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Abstract
In this paper the model 1D-GNσ is considered, which concerns the 1D Green–Naghdi
equations with non-flat bottom and under the influence of surface tension, to be
widely used in coastal oceanography to describe the propagation of large-wave
amplitudes. The purpose of this paper is to show that the solution of 1D-GNσ can be
made by the Picard iterative scheme, which proves that there is no loss of regularity of
the solution relative to the initial condition.
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1 Introduction
1.1 General setting
The theory of motion of free surface water waves is a vital issue that makes it a subject
of many mathematical researches. The interesting part of these studies is centered on the
water-waves problem of an ideal liquid, which is about describing the motion of the free
surface and the evolution of the velocity field of a layer of perfect, incompressible, irrota-
tional fluid under the influence of gravity.

Earlier work gives a useful theoretical background for this problem. This motion is de-
scribed by the free surface Euler equations, which are well-posed (see [5, 10, 14, 17–19]).
However, it is very hard to describe the solutions of the Euler equations; for that the Euler
system is replaced by an asymptotic model.

In particular, the Green–Naghdi system presents one of them that is used in coastal
oceanography [4, 6, 7, 9, 16]. Its range of validity depends on the physical characteristics
of the flow under consideration, that is, a certain assumption is made on the dimensionless
parameters, μ, the shallowness parameter, and ε, the nonlinearity parameter, defined as

μ =
h2

0
λ2 and ε =

a
h0

where h0 is the reference depth, λ is the wavelength of the waves and a is the order of
amplitude of the waves and the bottom variations. We have μ � 1 in shallow water scaling
and without a smallness assumption on ε, the Green–Naghdi equations are derived (see
[7, 12] and [2]).
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The authors studied the Green–Naghdi equations in [13] and [8] with flat bottom and
with non-flat bottom, respectively, using a standard Picard iterative scheme. Note that the
aforementioned work is restricted to the case of null surface tension, that is, one assumed
that the surface tension coefficient σ is zero.

In the current work, we deal with the Green–Naghdi equations with non-flat bottom,
and to approach the reality, we take into consideration the presence of surface tension.

In non-dimensionalized variables, we denote by ζ (t, x) and u(t, x), respectively, the
parametrization of the surface and the layer-mean horizontal velocity. b(x) is the bottom
parametrization and bo is the rescaled bond number, which is inversely proportional to
the surface tension coefficient σ .

bo is given by bo = ρgh2
0

σ
, where ρ is the density and g is the gravitational force. Note that

the fact that the surface tension is involved causes a higher order nonlinear model than
the previous models mentioned in the case of null surface tension.

Now the Green–Naghdi equations with non-flat bottom and taking into consideration
the surface tension can be written as follows:

⎧
⎨

⎩

∂tζ + ∇ .(hu) = 0,

(h + μhT [h, εb])[∂tu + ε(u.∇)u] + h(1 – μ

bo
�)∇ζ + μεhQ[h, εb]u = 0,

(1)

where h = 1 + ε(ζ – b), T [h, εb]u = – 1
3h∇(h3∇ .u) + ε

2h [∇(h2∇b.u) – h2∇b∇ .u] + ε2∇b∇b.u
and Q is the second order differential operator defined by

Q[h, εb](u) =
2

3h
∇(

h3(∇ .u)2)+εh(∇ .u)2∇b+
ε

2h
∇(

h2u.(u.∇)∇b
)

+ε2(u.(u.∇)∇b
)∇b.

In fact, it is assumed that bo is not too small, so that μ

bo
= O(μ). This assumption seems

quite reasonable because, for water, to have bo ≤ 1, the reference water depth must meet
h0 ≤ 2.7 mm (see [11] for more details).

Actually, the presence of surface tension in this model is represented by the term
μ

bo
h�∇ζ . Indeed the capillary term created is μ

bo
h∇∇ .( ∇ζ√

1+ε2μ|∇ζ |2 ), but taking the as-

sumption on bo, its asymptotic expansion becomes

μ

bo
h∇∇ .

( ∇ζ
√

1 + ε2μ|∇ζ |2
)

=
μ

bo
h�∇ζ + O

(
μ2ε2).

In fact, addressing the higher derivatives, especially of third order, will make the work
more difficult. The main task will be precisely how to control these terms.

1.2 Outline of the paper
The above model is considered a useful model in coastal oceanography since it takes into
consideration dispersive effects, which are neglected in the shallow water equations. In
addition the order of nonlinearity of this model is higher than the order of the Boussinesq
equations.

The 1D Green–Naghdi model for flat bottoms was justified by Li [13]. After that the gen-
eral case was studied by Alvarez-Samaniego and Lannes [2]. Using a Nash–Moser scheme,
the well-posdness of this model was proved by Alvarez-Samaniego (see [3]).
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The results of [3] are still valid for 1D and 2D cases with non-flat bottoms. Note that
the estimates of the linearized equations lead to loss higher derivatives, which is the main
reason for using the Nash–Moser scheme in [3]. However, such losses do not occur in 1D
for flat and non-flat bottoms, and so it is possible to construct a solution via a standard
Picard scheme as in [13] for flat bottoms and [8] for non-flat bottoms.

The aim of this paper is to show that it is possible to construct a solution of the 1D
Green–Naghdi equations with non-flat bottom and under the influence of surface tension
(1D-GNσ ) using a Picard scheme.

1.3 Organization of the paper
This paper consists of three sections and an appendix. In Sect. 1, we present a general
setting and some notations. In Sect. 2, the model 1D-GNσ is presented and an energy
estimate is derived. The existence, uniqueness and the conservation of energy of the model
1D-GNσ are proved in Sect. 3. However, the proof of the existence and uniqueness of the
solution of the linear Cauchy problem associated to the Green–Naghdi equations with
surface tension is left to the Appendix.

1.4 Notation
In this section, we recall some normed vector spaces, operators and notations which will
be used throughout the paper.

• Ck(R) denotes the space of k-times continuously differentiable functions, and C∞
0 (R)

the space of infinitely differentiable functions with compact support in R. The space
of infinitely differentiable functions which are bounded together with all their
derivatives is denoted by C∞

b (R).
• Lp = Lp(R), where 0 ≤ p < ∞, is the space of all Lebesgue-measurable functions f with

standard norm

|f |Lp =
(∫

R

∣
∣f (x)

∣
∣p

) 1
p

< ∞.

In case p = 2, the norm is denoted by | · |L2 or simply | · |2.
The inner product of two functions f1 and f2 in Hilbert space L2(R) is given by

(f1, f2) =
∫

R

f1(x)f2(x) dx.

• L∞ = L∞(R) is the space of all essentially bounded Lebesgue-measurable functions f
with the norm

|f |L∞ = ess sup
∣
∣f (x)

∣
∣ < ∞.

• W 1,∞ = W 1,∞(R) = {f ∈ L∞, ∂xf ∈ L∞} endowed with its canonical norm.
• For all real s, Hs = Hs(R) denotes the fractional Sobolev space of all tempered

distributions f . Throughout this work we equip Hs with the norm |f |Hs = | ∧s f |L2 < ∞,
where ∧ is the pseudo-differential operator given by ∧ = (1 – ∂2

x ) 1
2 .

• C(a1, a2, . . .) denotes a constant depending on the parameters a1, a2, . . . , and whose
dependence on the ai is always assumed to be nondecreasing.
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• [T , f ] is the commutator operator defined by

[T , f ]g = T(fg) – fT(g),

where T is a closed operator defined in a Banach space X , with f , g and fg belonging
to the domain of T .

2 Linear analysis and energy estimate
2.1 Presentation of the problem in 1D
The 1D Green–Naghdi equations with non-flat bottom under the influence of surface ten-
sion (1D-GNσ ) are given by the following:

⎧
⎨

⎩

∂tζ + ∂x(hu) = 0,

(h + μhT [h, εb])[∂tu + εu∂xu] + h(1 – μ

bo
∂2

x )∂xζ + μεhQ[h, εb](u) = 0,
(2)

where

T [h, εb]u = –
1

3h
∂x

(
h3ux

)
+

ε

2h
[
∂x

(
h2bxu

)
– h2bxux

]
+ ε2b2

xu

and

Q[h, εb](u) =
2

3h
∂x

(
h3u2

x
)

+ εhu2
xbx +

ε

2h
∂x

(
h2u2bxx

)
+ ε2u2bxxbx.

Equation (2) enables us to solve the main problem in this model which is the appearance
of the third order derivatives of u and ζ with respect to x.

2.2 Preliminary results
We begin this section by an important remark which arises from a physical interpretation.

Remark 1 The non-zero depth condition

∃h0 > 0 such that inf
x∈R

h ≥ h0, where h = 1 + ε(ζ – b) (3)

is valid initially, which is a necessary condition for the model 1D-GNσ (2) to be physically
valid.

Now on, we note I = h + μhT [h, εb] and J = 1 – μ

bo
∂2

x . Indeed, I and J will play an
important role in obtaining the energy estimate and later on the local well-posedness of
model (2).

Note that I : H2(R) → Ł2(R) is well defined, one to one and onto (see [8]).
The following lemma gives some properties of I–1 and some essential estimates.

Lemma 1 Let b ∈ C∞
b (R), t0 > 1

2 and ζ ∈ Ht0+1(R) be such that (3) is satisfied. Then:
(i) ∀0 ≤ s ≤ t0 + 1

∣
∣I–1f

∣
∣
Hs +

√
μ

∣
∣∂xI–1f

∣
∣
Hs ≤ C

(
1
h0

, |h – 1|Ht0+1

)

|f |Hs ,
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(ii) ∀0 ≤ s ≤ t0 + 1

√
μ

∣
∣I–1∂xg

∣
∣
Hs + μ

∣
∣∂xI–1∂xg

∣
∣
Hs ≤ C

(
1
h0

, |h – 1|Ht0+1

)

|g|Hs ,

(iii) if s ≥ t0 + 1 and ζ ∈ Hs(R) then

∥
∥I–1∥∥

Hs(R)→Hs(R) +
√

μ
∥
∥I–1∂x

∥
∥

Hs(R)→Hs(R) + μ
∥
∥∂xI–1∂x

∥
∥

Hs(R)→Hs(R) ≤ Cs,

where Cs is a constant depending on 1
h0

, |h – 1|Hs and independent of μ and ε on
(0, 1).

Proof The first inequality is proved in [8] and in a similar way we can prove the second
and the third inequalities. �

2.3 I.V.P. model around a reference state
In this section the model 1D-GNσ (2) can be written in a condensed form as follows:

∂tU + Aσ [U]∂xU + B(U) = 0,

where

U = (ζ , u)t , Aσ [U] =

(
εu h

I–1hJ εu + I–1Q1[U]

)

, B(U) =

(
–εbxu
I–1q(U)

)

,

Q1[U]f =
2
3
εμ∂x

(
h3uxf

)
+ ε2μh2bxuxf + ε2μh2bxxuf , and

q(U) = ε3μhbxxbxu2 +
1
2
ε2μ∂x

(
h2bxx

)
u2.

In order to analyze the 1D-GNσ model, we introduce the linearized (I.V.P.) form of the
condensed equation around some reference state U = (ζ , u)t which is given by

⎧
⎨

⎩

∂tU + Aσ [U]∂xU + B(U) = 0,

U|t=0 = U0.
(4)

Xs denotes the energy space of the linearized problem.

Definition 1 For all s ≥ 0 and T > 0 we denote by Xs the vector space Hs+1(R) × Hs+1(R)
endowed with the norm

∀U = (ζ , u)t ∈ Xs, |U|2Xs := |ζ |2Hs + |u|2Hs +
μ

bo
|∂xζ |2Hs + μ|∂xu|2Hs .

Meanwhile Xs
T stands for C([0, T

ε
]; Xs) endowed with its canonical norm.

Definition 2 The operator Sσ =
(J 0

0 I
)

is the symmetrizer of Aσ [U] where J = J and
I = h + μhT [h, εb]. The natural energy of the system I.V.P. (4) is given by

Es(U)2 =
(∧sU , Sσ ∧s U

)
.
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The following lemma presents some properties for the commutator operator (for more
details see [3] and [8]).

Lemma 2
(i) ∀s > 3

2 , |[∧s, F]G|2 ≤ c|∇F|Hs–1 |G|Hs–1 where c is a constant independent of the small
parameters involved.

(ii) ∀s ≥ 0, ∂x([∧s, f ]g) = [∧s, fx]g + [∧s, f ]gx and ∂x[∧s, f ]g = [∧s, ∂x(f .)]g .

The equivalence between Es(U) and the norm | · |Xs is given and proved in the following
lemma.

Lemma 3 Let b ∈ C∞
b (R), s ≥ 0 and ζ ∈ W 1,∞(R) such that (3) is satisfied.

So we see that Es(U) is uniformly equivalent to the | · |Xs norm with respect to μ and ε on
(0, 1), that is,

C|U|Xs ≤ Es(U) ≤ C
(|h|L∞ , |hx|L∞

)|U|Xs ,

where C is a constant that depends only on h0.

Proof The definition of the energy implies

Es(U)2 =
(∧sU , Sσ ∧s U

)
.

After writing Sσ explicitly, we get

Es(U)2 =
(∧sζ ,J ∧s ζ

)
+

(∧su,I ∧s u
)
.

First, we will prove that Es(U) ≤ C(|h|L∞ , |hx|L∞ )|U|Xs . In fact, by writing J and I in their
explicit forms and by an integration by parts, we get

(∧sζ ,J ∧s ζ
)

=
(∧sζ ,∧sζ

)
+

μ

bo

(∧sζx,∧sζx
)

= |ζ |2Hs +
μ

bo
|ζx|2Hs ,

(∧su,I ∧s u
)

=
(∧su, h ∧s u

)
+

μ

3
(∧sux, h3 ∧s ux

)
–

εμ

2
(∧sux, h2bx ∧s u

)

–
εμ

2
(∧su, h2bx ∧s ux

)
+ ε2μ

(∧su, hb2
x ∧s u

)
.

By using the Cauchy–Schwarz inequality, one obtains the first inequality.
On the other hand, one can realize that the following equation is true:

(∧su,I ∧s u
)

=
(∧su, h ∧s u

)

+ μ

(
h√
3

∧s ux –
√

3
2

εbx ∧s u, h
(

h√
3

∧s ux –
√

3
2

εbx ∧s u
))

+
ε2μ

4
(
bx ∧s u, hbx ∧s u

)
.
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By using the non-zero depth condition (3), one obtains

(∧su,I ∧s u
) ≥ h0

∣
∣∧su

∣
∣2
2 + μh0

∣
∣
∣
∣

h√
3

∧s ux –
√

3
2

εbx ∧s u
∣
∣
∣
∣

2

2
+

ε2μ

4
h0

∣
∣bx ∧s u

∣
∣2
2

≥ h0
∣
∣∧su

∣
∣2
2 + μh0

∣
∣
∣
∣

h√
3

∧s ux –
√

3
2

εbx ∧s u
∣
∣
∣
∣

2

2
+

μh0

3

∣
∣
∣
∣

√
3

2
εbx ∧s u

∣
∣
∣
∣

2

2

≥ h0
∣
∣∧su

∣
∣2
2 + 2

μh0

6

[∣
∣
∣
∣

h√
3

∧s ux –
√

3
2

εbx ∧s u
∣
∣
∣
∣

2

2
+

∣
∣
∣
∣

√
3

2
εbx ∧s u

∣
∣
∣
∣

2

2

]

.

Now, using the fact

2
(|A|2 + |B|2) ≥ (|A| + |B|)2 ≥ |A + B|2

and condition (3), we get

(∧su,I ∧s u
) ≥ h0

∣
∣∧su

∣
∣2
2 +

μh2
0

18
∣
∣∧sux

∣
∣2
2

and since we have (∧sζ ,J ∧s ζ ) = |ζ |2Hs + μ

bo
|ζx|2Hs , this implies

Es(U) ≥ |ζ |2Hs +
μ

bo
|ζx|2Hs + h0|u|2Hs +

μh2
0

18
|ux|2Hs

and thus one can deduce that Es(U) ≥ C|U|Xs where C is a constant that depends only
on h0. �

Remark 2 It should be noted that in this paper the bottom topography is assumed to be
C∞ with all derivatives bounded and of the same size as the surface deformation. Indeed,
such an assumption was made only for simplicity, although this assumption could be im-
proved easily, but that is not of our interesting here.

2.4 Energy estimates
In this section we are going to estimate the energy Es(U) which is given by Proposition 1.
Later this will help us to show the well-posedness of the Green–Naghdi model 1D-GNσ

(2).

Proposition 1 Let U = (ζ , u)t ∈ Xs
T be such that ∂tU ∈ Xs–1

T and satisfying (3) on [0, T
ε

].
If b ∈ C∞

b (R), t0 > 1
2 and s ≥ t0 + 1 then for all U0 ∈ Xs there exists a unique solution U =

(ζ , u)t ∈ Xs
T to (4) that satisfies the following energy estimate:

Es(U(t)
) ≤ eελT tEs(U0) + ε

∫ t

0
eελT (t–t′)C

(
Es(U)

(
t′))dt′

∀t ∈ [0, T
ε

] and for some λT = λT (sup0≤t≤ T
ε

Es(U(t)), sup0≤t≤ T
ε

|∂tζ (t)|L∞ ).

Remark 3 In fact, the constant referred to in this proposition is dependent on μ, ε and
1

bo
, but we have μ, ε ∈ (0, 1) and the assumption specified on bo in the introduction makes

1
bo

always bounded by some constant. So based on this information we can consider the
constant in this proposition to be independent of μ, ε and bo.
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Proof The existence and uniqueness of the solution to the I.V.P. (4) is achieved in the
Appendix. The energy Es(U) satisfies

1
2

eελt∂t
(
e–ελtEs(U)2) = –

ελ

2
Es(U)2 +

1
2
∂t

(
Es(U)2)

and since Es(U)2 = (∧sU , Sσ ∧s U), we get

∂t
(
Es(U)2) = 2

(∧sUt , Sσ ∧s U
)

+
(∧sU ,

[
∂t , Sσ

] ∧s U
)
.

Therefore

1
2

eελt∂t
(
e–ελtEs(U)2) = –

ελ

2
Es(U)2 –

(
Sσ Aσ [U] ∧s ∂xU ,∧sU

)

–
([∧s, Aσ [U]

]
∂xU , Sσ ∧s U

)

–
(∧sB(U), Sσ ∧s U

)
+

1
2
(∧sU ,

[
∂t , Sσ

] ∧s U
)
.

Our goal is to find an upper bound on the right hand side of the last equation, and we
proceed in four steps.

Step 1: Control of A := (Sσ Aσ [U] ∧s ∂xU ,∧sU).
By expanding the expression of A, we write

A =
(
εJ u ∧s ζx,∧sζ

)
+

(
J h ∧s ux,∧sζ

)
+

(
hJ ∧s ζx,∧su

)

+
(
Iu ∧s ux,∧su

)
+

(
Q1[U] ∧s ux,∧su

)
.

Setting A1 = (εJ u ∧s ζx,∧sζ ), using the explicit form of J and integrating by parts, leads
to

A1 = –
1
2
(
εux ∧s ζ ,∧sζ

)
+

εμ

bo

(
ux ∧s ζx,∧sζx

)
and so |A1| ≤ εC

(|ux|L∞
)
Es(U)2.

Consider A2 + A3 := (J h ∧s ux,∧sζ ) + (hJ ∧s ζx,∧su), Again, using the explicit form of J
and integrating by parts we get

A2 + A3 =
(
h ∧s ux,∧sζ

)
+

(
h ∧s ζx,∧su

)
–

μ

bo

(
hxx ∧s ζx,∧su

)

+
μ

bo

(
h ∧s uxx,∧sζx

)
+

μ

bo

(
h ∧s ζxx,∧sux

)

another integration by parts gives

A2 + A3 = –
(∧su, hx ∧s ζ

)
–

μ

bo

(∧sζx, hxx ∧s u
)

–
μ

bo

(∧sζx, hx ∧s ux
)

since we have Hs ↪→ W 1,∞, so, there is a constant c so that

√
μ

bo
|ζ x|W 1,∞ ≤ c

√
μ

bo
|ζ x|Hs ≤ cEs(U).
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Applying the Cauchy–Schwarz inequality yields

|A2 + A3| ≤ εC
(
Es(U)

)
Es(U)2.

We denote A4 := (I(u ∧s ux),∧su). Combining the explicit expression of I and integration
by parts leads to

A4 := –
ε

2
(
(hu)x ∧s u,∧su

)
–

εμ

6
((

h3)

xu ∧s ux,∧sux
)

+
εμ

3
(
h3ux ∧s ux,∧sux

)

+
ε2μ

2
(
u ∧s ux,

(
h2bx ∧s u

)

x

)
–

ε2μ

2
(
h2bxu ∧s ux,∧sux

)

+ ε3μ
(
h2b2

xu ∧s ux,∧su
)
.

Applying the Cauchy–Schwarz inequality yields

|A4| ≤ εC
(|u|W 1,∞ , |ζ |W 1,∞

)
Es(U)2.

Now we introduce A5 := (Q1[U] ∧s ux,∧su). Using the explicit expression of Q1 and inte-
gration by parts, one obtains

A5 := –
2
3
εμ

(
h3ux ∧s ux,∧sux

)
+ ε2μ

(
h2uxbx ∧s ux,∧su

)
+ ε2μ

(
h2ubxx ∧s ux,∧su

)
.

After applying the Cauchy–Schwarz inequality, we get

|A5| ≤ εC
(|u|W 1,∞ , |ζ |W 1,∞

)
Es(U)2.

Now, by using the fact that Hs(R) ⊂ W 1,∞(R) where s > 3
2 , we conclude

|A| ≤ εC
(
Es(U)

)
Es(U)2.

Step 2: Control of B := ([∧s, Aσ [U]]∂xU , Sσ ∧s U).

B =
([∧s, εu

]
ζx,J ∧s ζ

)
+

([∧s, h
]
ux,J ∧s ζ

)
+

([∧s,I–1hJ
]
ζx,I ∧s u

)

+
([∧s, εu

]
ux,I ∧s u

)
+

([∧s,I–1Q1[U]
]
ux,I ∧s u

)
.

We can also write B in another form by writing J in explicit form.

B =
([∧s, εu

]
ζx,∧sζ

)
+

([∧s, h
]
ux,∧sζ

)
+

([∧s, εu
]
ux,I ∧s u

)

+
([∧s,I–1h

]
ζx,I ∧s u

)
+

([∧s,I–1Q1[U]
]
ux,I ∧s u

)

–
μ

bo

([∧s, εu
]
ζx,∧sζxx

)
–

μ

bo

([∧s, h
]
ux,∧sζxx

)

–
μ

bo

([∧s,I–1h∂2
x
]
ζx,I ∧s u

)
.

Consider B1 + B2 + B3 := ([∧s, εu]ζx,∧sζ ) + ([∧s, h]ux,∧sζ ) + ([∧s, εu]ux,I ∧s u).
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Now, by writing the explicit form of I , integration by parts, Lemma 2 and the Cauchy–
Schwarz inequality, we get

|B1 + B2 + B3| ≤ εC
(
Es(U)

)
Es(U)2.

Consider B4 := ([∧s,I–1h]ζx,I ∧s u).
Note that I[∧s,I–1h]ζx = –[∧s,I]I–1hζx + [∧s, h]ζx.
By using the explicit form of I and Lemma 2, one can check that

I
[∧s,I–1h

]
ζx = –

[∧s, h
]
I–1hζx +

μ

3
∂x

([∧s, h3]∂x
(
I–1hζx

))
–

εμ

2
∂x

([∧s, h2bx
]
I–1hζx

)

+
εμ

2
[∧s, h2bx

]
∂xI–1hζx – ε2μ

[∧s, hb2
x
]
I–1hζx +

[∧s, h
]
ζx.

After using integration by parts, one obtains

B4 =: B41 + B42 + B43 + B44 + B45 + B46

= –
([∧s, h

]
I–1hζx,∧su

)
–

μ

3
([∧s, h3]∂x

(
I–1hζx

)
,∧sux

)

+
εμ

2
([∧s, h2bx

]
I–1hζx,∧sux

)
+

εμ

2
([∧s, h2bx

]
∂x

(
I–1hζx

)
,∧su

)

– ε2μ
([∧s, hb2

x
]
I–1hζx,∧su

)
+

([∧s, h
]
ζx,∧su

)
.

Note that, since we have U = (ζ , u)t ∈ Xs
T and U = (ζ , u)t ∈ Xs

T , one can check that all
terms in B4 created by [∧s,I]I–1hζx make sense.

Note that Hs ↪→ Hs–1 and we have the following estimate:

∣
∣∂x

(
I–1hζx

)∣
∣
Hs–1 ≤ c

∣
∣I–1hζx

∣
∣
Hs ≤ c

∥
∥I–1∥∥

Hs(R)→Hs(R)|hζx|Hs ,

where c is a constant. Now, taking into consideration these estimates:

|hζx|Hs–1 ≤ C
(
Es(U)

)
Es(U) and

∣
∣h2bx

∣
∣
Hs +

∣
∣hb2

x
∣
∣
Hs ≤ C

(
Es(U)

)

by using Lemma 1, Lemma 2 and the Cauchy–Schwarz inequality, one can obtain

|B4| ≤ εC
(
Es(U)

)
Es(U)2.

Consider B5 := ([∧s,I–1Q1[U]]ux,I ∧s u).
Remark that I[∧s,I–1Q1[U]]ux = –[∧s,I]I–1Q1[U]ux + [∧s, Q1[U]]ux; one can use the

explicit expression of I and Lemma 2 to get

I
[∧s,I–1Q1[U]

]
ux = –

[∧s, h
]
I–1Q1[U]ux +

μ

3
∂x

([∧s, h3]∂x
(
I–1Q1[U]ux

))

–
εμ

2
∂x

([∧s, h2bx
]
I–1Q1[U]ux

)

+
εμ

2
[∧s, h2bx

]
∂x

(
I–1Q1[U]ux

)

– ε2μ
[∧s, h2bx

]
I–1Q1[U]ux +

[∧s, Q1[U]
]
ux.
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By applying integration by parts, one obtains

B5 = –
([∧s, h

]
I–1Q1[U]ux,∧su

)
–

μ

3
([∧s, h3]∂x

(
I–1Q1[U]ux

)
,∧sux

)

+
εμ

2
([∧s, h2bx

]
I–1Q1[U]ux,∧sux

)
+

εμ

2
([∧s, h2bx

]
∂x

(
I–1Q1[U]ux

)
,∧su

)

– ε2μ
([∧s, h2bx

]
I–1Q1[U]ux,∧su

)
+

([∧s, Q1[U]
]
ux,∧su

)
;

remember that the explicit form of Q1[U] is

Q1[U]w =
2
3
εμ∂x

(
h3uxw

)
+ ε2μh2bxuxw + ε2μh2bxxuw.

In fact, since we have U = (ζ , u)t ∈ Xs
T and U = (ζ , u)t ∈ Xs

T , one can check that all terms
in B5 created by [∧s,I]I–1Q1[U]ux make sense.

Now, by writing Q1[U] in explicit form and noting that the following estimate:

∣
∣∂x

(
I–1∂x

(
h3uxux

))∣
∣
Hs–1 ≤ c

∣
∣I–1∂x

(
h3uxux

)∣
∣
Hs ≤ c

∥
∥I–1∂x

∥
∥

Hs(R)→Hs(R)

∣
∣h3uxux

∣
∣
Hs ,

where c is a constant. So, the control of these terms becomes clear and evident. In fact us-
ing Lemma 1, Lemma 2, Hs ↪→ Hs–1 and the Cauchy–Schwarz inequality, one can deduce

|B5| ≤ εC
(
Es(U)

)
Es(U)2.

Set B6 = – μ

bo
([∧s, εu]∂xζ ,∧s∂2

x ζ ) and B7 = – μ

bo
([∧s, h]ux,∧sζxx).

So, by integration by parts and using the commutator properties of the estimation, we
get

B6 =
μ

bo

([∧s, εux
]
ζx,∧sζx

)
+

μ

bo

([∧s, εu
]
ζxx,∧sζx

)
,

B7 =
μ

bo

([∧s, hx
]
ux,∧sζx

)
+

μ

bo

([∧s, h
]
uxx,∧sζx

)
.

By applying the commutator estimate, the Cauchy–Schwarz inequality and the fact that
|ζxx|Hs–1 ≤ c|ζx|Hs and |uxx|Hs–1 ≤ c|ux|Hs (where c is a constant), one obtains

|B6 + B7| ≤ εC
(
Es(U)

)
Es(U)2.

However, to bound B8 := μ

bo
([∧s,I–1h∂2

x ]ζx,I ∧s u), we remark that I[∧s,I–1h∂2
x ]ζx =

–[∧s,I]I–1hζxxx + [∧s, h]ζxxx and use Lemma 2.
Thus, we obtain

B8 = –
μ

bo

([∧s, h
]
ζxx,∧sux

)
–

μ

bo

([∧s, hx
]
ζxx,∧su

)

–
μ

bo

([∧s,I
]
I–1∂x(hζxx),∧su

)
+

μ

bo

([∧s,I
]
I–1hxζxx,∧su

)
.

Consider B81 + B82 = – μ

bo
([∧s, h]ζxx,∧sux) – μ

bo
([∧s, hx]ζxx,∧su).
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Lemma 2 and the Cauchy–Schwarz inequality imply that

|B81 + B82| ≤ εC
(
Es(U)

)
Es(U)2.

We introduce B83 := – μ

bo
([∧s,I]I–1∂x(hζxx),∧su) and B84 := μ

bo
([∧s,I]I–1hxζxx,∧su).

In order to control the term B83, we write I in explicit form; using Lemma 2 and by
integration by parts, we get

B83 =: B831 + B832 + B833 + B834 + B835

= –
μ

bo

([∧s, h
]
I–1∂x(hζxx),∧su

)
–

μ2

3bo

([∧s, h3]∂xI–1∂x(hζxx),∧sux
)

+
εμ2

2bo

([∧s, h2bx
]
I–1∂x(hζxx),∧sux

)
+

εμ2

2bo

([∧s, h2bx
]
∂xI–1∂x(hζxx),∧su

)

–
ε2μ2

bo

([∧s, hb2
x
]
I–1∂x(hζxx),∧su

)
;

of course, one can check that all the terms in B83 created by μ

bo
[∧s,I]I–1∂x(hζxx) make

sense, and that is done because we have U = (ζ , u)t ∈ Xs
T and U = (ζ , u)t ∈ Xs

T .
Remark that the following estimates:

∣
∣I–1∂x(hζxx)

∣
∣
Hs–1 ≤ c

∥
∥I–1∂x

∥
∥

Hs–1→Hs–1 |hζxx|Hs–1 ,
∣
∣∂x

(
I–1∂x(hζxx)

)∣
∣
Hs–1 ≤ c

∥
∥∂xI–1∂x

∥
∥

Hs–1→Hs–1 |hζxx|Hs–1 ,

hold, where c is a constant. Actually, by using Lemma 1, Lemma 2 and the Cauchy–
Schwarz inequality, one can obtain

|B831| ≤ C
(

1
h0

, |h – 1|Hs

)

|hx|Hs–1

√
μ

bo
|hζxx|Hs–1 |u|Hs ,

|B832| ≤ C
(

1
h0

, |h – 1|Hs

)
∣
∣
(
h3)

x

∣
∣
Hs–1

√
μ

bo
|hζxx|Hs–1

√
μ|ux|Hs ,

|B833| ≤ εC
(

1
h0

, |h – 1|Hs

)
∣
∣
(
h2bx

)

x

∣
∣
Hs–1

√
μ

bo
|hζxx|Hs–1

√
μ|ux|Hs ,

|B834 + B835| ≤ εC
(

1
h0

, |h – 1|Hs

)
(∣
∣
(
h2bx

)

x

∣
∣
Hs–1 +

∣
∣
(
hb2

x
)

x

∣
∣
Hs–1

)
√

μ

bo
|hζxx|Hs–1 |u|Hs ,

and after remarking that Hs ↪→ Hs–1, one concludes that |B83| ≤ εC(Es(U))Es(U)2.
Similarly, by writing I in explicit form, using Lemma 2 and integration by parts, we get

B84 =: B841 + B842 + B843 + B844 + B845 + B846 + B847

=
μ

bo

([∧s, h
]
I–1hxζxx,∧su

)

+
μ2

3bo

([∧s, h3]∂x
(
I–1∂x(hxζx)

)
,∧sux

)
–

μ2

3bo

([∧s, h3]∂x
(
I–1∂x(hx)ζx

)
,∧sux

)
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–
εμ2

2bo

([∧s, h2bx
]
I–1hxζxx,∧sux

)
+

εμ2

2bo

([∧s, h2bx
]
I–1hxζxx,∧sux

)

+
εμ2

2bo

([∧s,
(
h2bx

)

x

]
I–1hxζxx,∧su

)
–

ε2μ2

bo

([∧s, hb2
x
]
I–1hxζxx,∧su

)
;

also, all the terms in B84 created by μ

bo
[∧s,I]I–1hxζxx make sense, and that is done because

we have U = (ζ , u)t ∈ Xs
T and U = (ζ , u)t ∈ Xs

T .
In particular, remark that the following estimates:

∣
∣I–1hxζxx

∣
∣
Hs–1 ≤ ∥

∥I–1∥∥
Hs–1→Hs–1 |hxζxx|Hs–1 ,

∣
∣∂x

(
I–1(∂x(hxζx)

))∣
∣
Hs–1 ≤ ∥

∥∂xI–1∂x
∥
∥

Hs–1→Hs–1 |hxζx|Hs–1 ,

hold, and by using Lemma 1, Lemma 2 and the Cauchy–Schwarz inequality, one obtains

|B841| ≤ C
(

1
h0

, |h – 1|Hs

)

|hx|Hs–1

√
μ

bo
|hxζxx|Hs–1 |u|Hs ,

|B842 + B843| ≤ C
(

1
h0

, |h – 1|Hs

)
∣
∣
(
h3)

x

∣
∣
Hs–1 |hxζx|Hs–1

√
μ|ux|Hs ,

|B844 + B845| ≤ εC
(

1
h0

, |h – 1|Hs

)
∣
∣
(
h2bx

)

x

∣
∣
Hs–1

√
μ

bo
|hxζxx|Hs–1

√
μ|ux|Hs ,

|B846 + B847| ≤ εC
(

1
h0

, |h – 1|Hs

)(√
μ

bo

∣
∣
(
h2bx

)

xx

∣
∣
Hs–1 +

∣
∣
(
h2bx

)

x

∣
∣
Hs–1

)

×
√

μ

bo
|hxζxx|Hs–1 |u|Hs .

Since Hs ↪→ Hs–1, one obtains |B84| ≤ εC(Es(U))Es(U)2. Thus, one concludes

|B| ≤ εC
(
Es(U)

)
Es(U)2.

Step 3: Control of C := (∧sB(U), Sσ ∧s U).
Here by writing B(U) and Sσ in their explicit forms, we get

C = –ε
(∧s(bxu),J ∧s ζ

)
–

([∧s,I
]
I–1q(U),∧su

)
+

(∧sq(U),∧su
)
;

consider C1 = –ε(∧s(bxu),J ∧s ζ ), write J in explicit form and integrate by parts, and we
get

C1 =: C11 + C12 = –ε
(∧s(bxu),∧sζ

)
–

εμ

bo

(∧s(bxu)x,∧sζx
)

and the Cauchy–Schwarz inequality implies

|C11| ≤ cε|bxu|Hs |ζ |Hs and |C12| ≤ cε
√

μ
∣
∣(bxu)x

∣
∣
Hs

√
μ

bo
|ζx|Hs

where c is a constant. Thus, one concludes |C1| ≤ εC(Es(U))Es(U).
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Now in order to control C2 = –([∧s,I]I–1q(U),∧su) + (∧sq(U),∧su) writing I in explicit
form, using Lemma 2 and integration by parts, one obtains

C2 = –
([∧s, h

]
I–1q(U),∧su

)
–

μ

3
([∧s, h3]∂x

(
I–1q(U)

)
,∧sux

)

+
εμ

2
([∧s, h2bx

]
I–1q(U),∧sux

)

+
εμ

2
([∧s, h2bx

]
∂xI–1q(U),∧su

)
– ε2μ

([∧s, hb2
x
]
I–1q(U),∧su

)

+
(∧sq(U),∧su

)
.

Now, by writing q(U) in explicit form, q(U) = ε3μhbxxbxu2 + 1
2ε2μ∂x(h2bxx)u2 and using

Lemma 1, Lemma 2 and the Cauchy–Schwarz inequality, one can check easily that these
terms are under control and one deduces that |C2| ≤ εC(Es(U))Es(U). Thus, one concludes

|C| ≤ εC
(
Es(U)

)
Es(U).

Step 4: Control of D := 1
2 (∧sU , [∂t , Sσ ] ∧s U).

By writing Sσ in explicit form, we obtain

D =
1
2
(∧sζ , [∂t ,J ] ∧s ζ

)
+

1
2
(∧su, [∂t ,I] ∧s u

)
.

Obviously, D1 = 1
2 (∧sζ , [∂t ,J ] ∧s ζ ) is equal to zero due to the form of J . On the other

hand, we have D2 = 1
2 (∧su, [∂t ,I] ∧s u).

After writing I in explicit form, using Lemma 2 and integration by parts, we obtain

D2 =
1
2
(∧su, ht ∧s u

)
+

μ

6
(∧sux,

(
h3)

t ∧s ux
)

–
εμ

4
(∧sux,

(
h2)

tbx ∧s u
)

–
εμ

4
(∧su,

(
h2)

tbx ∧s ux
)

+
ε2μ

2
(∧su, htb

2
x ∧s u

)
.

Therefore, by using the Cauchy–Schwarz inequality, one concludes

|D| ≤ εC
(
Es(U), |∂tζ |L∞

)
Es(U)2.

After gathering all information provided by the above estimates, we get

eελt∂t
(
e–ελtEs(U)2) ≤ ε

(
C

(
Es(U), |∂tζ |L∞

)
– λ

)
Es(U)2 + εC(Es(U)Es(U).

We take λ = λT large enough for some T(depending on sup0≤t≤ T
ε

C(Es(U), |∂tζ (t)|L∞ )) to
have the first term of the right hand side of the previous inequality negative ∀t ∈ [0, T

ε
].

So, we conclude that

eελt∂t
(
e–ελtEs(U)2) ≤ εC(Es(U)Es(U).

Finally, integrating this differential inequality yields ∀t ∈ [0, T
ε

]

Es(U(t)
) ≤ eελT tEs(U0) + ε

∫ t

0
eελT (t–t′)C

(
Es(U)

(
t′))dt′. �
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3 Well-posedness of 1D-GNσ

The main results are presented in this section, that is, showing the well-posedness of the
1D-GNσ model in Theorem 1 and obtaining the energy conservation in Proposition 2.

Theorem 1 Let U0 = (ζ0, u0)t ∈ Xs satisfy (3), b ∈ C∞
b (R), t0 > 1

2 and s ≥ t0 + 1. Then the
model 1D-GNσ (2) admits a unique solution U = (ζ , u)t ∈ Xs

Tmax
, with the initial condi-

tion (ζ0, u0)t , and preserving (3) for any t ∈ [0, Tmax
ε

), for some Tmax > 0 (maximal instant)
uniformly bounded from below with respect to ε,μ, 1

bo
∈ (0, 1).

In the case Tmax < ∞ and as t tends to Tmax
ε

, we have

∣
∣U(t, ·)∣∣Xs → ∞ or inf

R

h(t, ·) = inf
R

1 + ε
(
ζ (t, ·) – b(·)) → 0.

Remark 4 The previous result shows the well-posedness only by using a standard Picard
iterative and thus there is no loss of regularity of the solution with respect to the initial
condition. Also this theorem has extra importance as it does not impose any smallness
assumption on the parameters μ and ε, and this is due to the uniform boundedness of
Tmax. In fact if some smallness assumption is made on ε for instance, then the existence
time becomes larger.

Proof Consider a sequence (Un = (ζ n, un))n≥0 defined by

U0 = U0 and ∀n ∈N,

⎧
⎨

⎩

∂tUn+1 + Aσ [Un]∂xUn+1 + B(Un) = 0;

Un+1
|t=0

= U0.
(5)

Let us prove recursively that (5) has a unique solution Un+1 ∈ C([0,∞); Xs) satisfying (3)
and ∂tUn+1 ∈ Xs–1

T for all times.
For n = 0, take U0 = U0 ∈ Xs

T , so ∂tU0 = 0 ∈ Xs–1
T and satisfying (3), so U0 is the unique

solution for (5) for n = 0.
Now suppose that is true till order n – 1, which implies that the system

⎧
⎨

⎩

∂tUn + Aσ [Un–1]∂xUn + B(Un–1) = 0;

Un
|t=0

= U0,

has a unique solution Un ∈ Xs
T satisfying (3) and ∂tUn ∈ Xs–1

T .
Then by using Proposition 1 the system

⎧
⎨

⎩

∂tUn+1 + Aσ [Un]∂xUn+1 + B(Un) = 0;

Un+1
|t=0

= U0,

has a unique solution Un+1 ∈ Xs
T . Now let us prove that it satisfies (3).

Let M > 0 be such that Es(U0) ≤ M
2 . By using the estimate of Proposition 1, we get

Es(Un+1(t)
) ≤ eελT tEs(U0) + ε

∫ t

0
eελT (t–t′)C

(
Es(Un)(t′))dt′.
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Now suppose that supt∈[0, T
ε ] Es(Un(t)) ≤ M, so one can deduce using the above estimate

that there is T > 0 such that

sup
t∈[0, T

ε ]
Es(Un+1(t)

) ≤ M;

also Lemma 3, yields

sup
t∈[0, T

ε ]

∣
∣Un+1(t)

∣
∣
Xs ≤ CM,

and we know that ∂tζ
n+1 = –hnun+1

x – εζ n+1
x un + εbxun, so one obtains

∣
∣∂thn+1∣∣

L∞ = ε
∣
∣∂tζ

n+1∣∣
L∞ ≤ εCM.

Using the latter inequality and the fact that hn+1 = hn+1
t=0 + ε

∫ t
0 ∂tζ

n+1 with hn+1
t=0 ≥ h0 implies

Un+1 satisfies condition (3) for some T small enough. Indeed, small to replace h0 by h0
2 .

Now, it is small enough to prove that ∂tUn+1 ∈ Xs–1
T . We have

∂tUn+1 = –Aσ
[
Un]∂xUn+1 – B

(
Un),

by writing Aσ [Un] and B(Un) in explicit form, one obtains

∂tUn+1 =

(
–εunζ n+1

x – hnun+1
x + εbxun

–I–1
n hnJ ζ n+1

x – εunun+1
x – I–1

n Q1[Un]un+1
x – I–1

n q(Un)

)

.

Xs–1 is the vector space Hs(R) × Hs(R) endowed with the norm

∀U = (ζ , u)t ∈ Xs–1, |U|2Xs–1 := |ζ |2Hs–1 + |u|2Hs–1 +
μ

bo
|∂xζ |2Hs–1 + μ|∂xu|2Hs–1 ,

while Xs–1
T stands for C([0, T

ε
]; Xs–1) endowed with its canonical norm.

First we can remark that ∂tζ
n+1 = –εunζ n+1

x – hnun+1
x + εbxun ∈ Hs(R), and that is easily

done, where Un ∈ Xs
T and Un+1 ∈ Xs

T .
Now, let us prove that

∂tun+1 = –I–1
n hnJ ζ n+1

x – εunun+1
x – I–1

n Q1
[
Un]un+1

x – I–1
n q

(
Un) ∈ Hs(R).

In fact, let us show the controlling on –I–1
n hnJ ζ n+1

x , since it involves a higher deriva-
tive mainly of third order. We have –I–1

n hnJ ζ n+1
x = –I–1

n hnζ n+1
x + μ

bo
I–1

n (hnζ n+1
xx ) – μ

bo
×

I–1
n ∂x(hn

xζ
n+1
xx ); by using the explicit form of In and Lemma 1 one can obtain –I–1

n hn ×
J ζ n+1

x ∈ Hs.
However, by referring to the explicit forms of Q1[Un] and q(Un), one can easily check

that

–εunun+1
x – I–1

n Q1
[
Un]un+1

x – I–1
n q

(
Un) ∈ Hs(R)
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and so we conclude that

∂tun+1 = –I–1
n hnJ ζ n+1

x – εunun+1
x – I–1

n Q1
[
Un]un+1

x – I–1
n q

(
Un) ∈ Hs(R)

since we have |∂tUn+1|2Xs–1 ≤ c(|∂tζ
n+1|2Hs + |∂tun+1|2Hs ) for some positive constant c. Thus,

one concludes ∂tUn+1 ∈ Xs–1
T .

Finally, by using Proposition 1, we conclude that for every natural number the iterative
scheme (5) has a unique solution Un+1 preserving (3) and satisfying

Es(Un+1(t)
) ≤ eελT tEs(U0) + ε

∫ t

0
eελT (t–t′)C

(
Es(Un)(t′))dt′

and t ∈ [0, T
ε

] and λT depending only on supt∈[0, T
ε ] Es(Un).

Now one can deduce that there exists Tmax = T(Es(U0)) > 0, such that the system (2) has
a unique solution U ∈ Xs

Tmax
, preserving (3) for any t ∈ [0, Tmax

ε
], which is the limit of the

iterative scheme (5) (see [1]). �

Remark 5 It should be noted that the result is consistent with what has been established
in the absence of surface tension, which was studied in [8]. In fact our approach was in
1D, while the second dimension is still an open work and is not discussed in this paper.

Proposition 2 Let U = (ζ , u)t ∈ Xs
Tmax

be the solution of (2), then U satisfies the following
equation for energy conservation: ∂t(|ζ |22 + μ

bo
|ζx|22 + (hu, u) + μ(hT u, u)) = 0 where T =

T [h, εb].

Proof We multiply the first equation of (2) by ζ and the second equation by u. By integrat-
ing on R and adding both equations, we get

1
2
∂t|ζ |22 +

(
∂x(hu), ζ

)
+ (∂tu, hu) + μ(hT ∂tu, u) + ε(u, ∂xu, hu)

+ (∂xζ , hu) –
μ

bo

(
∂3

x ζ , hu
)

+ με(Pu, u) = 0,

where

Pu = –
1
3
∂xh3(u∂2

x u – (∂xu)2) +
ε

2
[
∂x

(
h2u∂x(ubx)

)
– h2∂xb

(
u∂2

x u – (∂xu)2)]

+ ε2h∂xb
(
u∂x

(
u∂x(ubx)

))
.

Now, by using the equality h = 1 + ε(ζ – b) and the first equation of (2), one obtains
– 1

2 (∂th, u2) + ε(u∂xu, hu) = – ε
2 (∂x(hu), u2) + ε(u∂xu, hu) = 0.

Also, by using the first equation of (2) and integration by parts, we get – μ

bo
(∂3

x ζ , hu) =
μ

2bo
∂t(|∂xζ |22). Thus, one can conclude

1
2
∂t|ζ |22 +

μ

2bo
∂t|ζx|22 +

1
2
∂t(hu, u) + μ(hT ∂xu, u) + με(Pu, u) = 0.
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Note that μ(hT ∂tu, u) = ∂t(hT u, u) – μ

2 (∂th, (T1u)2 + (T2u)2) – μ(h∂tT1u,T1u) where T1u =
h√
3∂xu – ε

√
3

2 ∂xbu and T2u = ε
2∂xbu are defined in [8]. So, we have

∂t
(|ζ |22 + |ζx|22 + (hu, u) + μ(hT u, u)

)

=
μ

2
(
∂th, (T1u)2 + (T2u)2) + μ(h∂tT1u,T1u) – με(Pu, u)

and since μ

2 (∂th, (T1u)2 + (T2u)2) + μ(h∂tT1u,T1u) – με(Pu, u) = 0 (see [8]), the proof is
done. �

4 Conclusion
It was necessary to take care of surface tension and a non-flat bottom when proving the
existence and uniqueness of the Green–Naghdi equations in this work. The reason is that
the neglecting of these external circumstances is not a simulation of nature and reality.
Indeed, in some environments such conditions exist and may affect the accuracy of the
solutions, so that this study will give more accuracy. In the current work, the existence and
uniqueness of the Green–Naghdi equations with non-flat bottom and under the influence
of surface tension is proved at a large instant of time. The Picard iterative scheme is used
to prove this result where the solution is regular relative to the initial condition. The main
task was the appearance of the higher derivative, mainly of third order, in a nonlinear
equation. Now, and after proving the existence of that solution, the main question that is
raised is if anyone can express the explicit form of this solution knowing that the nonlinear
equation in this model involves a higher derivative of third order. This will be a point of
study for future work.

Appendix: Linearized equation study
Let us prove the existence, uniqueness and regularity of the solution of the following sys-
tem:

⎧
⎨

⎩

∂tU + Aσ [U]∂xU = f ,

U|t=0 = U0,
(6)

where U = (ζ , u)t ∈ Xs
T is such that ∂tU ∈ Xs–1

T and satisfies (3) on [0, T
ε

].
We use here the same strategy used in [8], that is, we seek to obtain a solution to (6) as

a limit of solutions Uδ to

⎧
⎨

⎩

∂tUδ + JδAσ [U]Jδ∂xUδ = f ,

Uδ|t=0
= U0,

(7)

where Jδ = ϕ(δ|D|) where δ > 0 and ϕ ∈ C∞
o (R) such that ϕ(r) = 1 for |r| ≤ 1.

The following lemma contains some properties of Jδ (for more details see [15] and [8]).

Lemma 4 Let f ∈ C1(R) ∩ L∞(R) and v ∈ L2(R) and ∀s, s′ ∈ R.
(i) Jδ : Hs(R) → Hs′ (R) is a bounded linear and self adjoint operator, and it commutes

with ∧s.
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(ii) |[f , Jδ]v|H1 ≤ C|f |C1 |v|2 for some constant C independent of δ.

Now Aσ
δ = JδAσ [U]Jδ is a bounded linear operator on each Xs and Fσ

δ = Aσ
δ ∂x + B(U) ∈

C1(Xs), so by Cauchy–Lipschitz the O.D.E. (7) has a unique solution Uδ ∈ C([0, T
ε

], Xs).
Here the task is to obtain an estimate of Uδ independent of δ ∈ (0, 1) and to show that

Uδ → U as δ → 0 where U is the solution to (6). First, remark that

1
2
∂t

(
Es(Uδ)2) =

(∧s∂tUδ , Sσ ∧s Uδ

)
+

1
2
(∧sUδ ,

[
∂t , Sσ

] ∧s Uδ

)
.

By using Eq. (7) to find the expression of ∂tUδ , we get

1
2
∂t

(
Es(U)2) = –

(∧sJδAσ [U]Jδ∂xJδUδ , Sσ ∧s Uδ

)
+

(∧sf , Sσ ∧s Uδ

)

+
1
2
(∧sUδ ,

[
∂t , Sσ

] ∧s Uδ

)
.

By using the definition of the commutator estimate, we get

1
2
∂t

(
Es(Uδ)2) = –

(
Sσ Aσ [U] ∧s ∂xJδUδ ,∧sJδUδ

)
–

([∧s, Aσ [U]
]
∂xJδUδ , Sσ ∧s JδU

)

–
(∧sf , Sσ ∧s Uδ

)
+

1
2
(∧sU ,

[
∂t , Sσ

] ∧s Uδ

)

+
([

Sσ , Jδ
] ∧s Uδ , Aσ [U] ∧s ∂xJδUδ

)

+
([

Sσ , Jδ
] ∧s Uδ ,

[∧s, Aσ [U]
]
∂xJδUδ

)
.

Now, by using the same way used in order to prove Proposition 1, that is, to control each
term of the above equation, and by using Lemma 4, one can obtain

∂t
(
Es(Uδ)2) ≤ CEs(Uδ)2 + CEs(f )2.

Thus Gronwall’s inequality yields Es(Uδ)2 ≤ C(t)[(Es(U0)2) + supt∈[0,t] Es(f )2] independent
of δ ∈ (0, 1).

By using this energy estimate, we can conclude the existence and uniqueness of the so-
lution U ∈ C([0, 1], Xs) to (6) (see [15]).
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