma 2.3), which is the main tool to prove the local higher integrability of
∇u in terms of Du. We also observe that, for the sake of brevity and in order to highlight
the main ideas, we confine ourselves to the considered homogeneous case of (1.6). For
the non-homogeneous case (f ∈ W –1,p′(x)(�)), there are some technique difficulties in the
proof of higher integrability of Du (Lemma 3.1), and we will investigate it in our future
work. The result of this paper reads as follows.

Theorem 1.1 Suppose f = 0. Let � ⊂ R
d (d = 2, 3) be a bounded domain with Lipschitz

boundary ∂� and let p(·) : � −→ ( 3d
d+2 , 2) be log-Hölder continuous where 3d

d+2 < p∞ ≤ p ≤
p0 < 2 satisfies (1.8)–(1.9), and S(Du) satisfies (1.10). (u,φ) ∈ (Vp(x), Lp′(x)

0 (�)) are the solu-
tions of (1.6)–(1.7). Then

u ∈ Cα(�) for some α ∈ (0, 1).

The rest of paper is organized as follows. In Sect. 2, we present some notions of variable
exponents spaces, the definition of a weak solution to (1.6), the property of a difference
quotient with variable exponents, and formulate some lemma which will be used in later.
In Sect. 3, we first prove the locally higher integrability of Du (Lemma 3.1). Next, by the
known result of the difference quotient argument, the log-Hölder continuity of p(·), we
derive the fractional differentiability of Du, then, by the fractional Sobolev space embed-
ding theorem and a standard bootstrap argument, we obtain the higher integrability of Du
(the power of integrability is bigger than that in Lemma 3.1). At last, we prove the main
result of Theorem 1.1.

2 Preliminaries
2.1 Basic notions
In the present paper we shall often write p or p(·) instead of p(x) if there is no danger
of confusion and the exponent q denotes a constant. c denotes a general constant which
may vary in different estimates. If the dependence needs to be explicitly stressed, some
notations like c′, c0, c1, c(k0) will be used. A ∼ B means there exist constants c1 and c2 such
that c1B ≤ A ≤ c2B. Br(x0) := {x : dist(x, x0) < r}, we denote the average integral of u on Br as
(u)r := (u)Br = 1

|Br |
∫

Br
u dx. We recall in what follows some definitions and basic properties

of the generalized Lebesgue–Sobolev spaces Lp(x)(�) and W 1,p(x)(�) (for more details one
can refer to [8, 11, 16–18, 22–24, 37, 39, 44] and the references therein). Let P(�) be the set
consisting of a Lebesgue measurable function p(·) : � −→ [1,∞], where � ⊂ R

d (d ≥ 2)
is nonempty. Now, for any p(x) ∈ P(�), let us introduce the spaces which are used in this
paper,

Vp(x) :=
{

u : u ∈ W 1,p(x)(�), div u = 0
}

,
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Lp(x)
0 (�) :=

{

u : u ∈ Lp(x)(�),
∫

�

u dx = 0
}

.

Next, let us introduce the embedding properties of the generalized Lebesgue space.
Firstly, we know that

Lp(x)(�) ↪→ Lq(x)(�), (2.1)

if and only if

q(x) < p(x) a.e. in �.

Moreover, if q ∈ P(�) and q(x) < p∗(x) and for all x ∈ �̄, then the embedding W 1,p(x) ↪→
Lq(x)(�) is compact and continuous, where p∗(x) = np(x)/(n – p(x)) if p(x) < n or p∗(x) =
+∞ if p(x) = n. In what follows we denote Lp′(x)(�) as the conjugate of Lp(x)(�), where
1/p(x) + 1/p′(x) = 1, then for all p(x) ∈ P(�), u ∈ Lp(x)(�), v ∈ Lp′(x)(�) we have

∫

�

∣
∣u(x)v(x)

∣
∣dx ≤ 2

∣
∣u(x)

∣
∣
Lp(x)

∣
∣v(x)

∣
∣
Lp′(x) .

From the definition of variable exponent Lebesgue space above, now we introduce a basic
property of Lp(x)(�).

Lemma 2.1 Let p(x) ∈ P(�) satisfy 1 ≤ t1 ≤ p(x) ≤ t2 < ∞, then for every u ∈ Lp(x)(�)

min
{‖u‖t1

Lp(x)(�),‖u‖t2
Lp(x)(�)

} ≤
∫

�

|u|p(x) dx ≤ max
{‖u‖t1

Lp(x)(�),‖u‖t2
Lp(x)(�)

}
. (2.2)

A proof can be retrieved e.g. from Lemma 3.2.5 in [11]. For convenience, we may denote
inequality (2.2) as

‖u‖s1
Lp(x)(�) ≤

∫

�

|u|p(x) dx ≤ ‖u‖s2
Lp(x)(�), (2.3)

where s1, s2 equal to t1 or t2.
The following conclusion from fluid dynamics ensures local bounds of ∇u in terms of

Du on the scale of Lq space.

Lemma 2.2 (Korn inequality) Let 1 < γ1 ≤ q ≤ γ2 and assume that u ∈ Lq(Br(x0),Rd) sat-
isfies Du ∈ Lq(Br(x0),Rd×d

sym ). Then ∇u ∈ Lq(Br(x0),Rd×d) and for a constant c = c(d,γ1,γ2)
we have

–
∫

Br(x0)
|∇u|q dx ≤ c–

∫

Br (x0)
|Du|q dx + c

(

–
∫

Br(x0)

∣
∣
∣
∣
u – (u)x0,r

r

∣
∣
∣
∣dx

)q

. (2.4)

Additionally, if u = 0 on ∂Br(x0), then

–
∫

Br(x0)
|∇u|q dx ≤ c–

∫

Br (x0)
|Du|q dx.
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Its proof may be found, e.g., in [35]. In addition, we shall use the Korn inequality with
variable exponent case, and we formulate it in the form we need (cf. Theorem 14.3.23
in [11]).

Lemma 2.3 Let Br ⊂ R
d be a bounded ball, let p(x) satisfies log-Hölder conditions and

1 < p∞ ≤ p(x) ≤ p0 < ∞. Then

∥
∥∇u – (∇u)r

∥
∥

Lp(x)(Br) ≤ c
∥
∥Du – (Du)r

∥
∥

Lp(x)(Br),

‖∇u‖Lp(x)(Br) ≤ c
∥
∥Du – (Du)r

∥
∥

Lp(x)(Br) +
c
r
∥
∥u – (u)r

∥
∥

Lp(x)(Br),
(2.5)

for all u ∈ W 1,p(x)(Br).

Next, we introduce the Gehring lemma in a version formulated by Giaqunta and Giusti
(see, e.g., Chapter V, Proposition 1.1 in [20] or Theorem 6.6 in [21]).

Lemma 2.4 Let � ⊂ Rd , 0 < m < 1, and f ∈ L1
loc(�), g ∈ Lσ

loc(�) for some σ > 1 be two
nonnegative functions such that for any ball Bρ with B3ρ ⊂⊂ �

–
∫

Bρ

f dx ≤ b1

(

–
∫

B3ρ

f m dx
) 1

m
+ b2–

∫

B3ρ

g dx + k–
∫

B3ρ

f dx,

where b1, b2 > 1 and 0 < k ≤ k0 = k0(m, d). Then there exists a constant γ0 = γ0(d, m, b1) > 1
such that

f ∈ Lγ

loc for all 1 < γ < min{γ0,σ }.

In order to show the interior higher integrability of Du, we shall use the following lemma,
which is a well-known result (Bogovskii theorem), and we restate in the form we need (cf.
[7, 19]).

Lemma 2.5 Let BR ⊂ R
d and let f ∈ Lq(BR) with 1 < q1 < q < q2 be such that (f )R = 0. Then

there exists v ∈ W 1,q
0 (BR;Rd) satisfying

div v = f

and such that
∫

BR

|∇v|q3 dx ≤ c
∫

BR

|f |q3 dx,

for every q3 ∈ [q1, q], where c = c(d, q1, q2) is independent of R > 0. Moreover, if the support
of f is contained in Br ⊂ BR, the same result holds for v.

Recalling the structure of S = S(Du) in (1.7) with μ0 = 1, then we have

Sij(ξ ) =

⎧
⎨

⎩

(1 + |ξ |2)
p(x)–2

2 ξij, ξ ∈ Rd×d
sym , ξ �= 0,

0, ξ = 0,
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with 3d
d+2 < p∞ ≤ p(x) ≤ p0 ≤ 2. Define

S(ξ ) := A(x, ξ ) =
(
1 + |ξ |2)

p(x)–2
2 ξ , ξ ∈ Rd×d

sym .

Then A : � × Rd×d
sym −→ Rd×d

sym satisfy

∣
∣A(x, ξ ) – A(x0, ξ )

∣
∣

≤ ω
(|x – x0|

)[(
1 + |ξ |2)

p(x)–1
2 +

(
1 + |ξ |2)

p(x0)–1
2

](
1 + log

(
1 + |ξ |)), (2.6)

A(x, ξ ) · ξ ≥ |ξ |p(x) – 1. (2.7)

From the definition of Sij(ξ ), we can also obtain

∂Sij(ξ )
∂ξkl

=
(
p(x) – 2

)(
1 + |ξ |2)

p(x)–4
2 ξklξij +

(
1 + |ξ |2)

p(x)–2
2 δkiδlj,

where δij is Kronecker’s delta, for all ξ ,η ∈ Rd×d
sym , |ξ | + |η| > 0,

(
Sij(ξ ) – Sij(η)

)
(ξij – ηij)

=
∫ 1

0

d
dt

Sij
(
η + t(ξ – η)

)
dt(ξij – ηij)

≥
∫ 1

0

(
p(·) – 1

)(
1 +

(
η + t(ξ – η)

)2) p(·)–2
2 |ξ – η|2 dt

≥
∫ 1

0

(
p(·) – 1

)(
1 +

∣
∣η + t(ξ – η)

∣
∣
)p(·)–2|ξ – η|2 dt

≥ (
p(·) – 1

)(
1 + |ξ | + |η|)p(·)–2|ξ – η|2

≥ k0
(
1 + |ξ | + |η|)p(·)–2|ξ – η|2, (2.8)

where k0 = p∞ – 1, and in the third inequality we have taken into account the inequality

(
1 + |ξ | + |η|)–(2–p(·)) ≤

∫ 1

0

(
1 + |ξ + tη|)–(2–p(·)) dt, a.e. in �.

2.2 The property of difference quotient
In the whole paper, we will employ the difference

�λ,ku(x) := u(x + λek) – u(x),

where ek = (0, . . . , 1, . . . , 0) and 1 at the kth place (k = 1, . . . , d). Moreover, for simplicity, we
may repeat, using the parameter p1, p2:

p1 := inf
x∈B3r

p(x), p2 := sup
x∈B3r

p(x).

Let Br = Br(x0) ⊂ � be a ball such that B̄6r ⊂ �, in what follows, we will repeatedly use the
following fact.
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Lemma 2.6 Let 1 ≤ p(·) ≤ q0 < ∞ (q0 is a constant) and f ∈ W 1,p(·)(�), then, for all V ⊂⊂
� ⊂R

d , there exists a constant c > 0 such that

∫

Bmr

|�λ,ku|p(x) dx ≤ c|λ|p1

∫

B(m+1)r

∣
∣
∣
∣
∂u
∂xk

∣
∣
∣
∣

p(x)

dx, (2.9)

for all |λ| < r < 1, k = 1, . . . , d, m = 1, 2.

Proof We first assume u(x) is smooth, then for all x ∈ V , i = 1, 2, . . . , d and 0 < |h| <
1
2 dist(V , ∂�)

u(x + hei) – u(x) = h
∫ 1

0

∂u(x + thei)
∂xi

dt,

from above, then we have

∫

V

∣
∣Dhu(x)

∣
∣p(·) dx =

∫

V

{ d∑

i=1

∣
∣
∣
∣
u(x + hei) – u(x)

h

∣
∣
∣
∣

2
} p(·)

2

dx

≤
∫

V

{ d∑

i=1

[∫ 1

0

∣
∣∇u(x + thei)

∣
∣dt

]2
} p(·)

2

dx

≤ c
d∑

i=1

∫

V

∫ 1

0

∣
∣∇u(x + thei)

∣
∣p(·) dt dx

≤ c
∫

�

∣
∣∇u(x)

∣
∣p(·) dx,

where c is independent of p(·), and in the second inequality we have taken into account
the fact

(∣
∣u(x)

∣
∣ +

∣
∣v(x)

∣
∣
)p(x) ≤ 2supx∈V p(x)–1(∣∣u(x)

∣
∣p(x) +

∣
∣v(x)

∣
∣p(x)), p(x) ≥ 1. (2.10)

Indeed, when |u| or |v| equal to zero, the above inequality is obvious, and without loss of
generality, we may assume |u|, |v| �= 0, and

V = V1 ∪ V2, V1 :=
{

x : |u| ≥ |v|}, V2 :=
{

x : |v| ≥ |u|}.

It is only enough to consider |u| ≥ |v| in V1, set t := |u|
|v| ≥ 1, observe the function

f (t) =
(1 + t)p(x)

1 + tp(x) , t ≥ 1, p(x) ≥ 1,

then we obtain, for any fixed x, supt≥1 f (t) = 2p(x)–1. Hence,

(1 + t)p(x)

1 + tp(x) ≤ 2p(x)–1, a.e. x ∈ V1,

whence (2.10) in V1, by set t := |v|
|u| , we have same conclusion in V2, thus we obtain (2.10).

From the definition of a generalized Lebesgue space, we obtain (2.9) if u is smooth, then,
for all u ∈ W 1,p(·)(�), (2.9) holds. �



Tan et al. Boundary Value Problems  (2018) 2018:131 Page 9 of 23

2.3 Definition of the weak solutions to (1.6)
Suppose 3d

d+2 ≤ p∞ ≤ p(x) ≤ p0 < ∞, and f ∈ W –1,p′(·)(�) is given, then (u,φ) ∈ (Vp(·),
Lp(·)′

0 (�)) is said to be a weak solution to (1.6)–(1.10), if and only if

∫

�

S(Du) · Dϕ dx –
∫

�

u ⊗ u · ∇ϕ dx –
∫

�

φ divϕ dx + (f ,ϕ) = 0, (2.11)

for all ϕ ∈ W 1,p(x)
0 (�), or

∫

�

S(Du) · Dϕ dx –
∫

�

u ⊗ u · ∇ϕ dx + (f ,ϕ) = 0, (2.12)

for all ϕ ∈ Vp(x). For more details, one can refer for instance to [11] (Chap. 14, Sect. 4,
p. 472) or [41].

3 Hölder continuity of weak solutions
We note that the starting point for any comparison and freezing argument in the setting
of variable p(x)-growth problems is a quantitative higher integrability result. Hence, in
order to obtain the interior differentiability of weak solution to (1.6), we shall first show
the locally higher integrability of Du. At this point, we define a global positive constant
α ∈ (1, [(d + 2)p∞ – d]/2d), from which we then have the following result.

Lemma 3.1 Suppose f = 0. Let � ⊂ R
d (d = 2, 3) be a bounded domain with Lipschitz

boundary ∂� and let p(·) : � −→ ( 3d
d+2 , 2) be log-Hölder continuous with 3d

d+2 < p∞ ≤ p ≤
p0 < 2 satisfying (1.8) and (1.9), and S satisfying (1.10). (u,φ) ∈ (Vp(x), Lp′(x)

0 (�)) is the so-
lution of (1.6)–(1.7). Then there exist constants c, δ1 > 0 both depending on d, p0, p∞ and
r0 ∈ (0, 1) suitable small, such that if B2r ⊂⊂ � for any r ∈ (0, r0), then

(

–
∫

Br

|Du|p(x)(1+δ1) dx
) 1

1+δ1 ≤ c–
∫

B2r

|Du|p(x) dx + c–
∫

B2r

(|∇u|p∞ + |u|p∗∞ + 1
)

dx. (3.1)

Proof Without loss of generality, we first set r0 = 1
2 , and we will specify it in later. Let

η ∈ C∞
0 (B2r) with r ∈ (0, r0) be a cut-off function such that

⎧
⎪⎪⎨

⎪⎪⎩

η = 1 in Br ,

0 ≤ η ≤ 1 in B2r ,

|∇η| ≤ c
r in B2r ,

where c is a positive constant independent of r. Let

ϕ = η2(u – (u)2r
)

+ w, (3.2)

where the function w is defined according to Lemma 2.5 as a solution to

div w = – div
(
η2(u – (u)2r

))
= –

(
u – (u)2r

) · ∇(
η2). (3.3)
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It is obvious that such a function w exists, since

div u = 0,
∫

B2r

(
u – (u)2r

) · ∇(
η2)dx = 0.

We claim that w ∈ W 1,p2
0 (B2r). In fact, from Lemma 2.5, we have

–
∫

B2r

|∇w|q dx ≤ c–
∫

B2r

∣
∣
∣
∣
u – (u)2r

r

∣
∣
∣
∣

q

dx, (3.4)

for some exponent q > p2 such that the right hand side is finite.
Taking into account (2.12), we let ϕ in (3.2) be a test function, thus

0 =
∫

B2r

η2S(Du) · Du dx + 2
∫

B2r

ηS(Du) · ((u – (u)2r
) · ∇η

)
dx

+
∫

B2r

S(Du) · Dw dx +
∫

B2r

(u · ∇u) · ((u – (u)2r
)
η2)dx

+
∫

B2r

(u · ∇u) · w dx

:= I1 + I2 + I3 + I4 + I5. (3.5)

Now, we estimate the terms I1–I5. Using (2.7), we first infer that

I1 ≥
∫

B2r

η2|Du|p(x) dx – crd. (3.6)

Note that 2p′(x) ≥ 2 and η ∈ [0, 1], thus, by (1.10) and the Young inequality

|I2| ≤ ε

∫

B2r

η2|Du|p(x) dx + c(ε)
∫

B2r

∣
∣
∣
∣
u – (u)2r

r

∣
∣
∣
∣

p(x)

dx + crd, (3.7)

where ε is a positive constant that will be specified later.
Likewise, taking into account (3.4), we arrive at

|I3| ≤ ε

∫

B2r

|Du|p(x) dx + c(ε)
∫

B2r

|Dw|p(x) dx + crd

≤ ε

∫

B2r

|Du|p(x) dx + c(ε)
∫

B2r

∣
∣
∣
∣
u – (u)2r

r

∣
∣
∣
∣

p2

dx + crd. (3.8)

Observe that

∥
∥u – (u)2r

∥
∥

Lq(B2r ) ≤ c(q)‖u‖Lq(B2r )

for any q ≥ 1, with c(q) ≥ 1. Thus, appealing to the Young and Hölder inequalities, we have

|I4| ≤ ‖∇u‖
L( 1

2 ( p∞
α )∗)′ (B2r )

∥
∥u – (u)2r

∥
∥

L( p∞
α )∗ (B2r )

‖u‖
L( p∞

α )∗ (B2r)

≤ c‖∇u‖
L( 1

2 ( p∞
α )∗)′ (B2r )

‖u‖2
L( p∞

α )∗ (B2r )
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≤ c
∫

B2r

|∇u| dp∞
(d+2)p∞–2dα dx + c

∫

B2r

|u|( p∞
α )∗ dx. (3.9)

Similarly, using the Hölder and Young inequalities again, from the property of w in (3.4)
and noting that w ∈ W 1,p2

0 (B2r), the term I5 can be estimated as

|I5| ≤ ‖∇u‖
L

dp∞
(d+2)p∞–2dα (B2r )

‖u‖
L( p∞

α )∗ (B2r )
‖w‖

L( p∞
α )∗ (B2r )

≤ c‖∇u‖
L

dp∞
(d+2)p∞–2dα (B2r )

‖u‖
L( p∞

α )∗ (B2r)
‖∇w‖

L
p∞
α (B2r )

≤ c‖∇u‖
L

dp∞
(d+2)p∞–2dα (B2r )

‖u‖
L( p∞

α )∗ (B2r)

∥
∥u – (u)2r

∥
∥

L( p∞
α )∗ (B2r)

≤ c
∫

B2r

|∇u| dp∞
(d+2)p∞–2dα dx + c

∫

B2r

|u|( p∞
α )∗ dx. (3.10)

Inserting the estimation (3.6)–(3.10) into (3.5) and choosing ε = 1
4 , we conclude that

–
∫

Br

|Du|p(x) dx ≤ c–
∫

B2r

|Du|p(x) dx + c–
∫

B2r

|∇u| dp∞
(d+2)p∞–2dα + |u|( p∞

α )∗ + 1 dx

+ c
(

–
∫

B2r

∣
∣
∣
∣
u – (u)2r

r

∣
∣
∣
∣

p(x)

+
∣
∣
∣
∣
u – (u)2r

r

∣
∣
∣
∣

p2

dx
)

. (3.11)

Next, we shall show a reverse Hölder inequality. In view of the Sobolev–Poincaré and Korn
inequalities in Lemma 2.2, the last term on the right hand side of (3.11) can be estimated
as

–
∫

B2r

∣
∣
∣
∣
u – (u)2r

r

∣
∣
∣
∣

p(x)

dx ≤ 1 + –
∫

B2r

∣
∣
∣
∣
u – (u)2r

r

∣
∣
∣
∣

p2

dx

≤ 1 + |B2r|–
p2

(p∞/α)∗
(∫

B2r

∣
∣
∣
∣
u – (u)2r

r

∣
∣
∣
∣

( p∞
α )∗) p2

(p∞/α)∗

≤ 1 + |B2r|–
p2

(p∞/α)∗
(∫

B2r

|∇u| p∞
α dx

) p2α
p∞

≤ 1 + |B2r|1– p2
(p∞/α)∗ –

∫

B2r

|∇u| p∞
α dx

≤ 1 + c
[

–
∫

B2r

|Du| p∞
α dx + –

∫

B2r

∣
∣
∣
∣
u – (u)2r

r

∣
∣
∣
∣

p∞
α

dx
]

≤ c
[

1 +
(

–
∫

B2r

|Du| p∞
α dx

)α]

+ c–
∫

B2r

|∇u| p∞
α dx, (3.12)

where c = c(d, p0, p∞) and in the fourth inequality, we have taken into account that
p2α/p∞ > 1 and

∫

B2r
|∇u|p∞/α dx ≤ 1 for any r ∈ (0, r′

0] with r′
0 ≤ 1 suitable small, since we

have absolute continuity of the integral. At this stage, we have determined r0 = min{ 1
2 , r′

0}.
Now, inserting (3.12) into (3.11), we conclude that

–
∫

Br

|Du|p(x) dx ≤ c–
∫

B2r

|Du|p(x) dx + c
(

–
∫

B2r

|Du| p∞
α dx

)α
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+ c–
∫

B2r

|∇u| dp∞
(d+2)p∞–2dα + |∇u| p∞

α + |u|( p∞
α )∗ + 1 dx. (3.13)

Taking into account Lemma 2.4, we set

g := |∇u| dp∞
(d+2)p∞–2dα + |∇u| p∞

α + |u|( p∞
α )∗ + 1,

f := |Du|p(x).

From the definition of α, we can see that

d
(d + 2)p∞ – 2dα

∈ (0, 1),
(

p∞
α

)∗
<

p∗∞
α

< p∗
∞.

Thus, we infer that g ∈ Lσ (B2r) for some σ = σ (d, p∞,α) = σ (d, p∞) > 1. At this point, there
exists a constant δ1 > 0 such that γ = 1 + δ1 in Lemma 2.4, then the result (3.1) holds. �

Based on the interior higher integrability of Du, we now turn to a proof of the Hölder
continuity of u. For the main difficult result from the difference quotient of S(Du) in (3.15),
for dealing with it, we need the monotonicity (2.8) and the growth condition (2.6) of S(·).
Furthermore, we may repeatedly use the log-Hölder property of p(x) and the local higher
integrability of Du.

Proof of Theorem 1.1 For i, j = 1, 2, . . . , d. Let ξ ∈ C∞
0 be a cut-off function for B2r , i.e.,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ξ = 1 in Br ,

0 ≤ ξ ≤ 1 in B2r ,

| ∂ξ

∂xi
| ≤ c

r , | ∂2ξ

∂xi ∂xj
| ≤ c

r2 in B2r ,

where c > 0 is a positive constant independent of r. Define

ϕ = �–λ,k
(
ξ 2�λ,ku

)
, (3.14)

where |λ| < r < 1, k = 1, . . . , d. One can see that ϕ is an admissible test function in (2.11).
Now we divide the proof into several steps.

Step 1 (Fractional differentiability of Du). To begin with, we choose ϕ in (3.14) as a test
function, inserting it into (2.11) with f = 0, which implies

∫

B2r

Sij(Du)Dij
(�–λ,k

(
ξ 2�λ,ku

))
dx +

∫

B2r

ui∂iuj�–λ,k
(
ξ 2�λ,kuj

)
dx

=
∫

B2r

φ∂i
(�–λ,k

(
ξ 2�λ,kui

))
dx.

Observe that
∫

B2r

Sij(Du)Dij
(�–λ,k

(
ξ 2�λ,ku

))
dx

=
∫

B2r

[�λ,kSij(Du)
]
ξ 2�λ,kDiju dx
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+
∫

B2r

Sij(Du)�–λ,k

(

ξ

(
∂ξ

∂xi
�λ,kuj +

∂ξ

∂xj
�λ,kui

))

dx

and

�λ,kS(Du)

=
(
1 +

∣
∣Du(x + λek)

∣
∣2) p(x+λek )–2

2 Du(x + λek)

–
(
1 +

∣
∣Du(x)

∣
∣2) p(x+λek )–2

2 Du(x)

+
[(

1 +
∣
∣Du(x)

∣
∣2) p(x+λek )–2

2 Du(x) –
(
1 +

∣
∣Du(x)

∣
∣2) p(x)–2

2 Du(x)
]
. (3.15)

Then from (2.8) we arrive at

k0

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x+λek )–2 · |�λ,kDu|2ξ 2 dx

≤ –
∫

B2r

Sij(Du)�–λ,k

(

ξ

(
∂ξ

∂xi
�λ,kuj +

∂ξ

∂xj
�λ,kui

))

dx

–
∫

B2r

ui∂iuj
(�–λ,k

(
ξ 2�λ,kuj

))
dx +

∫

B2r

φ∂i
(�–λ,k

(
ξ 2�λ,kui

))
dx

–
∫

B2r

[(
1 +

∣
∣Du(x)

∣
∣2) p(x+λek )–2

2 Diju(x) –
(
1 +

∣
∣Du(x)

∣
∣2) p(x)–2

2 Diju(x)
]

× �λ,kDiju dx

=: H1 + H2 + H3 + H4. (3.16)

Since p(x) is Hölder continuous, we can choose 0 < r < 1 suitable small such that

p2 ≤ p1(1 + δ1) ≤ p(x)(1 + δ1).

By Lemma 3.1, we can see that

k0

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x+λek )–2 · |�λ,kDu|2ξ 2 dx

≤ k0

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p2–2 · |�λ,kDu|2ξ 2 dx

≤ ck0

∫

B3r

(
1 +

∣
∣Du(x)

∣
∣
)p2 dx ≤ c.

From the previous inequality, one can see that, for suitable small r ∈ (0, 1] and |λ| < r,
∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x+λek )–2 · |�λ,kDu|2ξ 2 dx < 1, (3.17)

this conclusion will be heavily used in the following estimate. Furthermore, taking into
account the Korn inequality (2.4) and (3.1), we are in a position to obtain

∫

B2r

|∇u|p(x+λek ) dx <
∫

B3r

(|∇u|p2 + 1
)

dx ≤ c (3.18)
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for all |λ| < r, where c is a determined positive constant independent of λ, and from now
on r ∈ (0, 1] is a fixed constant. For simplicity of notation, in the following paper, we may
denote p(x + λek) as p(x̄). Now, we turn to an estimate of H1, H3–H4.

Estimation of H1. By Hölder inequality with variable exponent, from (1.10), (2.3) and
(2.9), we find that

H1 ≤ 2
d∑

i,j=1

∥
∥Sij(Du)

∥
∥

Lp′(x̄)(B2r)

×
∥
∥
∥
∥�–λ,k

(

ξ

(
∂ξ

∂xi
�λ,kuj +

∂ξ

∂xj
�λ,kui

))∥
∥
∥
∥

Lp(x̄)(B2r)

≤ c|λ|p1/p2

(∫

B2r

(
1 + |Du|p(x̄))dx

) 1
q1

×
d∑

i,j=1

∥
∥
∥
∥

∂

∂xk

(

ξ

(
∂ξ

∂xi
�λ,kuj +

∂ξ

∂xj
�λ,kui

))∥
∥
∥
∥

Lp(x̄)(B2r )

≤ c
|λ|p1/p2

rp2/p1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 1
q1

×
[ |λ|p1/p2

rp2/p1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 1
s1

+
∥
∥ξ∇(�λ,ku)

∥
∥

Lp(x̄)(B2r )

]

, (3.19)

for all 0 < |λ| < r < 1, and s1 equal to p1 or p2, q1 equal to p′
1 or p′

2, and in the last inequality
we have used the fact |Du| ≤ |∇u|. Note that

ξ∇(�λ,ku) = ∇(ξ�λ,ku) – ∇ξ�λ,ku and
(∇(ξ�λ,ku)

)

2r = 0 =
(
D(ξ�λ,ku)

)

2r .

Thus, by the Korn inequality (2.5), we infer that

∥
∥ξ∇(�λ,ku)

∥
∥

Lp(x̄)(B2r )

≤ ∥
∥∇(ξ�λ,ku)

∥
∥

Lp(x̄)(B2r ) + ‖∇ξ�λ,ku‖Lp(x̄)(B2r )

≤ ∥
∥D(ξ�λ,ku)

∥
∥

Lp(x̄)(B2r ) + ‖∇ξ�λ,ku‖Lp(x̄)(B2r )

≤ c
(∫

B2r

∣
∣ξD(�λ,ku)

∣
∣p(x̄) dx

) 1
s1

+ c
|λ|p1/p2

rp2/p1

(∫

B2r

|∇u|p(x̄) dx
) 1

s1
, (3.20)

where in the last inequality, for simplicity, we just denote the exponent as 1/s1, and it
cannot add any confusion when the exponent is replaced by one of another character.

Now, inserting (3.20) into (3.19), we obtain

H1 ≤ c|λ|2p1/p2

r2p2/p1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 1
q1

+ 1
s1

+
c|λ|p1/p2

rp2/p1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 1
q1 ·

(∫

B2r

∣
∣ξD(�λ,ku)

∣
∣p(x̄) dx

) 1
s1

:= A + B. (3.21)
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Taking into account (3.18), we can see that the term A in the previous inequality is bounded
from above for fixed r suitable small. On the other hand, observe that, for any suitable
function f , g and q ≤ s < 2, by the Hölder inequality,

∫

|f |s dx =
∫

(|g| s(q–2)
2 |f |s)|g| s(2–q)

2 dx

≤ ∥
∥|g| s(q–2)

2 |f |s∥∥
L

2
s

∥
∥|g| s(2–q)

2
∥
∥

L
2

2–s
.

Thus, in order to estimate the term B in (3.21), take

g =
(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)
, f = ξD(�λ,ku),

s = q = p(x̄) in previous inequality. If t1
s1

≥ 1, by the Hölder inequality, the Young inequality
with k0/4 and (2.3), we obtain

B ≤ c|λ|p1/p2

rp2/p1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 1
q1

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx
) t1

2s1

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
2s1

≤ k0

4

(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx
) t1

s1

+ c(k0)
|λ|2p1/p2

r2p2/p1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 2
q1

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
s1

≤ k0

4

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx

+ c(k0)
|λ|2p1/p2

r2p2/p1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 2
q1

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
s1

, (3.22)

where t1, t2 are equal to p1 or p2, and in the last inequality we have used the fact t1
s1

≥ 1
and (3.17).

Likewise, if 0 < t1
s1

< 1, that is, t1 = p1, s1 = p2, by the Hölder inequality, the Young in-
equality with k0/4 and (2.3), we arrive at

B ≤ c|λ|p1/p2

rp2/p1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 1
q1

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx
) p1

2p2
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×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
2p2

≤ k0

4

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx

+ c(k0)
(∫

B2r

(
1 + |∇u|p(x̄))dx

) 2p2
q1(2p2–p1)

× |λ|2p1/(2p2–p1)

r2p2
2/p1(2p2–p1)

(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
2p2–p1

≤ k0

4

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx

+ c(k0)
(∫

B2r

(
1 + |∇u|p(x̄))dx

) 2p2
q1(2p2–p1)

× |λ|2p1/(2p2–p1)

r2p2
2/p2

1

(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
2p2–p1

. (3.23)

Combining (3.22) with (3.23), we obtain

B ≤ k0

4

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx

+ c(k0)
|λ|2p1/(2p2–p1)

r2p2
2/p2

1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 2p2
q1(2p2–p1)

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
2p2–p1

+ c(k0)
|λ|2p1/p2

r2p2/p1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 2
q1

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
s1

. (3.24)

Inserting (3.24) into (3.21), we finally obtain

H1 ≤ c|λ|2p1/p2

r2p2/p1

[(∫

B2r

(
1 + |∇u|p(x̄))dx

) 1
q1

+ 1
s1

+
(∫

B2r

(
1 + |∇u|px̄))dx

) 2
q1

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
s1

]

+ c
|λ|2p1/(2p2–p1)

r2p2
2/p2

1

(∫

B2r

(
1 + |∇u|p(x̄))dx

) 2p2
q1(2p2–p1)

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
2p2–p1
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+
k0

4

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx, (3.25)

for all 0 < |λ| < r < 1.
Estimation of H3. To begin with, we note that

∂

∂xi

(�–λ,k
(
ξ 2�λ,kui

))
= 2

(

�–λ,k

(

ξ
∂ξ

∂xi
�λ,kui

))

,

then from (2.9), (2.3), similar to (3.24), we can see that

H3 = 2
∫

B2r

φ

(

�–λ,k

(

ξ
∂ξ

∂xi
�λ,kui

))

dx

≤ c|λ|p1/p2‖φ‖Lp′(x̄)(B2r)

(∫

B2r

∣
∣
∣
∣∇

(

ξ
∂ξ

∂xi
�λ,kui

)∣
∣
∣
∣

p(x̄)

dx
) 1

t3

≤ c|λ|p1/p2‖φ‖Lp′(x)(B3r)

×
[ |λ|p1/p2

r2p2/p1

(∫

B2r

|∇u|p(x̄) dx
) 1

t3
+

1
rp2/p1

(∫

B2r

∣
∣ξD(�λ,ku)

∣
∣p(x̄) dx

) 1
s1

]

≤ c
|λ|2p1/p2

r2p2/p1
‖φ‖Lp′(x)(B3r )

(∫

B3r

(
1 + |∇u|p(x̄))dx

) 1
t3

+ c
|λ|2p1/p2

r2p2/p1
‖φ‖2

Lp′(x)(B3r )

(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
s1

+ c(k0)
|λ|2p2/(2p2–p1)

r2p2
2/p2

1
‖φ‖2p2/(2p2–p1)

Lp′(x)(B3r )

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
2p2–p1

+
k0

4

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx, (3.26)

where t3 is equal to p1 or p2, and we replace t3 by s1 in the second inequality if there
is no danger of any possible confusion, since from (3.19) and (3.21), we infer that
(
∫

B2r
|ξD(�λ,ku)|p dx)

1
s1 is biggest for all cases of the value of t3.

Estimation of H4. Now, since 0 < r < 1 is suitably small, we have

p2

(

1 +
δ1

4

)

≤ p1(1 + δ1) ≤ p(x)(1 + δ1).

From (2.6) and Lemma 3.1, we can find that

H4 ≤ cω
(|λ|)

∫

B2r

(
1 +

∣
∣Du(x)

∣
∣2) p2–1

2

× (
log

(
1 +

∣
∣Du(x)

∣
∣
)

+ 1
)(∣

∣Du(x + λek)
∣
∣ +

∣
∣Du(x)

∣
∣
)

dx

≤ cω
(|λ|)

∫

B2r

(
1 +

∣
∣Du(x)

∣
∣
)p2(log

p2
p2–1

(
1 +

∣
∣Du(x)

∣
∣
)

+ 1
)

+
∣
∣Du(x + λek)

∣
∣p2 dx
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≤ c|λ|2θ1

∫

B3r

(
1 +

∣
∣Du(x)

∣
∣
)p2(1+ δ1

4 ) dx

≤ c|λ|2θ1

∫

B3r

(
1 +

∣
∣Du(x)

∣
∣
)p(x)(1+δ1) dx ≤ c

λ2θ1

rδ1 d , (3.27)

for all 0 < |λ| ≤ r.
Inserting (3.25)–(3.27) into (3.16), we finally obtain

k0

2

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣D(�λ,ku)

∣
∣2

ξ 2 dx

≤ H2 + c
|λ|2p1/p2

r2p2/p1

[(∫

B3r

(
1 + |∇u|p(x))dx

) 1
q1

+ 1
s1

+ ‖φ‖Lp′(x)(B3r )

(∫

B3r

(
1 + |∇u|p(x))dx

) 1
t3

+
(

‖φ‖2
Lp′(x)(B3r )

+
(∫

B3r

(
1 + |∇u|p(x))dx

) 2
q1

)

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
s1

]

+
|λ|2p2/(2p2–p1)

r2p2
2/p2

1

(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
2p2–p1

×
(∫

B3r

(
1 + |∇u|p(x))dx

) 2p2
q1(2p2–p1)

+
|λ|2p2/(2p2–p1)

r2p2
2/p2

1

(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄) dx

) 2–t2
2p2–p1

× ‖φ‖2p2/(2p2–p1)
Lp′(x)(B3r )

+ c
λ2θ1

rδ1d . (3.28)

Estimation of H2. To estimate H2, we first note that

H2 =
∫

B2r

(�λ,kui)
∂uj(x + λek)

∂xi
ξ 2�λ,kuj dx

+
∫

B2r

ui

(

�λ,k
∂uj

∂xi

)

ξ 2�λ,kuj dx

:= C + D,

where i, j = 1, . . . , d. From now on, we assume for the moment that we have proved

u ∈ W 1,s
loc(�), (3.29)

with s ∈ [p∞, Ad], Ad ≤ d, and

Ad :=

⎧
⎨

⎩

d, d = 2,
3p0d

(d+2)p0–2p̄∞ , d = 3,
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here we denote 3d/(d + 2) by p̄∞, we will see that the assumption of (3.29) is valid later.
From the Hölder inequality, we have

C ≤
∫

B2r

|�λ,ku|2∣∣∇u(x + λek)
∣
∣dx ≤ c‖�λ,ku‖2

L2s′ (B2r)
‖u‖W 1,s(B3r ). (3.30)

We let s∗ = ds
d–s , since s < 2s′ < s∗, by interpolation, it follows that

‖�λ,ku‖2
L2s′ (B2r )

≤ ‖�λ,ku‖2(1–θ )
Ls∗ (B2r)

· ‖�λ,ku‖2θ
Ls(B2r) ≤ c|λ|2θ‖u‖2

W 1,s(B3r), (3.31)

with θ = s(d+2)–3d
2s .

Combining (3.30) with (3.31), we arrive at

C ≤ c|λ|2θ‖u‖3
W 1,s(B3r ). (3.32)

For the term D, by integration by parts, we get

D = –
∫

B2r

ui(�λ,kuj)2ξ
∂ξ

∂xi
dx.

Similar to the estimation of the term C, we obtain

D ≤ c
r
‖�λ,ku‖2

L2s′ (B2r )
‖u‖W 1,s(B3r ) ≤ c

r
|λ|2θ‖u‖3

W 1,s(B3r ). (3.33)

Together (3.32) with (3.33), we finally obtain

H2 ≤ c
(

1 +
1
r

)

λ2θ‖u‖3
W 1,s(B3r ) ≤ cλ2θ

r2 ‖u‖3
W 1,s(B3r). (3.34)

Since s ∈ [p∞, Ad], we can see that

⎧
⎨

⎩

p1
p2

≥ p∞
p0

≥ θ ,
2p1

2p2–p1
≥ 2p∞

2p0–p∞ ≥ θ ,
(3.35)

and from (1.8), (1.9), we have

r–(p2–p1) = 2p2–p1 e(p2–p1) log 1
2r ≤ 2p2–p1 eω(2r) log 1

2r ≤ c(L), (3.36)

for all 0 < r < 1. Moreover, since δ1 is independent of r, we can choose δ ∈ (0, δ1] to be a
constant, replacing δ1 by δ in (3.27), such that δd ≤ 2. Now, taking into account (3.35),
(3.36), inserting (3.34) into (3.28), we finally obtain

∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2 · ∣∣�λ,kD(u)

∣
∣2

ξ 2 dx

≤ c|λ|2p1/p2

r2(1+(p2–p1)/p1) +
c|λ|2p1/(2p2–p1)

r2(1+(p2–p1)(p2+p1)/p2
1)

+
c
r2 |λ|2θ + c

λ2θ1

rδd

≤ c
r2 |λ|2θ , (3.37)
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for all 0 < |λ| < r < 1 with c depends on ‖u‖W p(x)
loc (�), ‖u‖W 1,s

loc(�), L and ‖φ‖
Lp′(x)

loc (�)
, and in the

last inequality we have used the fact θ1 ≥ θ .
In what follows, we set

γ :=
2s

s + 2 – p̄∞
∈

[
2p∞

2p∞ + 2 – p̄∞
,

2Ad

2Ad + 2 – p̄∞

]

.

Observe that

2s(γ – 2)
2γ

= p̄∞ – 2 for all s ∈ [p∞, Ad].

Taking into account (3.19), with the aid of the Hölder inequality, we infer that

∫

Br

∣
∣�λ,kD(u)

∣
∣γ dx

≤
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p̄∞–2∣∣�λ,kD(u)

∣
∣2

ξ 2 dx
) γ

2

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)s dx

) 2–γ
2

≤
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)p(x̄)–2∣∣�λ,kD(u)

∣
∣2

ξ 2 dx
) γ

2

×
(∫

B2r

(
1 +

∣
∣Du(x + λek)

∣
∣ +

∣
∣Du(x)

∣
∣
)s dx

) 2–γ
2 ≤ c|λ|γ θ

r2 , (3.38)

where in the first inequality, we have taken into account γ

2–γ
(2 – p̄∞) = s.

Appealing to (3.38), the equivalence of the Nikolskii fractional space and the Sobolev
space [42], we have

Du ∈ W t,γ
loc (�), for all t ∈ [0, θ ],

then the fractional order Sobolev embedding theorem implies that

Du ∈ L
dγ

d–tγ for all t ∈ [0, θ ]. (3.39)

Step 2 (Higher integrability of Du). We set

T(s) :=
dγ

d – θγ
=

4sd
10d – 2p̄∞d – 4s

.

Then, from the definition of p̄∞, by a direct calculation, we find that

T(s) – s ≥ σ :=
6d + 2p̄∞d + 4p∞

10d – 2p̄∞d – 4p∞
> 0. (3.40)

Taking into account (3.39), (3.40), we obtain

Du ∈ Lη(B r
2

), for all η ∈ [
1, T(s)

]
. (3.41)



Tan et al. Boundary Value Problems  (2018) 2018:131 Page 21 of 23

We use that u ∈ Vp(x) is any weak solution to (1.6) and p(x) ≥ p∞. Thus, we claim that
s = p∞ such that (3.29) holds. We set

s0 := p∞, s1 := s0 +
σ

2
.

In virtue of (3.40), we see that

T(s0) > s1 > s0 = p∞.

Taking into account (3.41),

Du ∈ Ls1 (B r
2

).

By the Korn inequality, we have

u ∈ W 1,s1
loc (�), (3.42)

from the above, it follows that (3.29) holds with s = s1. Now, if s1 > Ad , we have proved the
higher integrability of Du, and we can derive the Hölder continuity of u by the Sobolev
imbedding theorem, since Du ∈ Lη(B r

2
) for all η ∈ [1, T(Ad)], and T(Ad) > d. If s1 ≤ Ad , we

continue the process above, such that there is a si > Ad (i > 1). Without loss of generality,
we assume that s1 ≤ Ad , then from (3.29), (3.39)–(3.42),

Du ∈ Lη1 (B r
2

), η1 ∈ [
1, T(s1)

]
.

Note that T(s1) > T(s0), then we can increase the power of integrability of Du by a standard
bootstrap argument. We set

s̃ := sup
{

s ∈ [p∞, Ad] : u ∈ W 1,s
loc(�)

}
. (3.43)

We may assume that s = Ad , otherwise, s < Ad . Define

s̄ := s̃ –
σ

4
,

by the definition of s̃, we can obtain u ∈ W 1,s̄
loc(�), since s̃ > p∞ + σ . From (3.41), it follows

that

Du ∈ Lη(B r
2

), for all η ∈ [
1, T(s̄)

]
.

Then, choose η := T(s̄) – σ
4 , and taking into account (3.40), we find that

η ≥ s̄ + σ –
σ

4
≥ s̃ +

σ

2
,

it contradicts (3.43).
By the conclusion above, from now on we have

u ∈ W 1,s
loc(�), for all s ∈ [p∞, Ad],
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then, from (3.41), we have

u ∈ W 1,T(s)
loc (�), for all s ∈ [p∞, Ad].

Note that T(Ad) > T(s), thus

u ∈ W 1,η
loc (�), for all η ∈ [

p∞, T(Ad)
]
, (3.44)

with T(Ad) > d. Now, making use of the Sobolev embedding theorem, from (3.44), u ∈
Cα(�), for some α ∈ (0, 1). �
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