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Abstract
In this paper, we discuss the existence of positive solutions of the conformable
fractional differential equation Tαx(t) + f (t, x(t)) = 0, t ∈ [0, 1], subject to the boundary
conditions x(0) = 0 and x(1) = λ

∫ 1
0 x(t)dt, where the order α belongs to (1, 2], Tαx(t)

denotes the conformable fractional derivative of a function x(t) of order α, and
f : [0, 1]× [0,∞) �→ [0,∞) is continuous. By use of the fixed point theorem in a cone,
some criteria for the existence of at least one positive solution are established. The
obtained conditions are generally weaker than those derived by using the classical
norm-type expansion and compression theorem. A concrete example is given to
illustrate the possible application of the obtained results.
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1 Introduction
The fractional derivative is a generalization of the classical one to an arbitrary order, and
the question of what is a fractional derivative was first raised by L’Hôpital in a letter to
Leibniz in 1695. Since then, fractional calculus has been extensively studied, and it has
been applied to almost every field of science, engineering, and mathematics in the last
four decades [1–10]. It is worth emphasizing that there exist a number of definitions of
fractional derivatives in the literature, and the different definitions are constructed to sat-
isfy various constraints.

Recently, in [11] Khalil et al. introduced a new well-behaved definition of a fractional
derivative termed the conformable fractional derivative. The new definition has drawn
much interest from many researchers. And some results have been obtained on the prop-
erties of the conformable fractional derivative [11–13]. Several applications and general-
izations of the definition were also discussed in [14–20], among which [14] indicated that
several specific conformable fractional models are consistent with experimental date, and
which [15] interpreted the physical and geometrical meaning of the conformable frac-
tional derivative. Although the definite meaning indicates potential applications of the
conformable fractional derivative in physics and engineering, it is worth noting that the
investigation of the theory of conformable fractional differential equations has only en-
tered an initial stage.
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Initial value problems of conformable fractional differential equations were discussed
in [21–23]; and analytical solutions to some specific conformable fractional partial differ-
ential equations were studied in [24–30]. For the discussion of boundary value problems
(BVPs for short) of conformable fractional differential equations, some theoretical de-
velopments have also been achieved. In particular, Lyapunov type inequalities for some
conformable boundary value problems were established in [31, 32]; a regular conformable
fractional Sturm–Liouville eigenvalue problem was considered in [33]; solvability of some
two-point fractional BVP was considered in [34–36] by using topological transversality
theorem; a type of three-point fractional BVP was studied in [37] by means of fixed point
theorems; and a class of periodic BVP was discussed in [38] by virtue of methods of lower
and upper solutions. Applying approximation methods of operators and fixed point theo-
rems, Xiaoyu Dong et al. [39] investigated the existence of positive solutions to a specific
type of two-point BVP of p-Laplacian.

Motivated by the above-mentioned results and techniques in treating those BVPs of the
conformable fractional differential equations, we then turn to investigating the existence
of positive solutions for the BVP as follows:

⎧
⎨

⎩

Tαx(t) + f (t, x(t)) = 0, t ∈ [0, 1],

x(0) = 0, x(1) = L(x),
(1.1)

where α belongs to (1, 2], Tα denotes the conformable fractional derivative of order α, the
function f : [a,∞) × [0,∞) �→ [0,∞) is continuous, and L(x) = λ

∫ 1
0 x(t) dt for which the

parameter λ is a positive number.
In the context of the conformable fractional derivatives, to the best of our knowledge,

there have been very few results in the literature for the existence of positive solution to
the conformable fractional differential equations with integral boundary conditions. It is
worth pointing out that the obtained Green function in this work is singular, while the
Green functions of BVPs of some new fractional derivatives with nonsingular kernels are
nonsingular [40, 41].

The rest of paper is organized as follows. Section 2 preliminarily provides some defini-
tions and lemmas which are crucial to the following discussion. In Sect. 3, we establish
some criteria for the existence of at least one positive solution to the BVP (1.1) by means
of the fixed point theorem in a cone. The obtained conditions are generally weaker than
those derived by using the classical norm-type expansion and compression theorem [42].
Finally, an example is given to illustrate the possible application of the obtained results.

2 Preliminaries
In this section, we preliminarily provide some definitions and lemmas which play a key
role in the following discussion.

Definition 2.1 ([11, 12]) Let α be in (0, 1]. The conformable fractional derivative of a
function f : [0,∞) �→ R of order α is defined by

Tαf (t) = lim
ε→0

f (t + εt1–α) – f (t)
ε

.

If Tαf (t) exists on (0, b), then Tαf (0) = limt→0 Tαf (t).
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Definition 2.2 ([11, 12]) Let α be in (n, n + 1]. The conformable fractional derivative of a
function f : [0,∞) �→ R of order α is defined by

Tαf (t) = Tβ f (n)(t) for which β = α – n.

Definition 2.3 ([12]) Let α be in (n, n+1]. The fractional integral of a function f : [0,∞) �→
R of order α is defined by

Iαf (t) =
1
n!

∫ t

0
(t – s)nsα–n–1f (s) ds.

Lemma 2.1 ([11, 12]) Let α be in (n, n + 1]. If f is a continuous function on [0,∞), then,
for all t > 0, TαIαf (t) = f (t).

Lemma 2.2 ([11, 12]) Let α be in (n, n + 1]. Then Tαtk = 0 for t in [0, 1] and k = 1, 2, . . . , n.

Lemma 2.3 ([12]) Let α be in (n, n + 1]. If Tαf (t) is continuous on [0,∞), then

IαTαf (t) = f (t) + c0 + c1t + · · · + cntn

for some real numbers ck , k = 1, 2, . . . , n.

By Lemma 2.3, we next present an integral presentation of the solution for the BVP of
the linearized equation related to the BVP (1.1).

⎧
⎨

⎩

Tαx(t) + h(t) = 0, t ∈ [0, 1],α ∈ (1, 2],

x(0) = 0, x(1) = L(x).
(2.1)

Lemma 2.4 Let h be in C[0, 1]. If λ �= 2, then the BVP (2.1) exists a unique solution defined
on [0, 1] given by

x(t) =
∫ 1

0
K(t, s)h(s) ds, (2.2)

where

K(t, s) = G(t, s) + H(t, s), (2.3)

G(t, s) =

⎧
⎨

⎩

(1 – t)sα–1, 0 ≤ s ≤ t ≤ 1,

tsα–2(1 – s), 0 < t ≤ s ≤ 1,
(2.4)

and

H(t, s) =
2λt

2 – λ

∫ 1

0
G(τ , s) dτ . (2.5)

Proof By the continuity of h and Lemma 2.3, it follows from Eq. (2.1) that

x(t) = c0 + c1t – Iαh(t).
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This, together the boundary conditions, implies c0 = 0 and

c1 = Iαh(1) + L(x).

Hence

x(t) = –Iαh(t) + tIαh(1) + tL(x)

= –
∫ t

0
(t – s)sα–2h(s) ds +

∫ t

0
t(1 – s)sα–2h(s) ds

+
∫ 1

t
t(1 – s)sα–2h(s) ds + tL(x),

which yields

x(t) =
∫ 1

0
G(t, s)h(s) ds + tL(x). (2.6)

Applying the transformation L to both sides of Eq. (2.6), we get

L(x) =
2

2 – λ

∫ 1

0
L

(
G(t, s)

)
h(s) ds. (2.7)

Substituting the above expression into (2.6), we obtain the desired result. �

The functions G , H and K have several important properties as follows.

Lemma 2.5 For any (t, s) in (0, 1] × (0, 1],

0 ≤ q(t)G(s, s) ≤ G(t, s) ≤ G(s, s). (2.8)

Furthermore, if λ belongs to [0, 2), then

0 ≤ q(t)H(1, s) ≤H(t, s) ≤H(1, s), (2.9)

0 ≤ q(t)M(s) ≤K(t, s) ≤M(s), (2.10)

where q(t) = t(1 – t), and M(s) = G(s, s) + H(1, s).

Proof By the definition of G , for 0 ≤ s ≤ t ≤ 1,

G(t, s) = (1 – t)sα–1 ≤ (1 – s)sα–1 = G(s, s),

and for 0 < t ≤ s ≤ 1,

G(t, s) = tsα–2(1 – s) =
t
s

(1 – s)sα–1 ≤ (1 – s)sα–1 = G(s, s).

Thus G(t, s) ≤ G(s, s) for (t, s) in (0, 1] × (0, 1].
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Moreover, observe that, for 0 < s ≤ t ≤ 1,

G(t, s) = (1 – t)sα–1 ≥ (1 – t)sα–1(1 – s) ≥ q(t)G(s, s) ≥ 0

and that, for 0 < t ≤ s ≤ 1,

G(t, s) = tsα–2(1 – s) ≥ tsα–1(1 – s) ≥ q(t)G(s, s) ≥ 0.

Hence

0 ≤ q(t)G(s, s) ≤ G(t, s) ≤ G(s, s)

for (t, s) in (0, 1] × (0, 1]. Furthermore, the above inequality and the definitions of H and
K clearly yield the inequalities (2.9) and (2.10). The proof is complete. �

The key tool in our approach is the following well-known fixed point theorem in a cone
[42, 43].

Lemma 2.6 LetB be a Banach space,P ⊆Ba cone, and �1, �2 two bounded open balls of
B centered at the origin with �̄1 ⊂ �2. Suppose that � : P ∩ (�̄2 \�1) →P is a completely
continuous operator such that

(C1) ‖�x‖ ≤ ‖x‖, x ∈P ∩ ∂�1.
(C2) There exists ψ ∈P \ {0} such that x �= �x + λψ for x ∈P ∩ ∂�2 and λ > 0.

Then � has a fixed point in P ∩ (�̄2 \�1). The same conclusion remains valid if (C1) holds
on P ∩ ∂�2 and (C2) holds on P ∩ ∂�1.

3 Main results
In order to utilize the fixed point theorem to discuss the existence of solutions of the
boundary value problem, we now make the basic assumption and define some sets of func-
tions in C[a, b] and operators.

(H) The function f is nonnegative, and continuous on [0, 1] × [0,∞), and the parameter
λ belongs to [0, 2).

Let B = C[0, 1] be the classical Banach space with the norm ‖x‖ = supt∈[0,1] |x(t)|. Fur-
thermore, define the cone P in B by

P =
{

x ∈B|x(t) ≥ q(t)‖x‖ for t ∈ [0, 1]
}

.

Here the function q(t) is defined as in Lemma 2.5.
Given a positive number r, define the subset �r of B by

�r =
{

x ∈ B : ‖x‖ < r
}

.

Also, define the operator from the space B to itself by

(�x)(t) =
∫ 1

0
K(t, s)f

(
t, x(s)

)
ds. (3.1)

Under the hypothesis (H), the operator is well defined and has the following property.



Zhong and Wang Boundary Value Problems  (2018) 2018:137 Page 6 of 12

Lemma 3.1 If the hypothesis (H) holds, then �(P) ⊂P .

Proof For any x in P , the definition of � and the inequality (2.10) imply that

(�x)(t) =
∫ 1

0
K(t, s)f

(
t, x(s)

)
ds ≥ q(t)

∫ 1

0
M(s)f

(
t, x(s)

)
ds

and that

(�x)(t)) =
∫ 1

0
K(t, s)f

(
t, x(s)

)
ds ≤

∫ 1

0
M(s)f

(
t, x(s)

)
ds,

which yield

(�x)(t) ≥ q(t)‖�x‖.

Hence �x ∈P . We thus complete the proof. �

We further discuss the complete continuity of the operator �. To this end, denote the
operator � by

� = �1 + �2, (3.2)

where the operators �1 and �2 are defined, respectively, by

(�1x)(t) =
∫ 1

0
G(t, s)f

(
s, x(s)

)
ds (3.3)

and

(�2x)(t) =
∫ 1

0
H(t, s)f

(
s, x(s)

)
ds. (3.4)

And then we claim that �1 and �2 : P �→P are completely continuous operators. Indeed,
by an argument similar to the proof of Lemma 3.1, using the inequalities (2.8) and (2.9) we
first infer that �1(P) ⊂P and �2(P) ⊂P .

Furthermore, observe that the kernelG(t, s) of �1 is singular on [0, 1]×[0, 1], and that the
complete continuity of the operator �1 was verified in [34, 39] by using approximations of
the operator. As for the operator �2, its kernel H(t, s) is continuous on [0, 1] × [0, 1], and
using the standard argument, we can easily check that it is also completely continuous.
Thus we obtain the following lemma.

Lemma 3.2 If the hypothesis (H) holds, then the operator � : P �→P completely continu-
ous.

The next lemma transforms the BVP (1.1) into an equivalent fixed point problem.

Lemma 3.3 If the hypothesis (H) holds, then a function x in C[0, 1] is a positive solution of
the BVP (1.1) if and only if it is a fixed point of � in P .
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Proof Let x be a fixed point of � in P , then

x(t) =
∫ 1

0
K(t, s)f

(
s, x(s)

)
ds = –Iαf

(
t, x(t)

)
+ tIαf

(
1, x(1)

)
+ tL(x), (3.5)

and thus, by the continuity of f , Lemma 2.1, 2.2 and 2.3,

Tαx(t) + f
(
t, x(t)

)
= 0.

Moreover, the equality (3.5) directly implies x(0) = 0 and x(1) = L(x). Therefore x is a pos-
itive solution of the BVP (1.1).

On the other hand, if x is a positive solution of the BVP (1.1), then Lemma 2.4 implies
�x = x. Moreover, by the same type of argument as for the proof of Lemma 3.1, we also get
x(t) ≥ q(t)‖x‖ for t ∈ [0, 1]. Hence x is a fixed point of � in P . We consequently complete
the proof. �

Before presenting the main results, we further introduce some notations as follows:

f0 = lim
x→0

min
t∈[0,1]

f (t, x)
x

and f ∞ = lim
x→∞ max

t∈[0,1]

f (t, x)
x

;

f 0 = lim
x→0

max
t∈[0,1]

f (t, x)
x

and f∞ = lim
x→∞ min

t∈[0,1]

f (t, x)
x

;

�1 =
(

q(δ)
∫ 1–δ

δ

M(s) ds
)–1

and �2 =
(∫ 1

0
M(s) ds

)–1

.

Here δ is a positive number given in (0, 1
2 ). The functions M(s) and q(t) are defined as in

Lemma 2.5.
Now we are in a position to give and show the main results.

Theorem 3.1 Assume that the hypothesis (H) holds. If f0 > �1 and f ∞ < �2
2 , then the BVP

(1.1) has at least one positive solution.

Proof The assertion will be proven by Lemma 2.6. Observe that Lemma 3.2 ensures that
the operator � : P →P is completely continuous.

We first verify that the operator � satisfies the condition (C2) in Lemma 2.6. Since f0 >
�1, there exists a positive number r1 such that

f (t, x) ≥ �1x for t ∈ [0, 1] and 0 ≤ x ≤ r1.

Thus

f
(
t, x(t)

) ≥ �1x(t) for t ∈ [0, 1] and x ∈P ∩ ∂�r1 .

Now, choose the function ψ ≡ 1, and obviously, ψ belongs to P \ {0}. We next show that,
for the specified ψ ,

x �= �x + λψ
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for x ∈ P ∩ ∂�r1 and λ > 0. If such were not the case, then there exist a function x0 ∈
P ∩ ∂�r1 and a positive number λ0 such that

x0 = �x0 + λ0ψ .

Let x̄0 = mint∈[δ,1–δ] x0(t). Then, by the inequality (2.10), for each t in [δ, 1 – δ],

x0(t) =
∫ 1

0
K(t, s)f

(
s, x0(s)

)
ds + λ0

≥ �1q(t)
∫ 1–δ

δ

M(s)x0(s) ds + λ0

≥ �1q(δ)
∫ 1–δ

δ

M(s) ds · x̄0 + λ0

= x̄0 + λ0.

Thus, x̄0 ≥ x̄0 + λ0. This is a contradiction. Hence the operator � satisfies the condition
(C2) in Lemma 2.6.

We now show that the operator � satisfies the condition (C1) in Lemma 2.6. From the
assumption f ∞ < �2

2 , it follows that there exists a positive number γ1 such that

f (t, x) ≤ �2

2
x for t ∈ [0, 1] and x ≥ γ1, (3.6)

Now let γ2 = max{f (t, x) : t ∈ [0, 1], x ∈ [0,γ1]}. Then the inequality (3.6) yields

f (t, x) ≤ �2

2
x + γ2 for t ∈ [0, 1] and x ≥ 0. (3.7)

Set r2 = max{2r1, 2γ2
∫ 1

0 M(s) ds} and let x ∈P ∩∂�r2 . Then Lemma 2.5 and the inequality
(3.7) imply

‖�x‖ = max
t∈[0,1]

∫ 1

0
K(t, s)f

(
s, x(s)

)
ds

≤
∫ 1

0
M(s)

(
�2

2
x(s) + γ2

)

ds

≤ �2

2

∫ 1

0
M(s) ds‖x‖ + γ2

∫ 1

0
M(s) ds

≤ ‖x‖.

Hence the operator � satisfies condition (C1) in Lemma 2.6. Consequently, the operator
� has at least one fixed point x ∈ P ∩ (�̄2 \ �1), and Lemma 3.3 ensures that x is one
positive solution of the BVP (1.1). The proof is complete. �

Theorem 3.2 Assume that the hypothesis (H) holds. If f 0 < �2 and f∞ > �1, then the BVP
(1.1) has at least one positive solution.
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Proof The assertion will be shown by Lemma 2.6. Note that the complete continuity of
the operator � is guaranteed by Lemma 3.2. We only need to prove that the operator �

satisfies the conditions (C1) and (C2) in Lemma 2.6.
Since f 0 < �2 and f∞ > �1, there exist two positive numbers r1 and γ1 such that

f (t, u) ≤ �2x for t ∈ [0, 1] and 0 ≤ x ≤ r1, (3.8)

f (t, x) ≥ �1x for t ∈ [0, 1] and x ≥ γ1. (3.9)

It follows from Lemma 2.5 and the inequality (3.8) that, for x ∈P ∩ ∂�r1 ,

‖�x‖ = max
t∈[0,1]

∫ 1

0
K(t, s)f

(
s, x(s)

)
ds ≤ �2

∫ 1

0
M(s)x(s) ds ≤ ‖x‖.

Thus the operator � satisfies the condition (C1) in Lemma 2.6.
It remains to show that the operator � also satisfies the condition (C2) in Lemma 2.6.

To this end, let r2 = max{2r1,γ1q–1(δ)}. If x ∈P ∩ ∂�r2 , then

x(t) ≥ q(t)‖x‖ ≥ q(δ)r2 ≥ γ1 for t ∈ [δ, 1 – δ],

and hence, by the inequality (3.9),

f
(
t, x(t)

) ≥ �1x(t) for t ∈ [δ, 1 – δ] and x ∈P ∩ ∂�r2 .

Now, choose the function ψ ≡ 1, and clearly, ψ belongs to P \ {0}. We then claim that

x �= �x + λψ

for x ∈ P ∩ ∂�r2 and λ > 0. Indeed, if the preceding assertion is not true, then there exist
a function x0 ∈P ∩ ∂�r2 and a positive number λ0 such that

x0 = �x0 + λ0ψ .

Let x̄0 = mint∈[δ,1–δ] x0(t). Then, by the inequality (2.10), for each t in [δ, 1 – δ],

x0(t) =
∫ 1

0
K(t, s)f

(
s, x0(s)

)
ds + λ0

≥ �1q(t)
∫ 1–δ

δ

M(s)x0(s) ds + λ0

≥ �1q(δ)
∫ 1–δ

δ

M(s) ds · x̄0 + λ0

= x̄0 + λ0.

Therefore, x̄0 ≥ x̄0 + λ0. This contradiction ensures that the operator � satisfies the con-
dition (C2) in Lemma 2.6. Therefore, in the light of Lemma 2.6, we conclude that the
operator � has at least one fixed point x ∈ P ∩ (�̄2 \ �1), and by Lemma 3.3, the fixed
point x is one positive solution of the BVP (1.1). The proof is complete. �
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Remark 3.1 The conditions in Lemma 2.6 are weaker than those in the classical norm-
type expansion and compression theorem [42], and accordingly, it is generally difficult to
utilize the latter to prove Theorem 3.1 and 3.2.

By Theorem 3.1 and 3.2, we directly obtain the following corollary.

Corollary 3.1 If f0 = ∞ and f ∞ = 0, or if f 0 = 0 and f∞ = ∞, then the BVP (1.1) has at
least one positive solution.

3.1 An illustrative example
Let D = [0, 1] × [0,∞), f (t, x) = (t + 1)(2 + sin x), and λ ∈ [0, 2). Then the function f is
nonnegative, and continuous on D. Furthermore,

f0 = lim
x→0

min
t∈[0,1]

f (t, x)
x

= lim
x→0

(
2
x

+
sin x

x

)

= ∞

and

f ∞ = lim
x→∞ max

t∈[0,1]

f (t, x)
x

= lim
x→∞

(
4
x

+
2 sin x

x

)

= 0.

Hence, the corresponding conditions in Corollary 3.1 are satisfied for the above specified
function and parameters, which implies that to the boundary value problem (1.1) there
exists at least one positive solution defined on [0, 1].

4 Conclusion
By using the fixed point theorem in a cone, we establish some criteria for the existence
of at least one positive solution to the conformable fractional differential equations with
integral boundary conditions. The obtained conditions are generally weaker than those
derived by using the classical norm-type expansion and compression theorem and are easy
to satisfy and check. We will further investigate boundary value problems of fractional
differential equations with nonsingular kernel in the future.
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