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Abstract

Our aim in this paper is to develop a Schrodinger-type identity for a Schrodinger free
boundary problem in R". As an application, we establish necessary and sufficient
conditions for the product of some distributional functions to satisfy the
Schrodinger-type identity. As a consequence, our results significantly improve and
generalize previous work.
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1 Introduction and main results
Schrodinger-type identities have been studied extensively in the literature (see [1, 12, 13,
18] for the Schrodinger equation, [5, 14] for Schrodinger systems).

In recent years, many exciting phenomena were found by careful experiments on light
waves propagating in nonlinear periodic lattices. These phenomena are governed by the
following Schrodinger equation:

Schy (1) = (=A)*u + V(x)u — h(x,u) =0 (1.1)
in R”, where n > 2, @ € (0,1), (—-A)* stands for the fractional Laplacian, V is a positive

continuous potential, # € C(R? x R,R). The fractional Laplacian (-A)* with o € (0, 1) of
a function ¢ € § is defined by

G(((=2))) &) = 15PG(WE), Yae(0,1),

where S denotes the Schwartz space of rapidly decreasing C* functions in R” and

1 —2mi&-x
F()(E) = @ -/]I;N e t(x) dx.
The Schrédinger transform Sch,, is defined as the following singular integral:

o [ 1 gy [ 1O
(Seha () (%) = pv.— /R i—y dy = ii%/y_pe x-y dy’

where x € R.
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The Schrodinger-type identity for Schrodinger free boundary problems

Sche (fg) = fSchy (g)

was first studied in [2—4, 6]. It was proved that the above identity holds if 4, g € L%(R)
satisfy suppf C R, (R, =[0,00)) and suppg C R, in [20]. In 2015, Wan also obtained
more general sufficient conditions by weakening the above condition in [19]. Recently, Lv
and Ulker and Huang established the first necessary and sufficient condition in the time
domain and a parallel result in the frequency domain for the Poisson inequality in [10, 14].

It is natural that there have been attempts to define the complex signal and prove the
Schrodinger-type identity in the multidimensional case.

Definition 1.1 The partial Schrédinger transform Schy; of f is given by

f) i,
X =Jj

1
(Schgf)(x) :=p.v.—/
T JRr
where f € I’(R,) and 1 < p < 00.

The total Schrodinger transform Sch,, of f is defined as follows:

1 SO
. =Py — o 4
(Sche (1)) (%) == p.v 7 Jen [T (5 - 3) g

_ lim )

T o W
max =0 Jiy > e50=12,.n | [j=1 (% = 9))

where f € I?(R,) and 1 < p < co. The property

[ Sehaf) |y eny < Coll lzpem

was proved in [8]. The iterative nature of it in L”(R”) was shown in [16], where p > 1. It
was shown that

n
Schy = [ [ Scha;.
j=1

The operations Schy,; and Sch,; commute with each other, where i,j = 1,2,..., n.
Now we define the Schrdodingerean Fourier transform f’ of f (see [17]) by

Fx) = | fle™tat,
RVI

where x € R” and f € L}(R").
Set

D, = {x:x € R”, sgn(—x) = Hsgn(—x/) =14,

j=1
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D_= {x:x e R", sgn(—x) = l—[sgn(—x/) = _1],

j=1
and
Dy = {x :x € R”, sgn(—x) = l_[ sgn(—x;) = 0}.
j=1

We denote by Dp, (R"), Dp_(R") and Dp,(R") the set of functions in D(R”) that are
supported on D,, D_, and Dy, respectively.
The Schwartz class S(R") consists of all functions ¢ on R” such that

sup ‘x"‘DﬁqJ(x)‘ < 00,

xeR”

where o, 8 € Z';.
The Schrodingerean Fourier transform ¢ is a linear homeomorphism from S(R”) onto
itself. Meanwhile, the following identity holds:

(Schy )" (x) = (=i) sgn(x)@,

where ¢ € S(R").
The Schrodingerean Fourier transform F : §'(R”) — S'(R") is defined for any ¢ € S(R")

as follows:

A~

(0,9) = (0,9),

which is a linear isomorphism from S'(R”) onto itself. For the detailed properties of S(R")
and S'(R"), see [3, 7, 15].
For o € S'(R"), A € S(R"), it is easy to check that

~ A

(8,2) = (8,3) = (0, 4) = (6, 4) = (0, )
for any A € S(R”), where
(%) = (=),

0 is the inverse Schrodingerean Fourier transform defined as follows:

(é’}‘> = (Qr)h>'
Therefore in the distributional sense, we obtain
0=0.

Following the definition in [4], a function A belongs to the space D»(R"), 1 < p < o0 if
and only if
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(1) 1 € C®(R");
(2) D’ e IP(R"), k= 1,2,..., where C*(R") consists of infinitely differentiable
functions,

I

DFa(x) = 2(x).

dxkL .. gk

In the sequel, we denote by D}, (R") the dual of the corresponding spaces D, (R"),

where
1 1
—+—,=1
p p

As a consequence, we have
D(R") € S(R") € Dy (R") € L7 (R")
and
17(R") € D), (R") € S'(R") € D'(R").

Definition 1.2 Let f € D;,(R"), where 1 < p < co. Then the Schrédinger transform of f is
defined as follows:

(Schy (f), A) = {f, (~1)" Schq A),
where A € D, (R").

In [10], Huang proved that the total Schrodinger transform is a linear homeomorphism
from D;»(R”) onto itself, and that, if # € D},(R") (1 < p < 00), then PIh € D;,(R") and
the Schrodinger transform H defined above is a linear isomorphism from D;,(R") onto
itself.

Note that, if o € L#(R”) (1 < p < 00), then we have

((Ho)", 1) = (Ho, )
= (-1)"(o, HA)
= (-1)"(6, (HM)")
= (-1)"(8, (i) sgn(-))
()" sgn(-)%)

8
&, ()" sgn(- )x)

=
=(o:(
= ((—i)" sgn(-)&, ),

where A € S(R”).
Therefore in the distributional sense

(Ho)"(x) = (=1)" sgn(-)0(x).
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Define
tQ2={tx:x €},

where ¢ is a nonzero real number and 2 is a nonempty subset of R. Hence we have

x
supp (u(;) ) = tsupp(u)

for any nonzero real number ¢.
For a subset A C R, define

AQ:UtQ.

teA

2 Schrodinger-type identity for LP(R") functions
This part is motivated by the need of defining multidimensional complex signals. We de-
fine the complex signal of f € L?(R") through the total Schrodinger transform Sch, as

f +iSchy(f).

In this section we investigate the multidimensional Schrodinger-type identity Schy (fg) =
fSch,(g) for f € S(R”) and g € L?(R"), where 1 < p < 2. In particular, several necessary and
sufficient conditions are obtained.

Theorem 2.1 Suppose that f € S(R"); g € LP(R") (1 < p < 2), then the Schridinger trans-
form of the function fg satisfies the Schrodinger-type identity Sch, (fg) = fSch, (¢) ifand only
if
/ (sgn(x) — sgn(t))f (x — H)g(t) dt = 0. (2.1)
R}‘l

Proof According to [10], we use the following equalities:

dx = &% dy,
dl =¢dl’ on S(R”),

dlr = ¢2dr oan(R”).
So
T
//(ﬂatk+fggg-vgk)dxdt=0,
0o Jrr
T
//[fggg-Btg+f8g8®gg:a)g(g)+f8divgg]dxdt
0o Jrn

T
:/0 _/Rn[Pﬂws(gs)\)wg(gg) :we(0) — fi - 0] dxdt

h T T
+ﬂ/ / g8~Qdth+q/ / g -odl'dt,
e Jo Jswm o Jirmn
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for any o € C(0, T; [C*®(2)]%), which leads to

T
/ / b(f)dh + b(f)g: - Ve + [(B() - £/ () div, g ]+ dxd = 0.
0 Q

Note that (see [19])

= 2
[ ('E(t)' O 5 Om(.0) ) &
// (I1Dg:1)Dg : Dggdxds+hs)// |g:|>dI" ds
Qs Fls
+q// |g:|*dI" ds
0 Toe
t = - 2
- / / A g dids + / <M+ﬁo,sln(ﬁo,5))dﬁc
0 & & 2100,6
For any ¢ € (0, T'), this yields
/ (fe(t) £OF £ o (f(t))>
+/ /p(\ws(gs)\)]wg(gg)fdxds
0 Q
t t
@ff |gs|2drds+q// g 2dr ds
0 JSR?) 0 JLP(R")

¢ 2
:/0 /Qfsge.vsdxds+/g(|(ﬂz‘jggl()| +f0,81n(f0,5))dx,

Iyzdel? + | «/g_ﬁia”i
=2 Z / 85202, a5, e dS
b ] K

|L|=p-1 j,k=1
a
Y | ¢ 2 o gy
Kl=p k=1
Z Z/( 32)» 2 .
+ g )OleakLe_ av
Lot 1t 8zlazk 0207

n
+2Re< Z, oe,L d—L; 106>
\

L|=p-1 j=1 A

and

<Z Za,L—dzL, Ao¢>

[Ll=p-1 j=1

n

01 —A/2 og —A/27%
E — E — i dzi, /2. d
< Se azja,L Zj, A/ Qc€ o

IL|=p-1 j=1

<2
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<2

T T
= ;. dz;

j=1

| Ve,

n

1 og
@Z%%

Jj=1

2
/ 1 Tk
<Y SN
A

IL|=p-1

for any ¢ € (0, T'), where

8= (e e oure  for) Ve = (U1, Eline, EU3).

Since the Schrédingerean Fourier transform is injective from S’ into itself, fg, Sch, (f)g,
fSchy(g) € L7 (R”), we have

(Schy(f2))" = (fSche(2))",

which is equivalent to
(-1)" sgn(x) / Flx—0)g.(t) dt = / (-1)" sgn(t)f (x — t)g. (¢) dt,
R” R”

where

sgn(x) = 1_[ =1sgn(x), x=(x1,%2,...,%,).
j

So

A (sen(@) — sen(0)] v~ 0. (6 de = .

Let a; and b; denote nonnegative real numbers in the rest of the paper, where j =
12,...,n.

Corollary 2.1 Let f € S(R") and g € LP(R"), where 1 <p <2.If

suppf S [ [l-a,b),  suppg S [ [R\ (b)), 2.2)

j=1 J=1
then the Schridinger-type identity Sch, (fg) = fSchy, (g) holds.

Proof We first prove

/R ) (sgn(x) — sgn(t))f (x — ). () dt = 0

from Theorem 2.1.
That is,

/D (sgn(x) - sgn(t))f(x - g (t)dt + / (sgn(x) - sgn(t))f(x -0g.(t)dt=0.
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Letx € D,, ift € D,, the integrand is vanish so (2.1) holds. If ¢ € Dy, (2.1) holds since the
integration is over a set of measure zero. As for the case ¢ € D_, assume that there exists
t € D_, such thatt e suppf(x —)g.(-), then t e suppg. ND_,x -t € suppf.

Since D_ N D, =0, there exists j € {1,2,...,n} such that x;jt; < 0. We may assume that
%; >0 and ¢; < 0. Thanks to (2.2), we have t; < —b; and x; — t; < bj, which is impossible.

By repeating this argument for x € D_ and x € Dy (see [6]), we find the same conclu-
sion. O

Lemma 2.1 Suppose that f € LP(R") and g € L1(R"), where

+

<1 (1<p,g=<2).

N | =

SRR
_Q =

Then
(f *g)" =&

holds.

Proof Lety; =1, wherei=1,2,...,n—1. Then
f(&,1,...,1) = Kbf(tk, ..., k),

where k € (0, 1).
So
f&k ) = k(1,0 ),

f(trkylyn'!kyn—l) =< k_bf(trylxn‘;yn—l)y
flt k... k) <kbf(4,1,...,1),

where k € (0,1), which yields

o’quw(t) >0, 0”+’3w(t) >0, s f01+ w(t) >0, w(t) >0,
(S w(e) [P W), ... fos W), w(B))

<g(t.fi 7 Ae(t), £ 2 Ae(), ..., fis Ael(t), Ae(t))

<g(tfFTPALTA, L[ AA)

A A
=glt, "2, 73, AL A
g( =21 " (n-3) )

Sg(t)A;Ay .. ';A)A)
< Abg(t,1,1,...,1,1)

<Abg(1,1,1,...,1,1),

and

h(t, f2w(t), 72 w(e), ..., fos w(E), w(t))
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< h<t, ﬁ,’i‘zie(t), ﬁ;i‘?’— f0+ e(t) e(t)>
_h MNMa-n+2) . Tla-n+2) ,,
- ( AT () " Al(@-1) 7

I —n+2) a-n+2  — go-n+l
ATl (@ —n + 3) TA

<nfe S, Spet, L Sy & gane
-\"Aa” a4 A A
Sh t Et‘)‘ 1 {ta 1,'“’£ta—n+4’£ta—n+3
A A A
<.
<h t’ﬁtal é‘ ,...,Sta_lyéta_l
A A A A
¢ -b
<(2) £PeYreg,,...,1,1
(5) s
¢ b
<(5) reronn i,

So

g(t,ﬁ)’i’zw(t),ﬁ,’i’gw(t), ... ,f01+ w(t), w(t))
> g(t,ﬁ{i‘zie(t), Oﬁ_g%e(t), . ..,foiie(t), %e(t))

—g( Me-n+2) ,, Ta-n+2) ,,

AT (@) T AT(w-1)
F(O{ —n+t 2) ta—n+2 ltot—rﬁl
ATl (@ —n +3) TA
>g t,Eta 1 f ,”.’Eta—n+3’£ta—n+2
A A A A
g t’gta 1 C ,.“,Et“—”*‘L,Eta—”*B
A A A A
>

Zg(t;zta 1 Iitu 1 . ’jtal’%tal)

and

(8, f2w(e), fo 2 w(e), ..., fos wiE), w(t))
> h(t,fi 2 Ae(t), 72 Ae(t), ... for Ae(t), Ae(t))
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> h(6fe A S PA, L [ AL A)

A A
=l 2, 3. ALA
(n-2)! (n-3)!

Ef(t;A;A; coe 7A7A)
>Abf(,1,1,...,1,1)

>A"f(1,1,1,...,1,1),

which yields

/ / Hs, g (o fl S o S W) () dis dis

-1l
E/o (rw) HEN I 01+V(§):V(§))d5) ds
bo(sP AP0, 1)
5/0 Lq( r() >”’S
1
5/ lq(Sﬂ_l) ds
0

and

11
//H(s,g)f(g,ﬁﬁ”w(g),...,f01+w(§),w(g))dgds

1
_/0 (r(,s)/fg w(6),-fo +W(§),w(g))dg)ds

1 sB-1 1 ¢ -b " )
be-1r(0,1,1,...,1)dc | d
5/0 ((ﬂ)o<A> g Jds ) as

(P APF(0,1,1,.. ., 1))t [T !
< (é‘ f( )) / I (Sﬂ—lf S_—b(ct—l) dg) ds.
0 0

Mo —n+1)(I(B))1!

It follows that
1 1
/Lq(/ g(g,fo’iZV(g),..‘,ﬁ}w(g),v(g))dg)ds
0 0
1 1
> /E Lq( /E g(g,ﬁ-2v(g>,...,ﬁ,av@),v(g))dg)ds

1 1
> £ y(s)tq( /S PSS AS), v(g))d;)ds

1 1 b
2/5 y(s)zq(/S p(;)(%) gb(“‘l)g(O,l,l,...,l)dg) ds

_ (bbb q-1 ! ! b(a-1)
(§ A g(O,l,l,...,l)) v(8), p(s)s dg )ds
& §

Z tafﬂ'*'l (CbAibg(Ot 1; 17 AR 1)>q71

1 1
X/s V(S)lq(/g p(g)gb("“”dg)ds

Page 10 of 18
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and
1 1
/O /0 (o fL W) faw(S), W(s)) ds dis
1 1
> / zq( f f(§,fo"+_2W(§),m:fol+W(§),W(;))d§) ds
& &
1 1
> f y(an( / p(s)f(g,ﬁ)’i‘ZW(g),..-,ﬁ}+W(g),W(g))dg)ds
3 13
1 1
LA, 1,1,...,)dc ) d
> /g y(an( fg P(SH(6, AW L1, 1) g) s
1 1
> (A%r,1,1,..., )" /g y(s)zq( /g p(g)H(gg)dg)ds
1 1
2t“‘"“(A‘bf(l,1,1,...,1))0171/‘ y(s)tq</ p(g)H(g,g)d;)ds,
& 3
which yields

T w0 2 " = el

where ¢ € (0,1).
Then we prove that T: Q, x Q, — Q. is a mixed monotone operator. We have

1 1
f ‘q</ (§fo+ vi(g),.. fO+V1( ),vﬂg))dg)ds
0

< / Lq( / Hs, )g(61f2v(S ) o fova(), Vz(g))dg)

Thus T'(v, w)(¢) is nondecreasing in v for any w € Q,.
Let wy,wy € Q, and wy > wy. Then

1 1
/(‘) P(S, g)tq (/ Q(Sr g)f(g’foyi_zwl(g)» oo ’f£)1+ w1 (g)) Wl(g)) dg) ds

< [ P65l [[ s (et ) wa(e) s )
ie,
T, w)(®) =T(v,wa)(t), weQe.
Therefore T'(v,w)(¢) is nonincreasing in w for any v € Q,.

We shall show that the operator T has a fixed point.
It follows that

1 1
/ P(s,g)tq( / Qs, Vg (S 12U, f 10(5), 1(6)) )ds

/ PGs, )aq< f Qs V(s v(g),...,%1+v(g>,tv(g))dg)ds

Page 11 of 18
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1 1
Z/O p(s,5)1q<fo Qls, 6)%g (s, £ (g),.,,,ﬁ)1+v(§),v(§))d§) ds
1 1
> tb/O P(s,g)tq</0 Q(S,g)g(g,ﬁ)'ﬁ‘%(g),...,ﬁ)1+V(§),V(§)) d§> ds
and
1 1
/Op(s,g)cq<f0 Q(s,g)f(s,J%K‘zt‘lw(g)y-.',ﬁ}J'IW(g),t‘lW(S))dg)ds
1 1
zfo P(S’g)Lq</o Q(s,g)f(g,t‘l O'i‘zw(g),...,t_lfoﬂw(g),t‘IW(s‘))d§) ds
1 1
- | p(s,gnq( || Q6 (2wl i), w06) dg) ds
0 0
1 1
zt"/ P(s,g)tq</ Q(s,§)f(§»f”+‘2W(§)»owﬁ)ﬂW(g),W(g))d§> ds,
0 0
we obtain

1
T(tx, ;y) >t'T(x,y), %y€Qete(0,1),be(0,1).

Therefore
MNMa-n+2) , 4 1,
Al'(a — 2
ey = @D o),
')

Since f € LP(R") and g € L1(R") (see [11]), we have
f*gel (R"),
which shows that there exist functions g, € S(R”) such that

llg —gully — 0O

as n— 00,

(f %20)" =f e,

and

(fgn)" =f * e,

Thus in the distributional sense

Tim (f 5 ,)"(5) = (f )" ().

Page 12 of 18
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On the other hand

(F(&e =& W)|) = (@, = € fV)) < IFAIGNE:, — g — O

as n — Q.

Hence the result
(f+9)" =
is obtained. 0
We define
Sy = {ok AL2,...,n} > {+1,—1}},
Qo = {7 = 1,32, 9n) € R” 1 0% (j) > 0}

and

~Qn = {§€R":—E€ Q). sen(§) = [ [sen(&),

j=1

wherej=1,2,...,n.

It follows that if £ € Q,, and n € —Qo,, then sgn(¢) = sgn(n) when # is an even, and
sgn(¢) = —sgn(n) when # is an odd.

With these notations we have the following.

Theorem 2.2 Let n be an odd and f € S(R"), g € LP(R") (1 < p < 2) satisfy suppf’,
Suppg"; g Q(Tk ) _Q(Tk Wlth ﬂjak(j)’ —b/O'k(]) S Suppﬁ (] = 1: 2) e ,}’Z) dnd

suppf - {5 € Qg 1 0k()§ < 61/‘} U {‘5 € —Qq 1 —ok(j)§ < bj}-

Then g € LP(R") satisfies the Schriodinger-type identity Schy, (fg) = fSchy, (g) if and only if

suppfg SEQJ,(:ZG/(Z)S} ZI}U{EGZ%(%Zl}-
] j=1 ]

Jj=1

Proof Suppose that Q,, is the first octant in R”, that is to say, all the ox(j) = 1, where
j=1,2...,n
Let

f (5,852 sen(s), g% sgn(s), . .., go- sgn(s), sgn(s))

S(s,852m(s), g2 ms), ..., ggem(s), m(s)), sgn(s) < m(s),
=1 /(5,857 sgn(s), g5> sgn(s), ..., gy« sgn(s), sgn(s)), m(s) < sgn(s) < n(s),
S(s,807%n(s), g5 n(s), ..., gge 1(s), n(s)), sgn(s) > u(s).

(2.3)
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Consider the fractional differential equation

Qb 1, (Q3™*2n(s)) + f (s, g sgn(s), g5 > sgn(s), ... g+ sgn(s), sgn(s)) = 0,
O<t<l, (2.4)
1(0) =0, v(1) = av(§), 2 2y(0) = QT v(1) = 0.

Set Q, = {v € Ey: |lv| < My, (M,L,)}, then €5 is a closed, bounded and convex set,
where

Ly:= sup [f(s,ggf2 sgn(s),. ‘.,g(; sgn(s), sgn(s))| + 1.

te(0,1],vey

The operator A : Q, — Ej is defined by

1 1
Asen®) = [ 26,60, [ Q5 U 6.5 gl () A)) i ) .
0 0
Now, we show that A is a completely continuous operator. It follows that
|(Av)(s)]

1 1 R
‘ /0 P(s,g)tq( /0 Q(s,g)f(g,gz::zv(g),...,g3+v<g>,v(g>)dg) ds

1 1 R
5/ P(s,g)tq</ Q(s,g)[f(g,gé’IZV(g),...,gé+V(§),V(§))!d;)ds
0 0

1 1
< LZ_I/O P(s,6)iq </0 Q(s, g)dg) ds
1 1
q-1
<L /(; P(S,S)Lq</0 Q(g,g)dg) ds

< +00,

which yields

&

P(t1,8) — P(ty, s) .
S T (T Qs ) ds)

So
’AV(l’g) —AV(t1)|
1 1 .
< [ P9 - P9y ( [ Q57 (s a2 woh b)) dg) ds
0 0
1 1
= Lg_l /0 |P(t2,S) _P(tl’s)|tq<’/0 Q(g, §)d§) ds
1 1
ELgltq</()‘ Q(s, §)d§)/(; |P(t2,S) —P(t1,S)|dS
<&

for any v € Q.
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We prove that the fractional differential equation has at least one positive solution. Sup-
pose that d(s) is a solution of (2.4) (see [9]), then

d(0) =0, d(1) = ad(§), Q%™d(0) = Q% d(1) = 0
So
f(s’gg:zn(s)!gg:gn(s)r e ’gé+n(s)’ I’I(S))

<f(s,g02d(s),gi%d(s), ..., ghed(s),d(s))

<f(s.g5:>m(s),g5>m(s), ..., gos m(s), m(s)).
So
f(5.867°9(5),25-°4(5), ..., g5+ a(s), q(s))

<f(5g57%d(s),g57%d(s), ... g5 d(s), d(s))
<f(5857p(),85p(5), ... 8o+ (), P(5)),

which yields
Qo+‘p(Qa n+2}’l(5)) _ Q§+Lp( o— n+2(Fp)(s))
—f(S,go+ (s), go+ p(s), - --’gé+P(S)»P(S))~
From the above discussions, we have
Q()*LP (Qa n+2n(s)) Q()*LP(Q(X n+2d( ))
=f(5,85-°p(9), 86-°p(s), ..., g5+p(s), p(s))

—f(s.g57d(s), g5 d(s), ..., g3 d(s), d(s))
2 O’
where ¢ € [0, 1].
If we let z(s) = 1,(Q5"n(s)) — 1,(Q%+*d(s)), then z(0) = z(1) = 0. By Lemma 2.1, we

have z(s) < 0.
Hence,

(Qa n+2n(s)) < Lp(Qg:n+2d(s))’

where s € [0,1].
Since t, is monotone increasing,

Qa n+2n(s) < Qa n+2d(s)’
that is,

Q5" (n—d)(s) < 0.



Zhang et al. Boundary Value Problems (2018) 2018:135

By the assumption that supp, f , suppge C ox(j) U —ok(j), we obtain

fle-0g.(s)ds =0,
Qo

where x € —-Q,,, and

Flx—10)g.(s)ds =0,
Qo

where x € Q,, .
So

supp g x Qs IS € Qqy Z% > 1}

j=r 7

as the other case can be obtained in a similar way.

Let A :fX—Qak and 0 = g x Q,,. We decompose @ into
=01+

with suppo; C ;’zl[O, bj] and supp 02 € Qg \ H7=1(O, b)).
By (2.5) we obtain

(01 % A)(x) = —(02 * L) (x),

where x € -Q;, .

Meanwhile

supp(2 * 1) S suppoa +supp A € Qq, \ [ [(0,5) + [ [[-5;, 0] S R*\ (-Qo;)

j-1 j-1

and

supp(o1 * A) € supp g + supp i C 1_[[0, bl + H[—bj,O] C| |- bl

j=1 j=1 j=1

By (2.6) it is clear that

supp(o1 * A) S R" \ (=) Qo

This together with (2.7) implies that

conv supp(o1 * A) C éeR”:—bjféjfb/,Zizl—n .
d.
=1

Page 16 of 18

(2.5)

(2.7)

(2.8)



Zhang et al. Boundary Value Problems (2018) 2018:135 Page 17 of 18

We claim that, for any & € supp o1,

a
=1 ™

holds.
If it is invalid, then there is £! € conv supp o; satisfying

Zn:§<1.

=1

Note that £2 = b € supp A satisfies

n S
Yoo

=1

Since
conv supp(g; * A) = convsupp g1 + conv supp A,

there exists some point £ € conv supp(g; * A) such that

ii<l—n.

a
=1

This contradicts (2.8). We conclude that

X &
Supp 01 = SUpp&e X Qo < is €Qu:i) > > 1}.

=17
This completes the proof. O

3 Conclusions

This paper was mainly devoted to developing the Schrodinger-type identity for a Schro-
dinger free boundary problem in R”. As an application, we established necessary and
sufficient conditions for the product of some distributional functions to satisfy the
Schrodinger-type identity. As a consequence, our results significantly improved and gen-

eralized previous work.
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