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Abstract
In this paper, we construct a robust family of exponential attractors for a
parabolic–hyperbolic phase-field system (PHPFS), which describes phase separation
in material sciences, e.g., melting and solidification. A consequence of this is the
existence of finite fractal dimensional global attractors which are both upper and
lower semicontinuous at the parameter ε = 0. Hence we establish the convergence of
the dynamics of PHPFS to those of the well known Cagilnap phase-field system.
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1 Introduction
Exponential attractors are compact and positively invariant sets with finite fractal dimen-
sion which attract all the trajectories starting from bounded sets at a uniform exponen-
tial rate (see [5–7, 14]). The existence of exponential attractors guarantees the existence
of a finite fractal dimensional global attractor. Readers may see [4, 8, 13] and references
therein for more on the dimension of a global attractor. Thus a finite-dimensional reduc-
tion principle can be applied to reduce the infinite-dimensional dynamical system under
consideration to a finite-dimensional system of ODEs. The sensitivity of exponential at-
tractors under small perturbations is the main focus in this work. One may see [15] for
some recent developments in the construction of exponential attractors.

The phase-field system is a system of equations which couples the temperature u and
order parameter φ also known as “phase-field”. It describes phase separations in materials
occupying a domain � ⊂R

d .
We consider the following parabolic–hyperbolic phase-field system (PHPFS):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

εφtt + φt – �φ + φ + g(φ) – u = 0,

ut + φt – �u = 0,

∂nφ|∂� = u|∂� = 0,

φ(0) = φ0,φt(0) = φ1, u(0) = u0,

(1.1)

in a bounded domain � ⊂ R
d , d = 1, 2, 3 with smooth boundary ∂�, where ε ∈ (0, 1] is

a small parameter. Denote the function G(s) =
∫ s

0 g(ς ) dς and assume that g satisfies g ∈
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C2(R) and the following conditions hold (cf., e.g., [1, 3]):

G(s) ≥ –C1, C1 ≥ 0, ∀s ∈ R, (1.2)

∀γ ∈R,∃C2(γ ) > 0, C3(γ ) ≥ 0 such that

(s – γ )g(s) – C2G(s) ≥ –C3, ∀s ∈ R (1.3)

(where C2, C3 are bounded when γ is bounded),

g ′(s) ≥ –C4, C4 ≥ 0, ∀s ∈R, (1.4)
∣
∣g ′′(s)

∣
∣ ≤ C5

(|s|p + 1
)
, C5 > 0, ∀s ∈R, (1.5)

with p ≥ 0 when d = 1, 2 and p ∈ [0, 1] when d = 3. We note that in space dimension one,
no growth assumption on g is needed.

We remark that our results also hold when φ is subject to a boundary condition of peri-
odic type

⎧
⎪⎪⎨

⎪⎪⎩

u|xi=0 = u|xi=Li , uxi |xi=0 = uxi |xi=Li , i = 1, . . . , d,

φ|xi=0 = φ|xi=Li , i = 1, . . . , d,

for φ and the derivatives of φ of order ≤ 3,

(1.6)

if � =
∏d

i=1(0, Li).
We shall construct a robust family of exponential attractors which are both upper and

lower semicontinuous at ε = 0 with respect to a norm independent of ε.
Grasselli and Pata [10] showed a well-posedness result and the existence of the global

attractor for the system (ε > 0)

⎧
⎨

⎩

εφtt + φt – �φ + φ3 = γ (φ) + λ′(φ)u,

ut + λ′(φ)φt – �u = f .

Grasselli and Pata [11] considered the system (ε > 0)

⎧
⎨

⎩

εφtt + φt – �φ + φ – λ′(φ)u + h(φ) = ξ ,

ut + λ′(φ)φt – �u = 0
(1.7)

in 3D, subject to mixed boundary conditions, Neumann on φ and Dirichlet on u. They
proved a well-posedness result, the existence of the global attractor and its upper semicon-
tinuity at ε = 0, and constructed exponential attractors with respect to a norm depending
on ε. Also, Grasselli et al. [9] gave a well-posedness result and constructed a robust family
of exponential attractors Eε for the system

⎧
⎨

⎩

εφtt + φt – �φ – λ′(φ)u + χ (φ) = ξ ,

ut + λ′(φ)φt – �u = 0
(1.8)

in 3D, subject to Dirichlet boundary conditions on both φ and u, where χ (φ) is singular
at φ = ±1, e.g., ln( 1+φ

1–φ
), φ ∈ (0, 1). More precisely, they showed that there exist c > 0 and
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� ∈ (0, 1), both independent of ε, such that

distsym
K ,ε (Eε ,E0) ≤ cε� , ∀ε ∈ [0, 1],

in the norm ‖(φ,φt , u)‖2
K ,ε = ‖�φ‖2

L2(�) +ε‖∇φt‖2
L2(�) +‖φt‖2

L2(�) +‖�u‖2
L2(�), which clearly

depends on ε.
Finally, we would also like to mention the papers [12, 16, 17] where the convergence to

equilibrium of solutions for a parabolic–hyperbolic phase-field model were proven.
This work is organized as follows. In Sect. 1, we give a brief introduction. In Sect. 2, we

give some a priori estimates. In Sect. 3, we construct exponential attractors for the system
(1.1). Finally, in Sect. 4, we construct a robust family of exponential attractors which are
both upper and lower semicontinuous at ε = 0 for the system (1.1).

We define the Hilbert space Hr,ε = Hr × Hr–1 × Hr–1
0 , r ≥ 1, endowed with the norm

∥
∥(ϕ,ψ , v)

∥
∥
Hr,ε

=
(‖ϕ‖2

r + ε‖ψ‖2
r–1 + ‖v‖2

r–1
)1/2,

where we understand that H0
0 = H0(�) = L2(�). Hence, we denote H1,0 = H1(�) × L2(�),

endowed with the norm ‖(·, ·)‖H1,0 = (‖ · ‖2
1 + ‖ · ‖2)1/2.

2 A priori estimates
We multiply (1.1)1 by φt and (1.1)2 by u, then integrate over �. Adding the resulting equa-
tions, we obtain

d
dt

E1(t) + 2‖φt‖2 + 2‖∇u‖2 = 0 (2.1)

where

E1(t) = ‖∇φ‖2 + ‖φ‖2 + ε‖φt‖2 + ‖u‖2 + 2
∫

�

G(φ) dx.

From (1.2), (1.3) and (1.5), we deduce that

∫

�

G(φ) dx ≥ –C1|�| and
∫

�

G(φ) dx ≤ c
(‖φ‖p+3

1 + 1
)
.

Hence,

∥
∥(φ,φt , u)

∥
∥2
H1,ε

– α1 ≤ E1(t) ≤ α2
(‖φ‖p+3

1 + ε‖φt‖2 + ‖u‖2 + 1
)
, (2.2)

for some α1,α2 > 0 independent of ε. Thus integrating (2.1) over (0, t) and accounting for
(2.2), we obtain that

∫ t

0

(∥
∥φt(s)

∥
∥2 +

∥
∥∇u(s)

∥
∥2)ds ≤ E1(0) + α1, ∀t ≥ 0.

Hence by (2.2) again, we get

∫ ∞

0

(∥
∥φt(s)

∥
∥2 +

∥
∥∇u(s)

∥
∥2)ds ≤ c

(‖φ0‖p+3
1 + ε‖φ1‖2 + ‖u0‖2 + 1

)
. (2.3)
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Let (φ1, u1) and (φ2, u2) be two solutions of (1.1). Set φ = φ1 – φ2, φt = φ1
t – φ2

t and u =
u1 – u2, then φ(0) = 0, φt(0) = 0 and u(0) = 0. The pair (φ,φt , u) is a solution to the problem

⎧
⎪⎪⎨

⎪⎪⎩

εφtt + φt – �φ + φ + g(φ1) – g(φ2) – u = 0,

ut + φt – �u = 0,

φ(0) = φt(0) = u(0) = 0.

(2.4)

We multiply (2.4)1 and (2.4)2 by φt and u, respectively, integrate over �, then add the
resulting equations to get

1
2

d
dt

(‖∇φ‖2 + ‖φ‖2 + ε‖φt‖2 + ‖u‖2) + ‖φt‖2 + ‖∇u‖2 = –
(
g
(
φ1) – g

(
φ2),φt

)
.

By Hölder’s inequality and (1.5), we have

∣
∣
(
g
(
φ1) – g

(
φ2),φt

)∣
∣ ≤ c

(∥
∥φ1∥∥p+1

L3p+3(�) +
∥
∥φ2∥∥p+1

L3p+3(�) + 1
)‖φ‖L6(�)‖φt‖

≤ c
(∥
∥φ1∥∥p+1

1 +
∥
∥φ2∥∥p+1

1 + 1
)‖φ‖1‖φt‖.

Therefore, by Young’s inequality, we obtain

d
dt

(‖∇φ‖2 + ‖φ‖2 + ε‖φt‖2 + ‖u‖2) ≤ M̃(t)‖φ‖2
1, (2.5)

where

M̃(t) =

⎧
⎨

⎩

c supθ∈[0,1] ‖g ′(θφ1 + (1 – θ )φ2)‖2
L∞(�), if d = 1,

c(‖φ1‖2p+2
1 + ‖φ2‖2p+2

1 + 1), if d = 2, 3.

Noting that t �→ M̃(t) is L1(0, T), and integrating (2.5) over (0, t), we deduce that

∥
∥
(
φ(t),φt(t), u(t)

)∥
∥2
H1,ε

≤ e
∫ t

0 M̃(s) ds∥∥
(
φ(0),φt(0), u(0)

)∥
∥2
H1,ε

, ∀t ≥ 0. (2.6)

We state a well-posedness result, which is proved in [11, Theorem 3.4].

Theorem 2.1 We assume that (1.2)–(1.5) hold. If (φ0,φ1, u0) ∈H1,ε , then (1.1) possesses a
unique solution (φ, u) such that

(φ,φt , u) ∈ C
(
[0, T];H1,ε

)

for any T > 0. Moreover, if (φ0,φ1, u0) ∈H2,ε , then (φ,φt , u) ∈ C([0, T];H2,ε).

On account of Theorem 2.1 we can define the semigroup

Sε(t) : H1,ε →H1,ε , (φ0,φ1, u0) �→ (
φ(t),φt(t), u(t)

)
, ∀t ≥ 0,

where (φ(t),φt(t), u(t)) is the solution to problem (1.1) at time t. The semigroup Sε(t) is
strongly continuous (cf. (2.6)).
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It is also known from [11] that the semigroup Sε(t) : Hj,ε →Hj,ε has bounded absorbing
sets Bj in Hj,ε of the form

Bj =
{

(ϕ,ψ , v) ∈Hj,ε ,
∥
∥(ϕ,ψ , v)

∥
∥
Hj,ε

≤ rj
}

, j = 1, 2,

where rj > 0 is independent of ε. In fact, they are exponentially attracting sets.

3 Exponential attractors
Now we state sufficient conditions which guarantee the existence of robust exponential
attractors, which are continuous with respect to ε (cf. [2, Theorem 5.1]; also [1, 7, 15]).

Theorem 3.1 ([2]) Let E1, E2, V 1, V 2, W 1, W 2 be Banach spaces such that W i � V i � Ei,
i = 1, 2. Set Eε = E1 × E2, Vε = V 1 × V 2, Wε = W 1 × W 2 and endow them with the following
norms:

∥
∥(p, q)

∥
∥

Eε
=

(‖p‖2
E1 + ε‖q‖2

E2
)1/2,

∥
∥(p, q)

∥
∥

Vε
=

(‖p‖2
V 1 + ε‖q‖2

V 2
)1/2,

∥
∥(p, q)

∥
∥

Wε
=

(‖p‖2
W 1 + ε‖q‖2

W 2
)1/2,

respectively, where ε ∈ [0, 1], with the convention that E0 = E1, V0 = V 1, and W0 = W 1.
Let Bε(r) denote a closed ball in Wε of radius r > 0 and centered at zero. Consider a one-
parameter family of strongly continuous semigroups {Sε(t)}ε acting on the phase-space Eε ,
for each ε ∈ [0, 1]. Then assume that there exist α,β ,γ ,ϑ ∈ (0, 1], κ ∈ (0, 1

2 ), ϒj ≥ 0, and
� > 0 (all independent of ε) such that, setting Bε = Bε(�), the following conditions hold:

1. There exists a map L : B0 → V 2 which is Hölder continuous of exponent α. Here B0

is endowed with the metric topology of E1.
2. There exists t� > 0, independent of ε, such that

Sε(t)Bε ⊂ Bε , ∀t ≥ t�,

and Bε is uniformly bounded (with respect to ε) in the E1-norm. Moreover, setting
Sε(t�) = Sε , the map Sε satisfies, for every z1, z2 ∈ Bε ,

Sεz1 – Sεz2 = Lε(z1, z2) + Kε(z1, z2),

where

‖Lεz1 – Lεz2‖Eε ≤ κ‖z1 – z2‖Eε ,

‖Kεz1 – Kεz2‖Vε ≤ ϒ1‖z1 – z2‖Eε .

3. For any z ∈ Bε , there hold

∥
∥Sm

ε z – LSm
0 �εz

∥
∥

E1
≤ ϒm

2 εβ , ∀m ∈N,
∥
∥Sε(t)z – LS0(t)�εz

∥
∥

E1
≤ ϒ3ε

γ , ∀t ∈ [
t�, 2t�

]
.
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Here the “lifting” map L : B0 → Eε is defined by

Lx =

⎧
⎨

⎩

(x,Lx), if ε > 0,

x, if ε = 0,

and �ε : Bε → B0 is the projection onto the first component when ε > 0, and the
identity map otherwise.

4. The map z �→ Sε(t)z is Lipschitz continuous on Bε endowed with the metric topology
of Eε , with a Lipschitz constant independent of ε and t ∈ [t�, 2t�].

5. The map

(t, z) �→ Sε(t)z :
[
t�, 2t�

] × Bε → Bε

is Hölder continuous of exponent ϑ , where Bε is endowed with the metric topology
of Eε .

Then there exists a family of exponential attractors Eε on Bε = Bε
Eε with the following prop-

erties:
(i) Eε attracts Bε with an exponential rate which is uniform with respect to ε, that is,

distEε

(
Sε(t)Bε ,Eε

) ≤ M1e–ωt , ∀t ≥ 0, (3.1)

for some M1 > 0 and some ω > 0.
(ii) The fractal dimension of Eε (denoted as dimF (Eε)) is uniformly bounded with respect

to ε, that is,

dimF (Eε) ≤ M2. (3.2)

(iii) The family Eε is Hölder continuous with respect to ε, that is, there exist a positive
constant M3 and τ ∈ (0, 1

2 ] such that

distsym
Eε

(Eε ,LE0) ≤ M3ε
τ , (3.3)

for all 0 < ε ≤ 1. In addition, there exist a positive constant M4 and σ ∈ (0, 1
2 ] such

that

distE1 (Eε ,LE0) ≤ M4ε
σ , (3.4)

for all 0 < ε ≤ 1, and

lim
ε→0

distE1 (LE0,Eε) = 0. (3.5)

Here ω, τ , σ and Mj are independent of ε, and they can be computed explicitly.

We observe that the solution to the unperturbed problem (i.e., when ε = 0 in (1.1)) for
the pair (φ, u) at any time t is given by (φ(t), u(t)) = S(t)(φ0, u0) and φt = L(φ(t), u(t)), where

L(ϕ,ϑ) = –
(
–�ϕ + ϕ – g(ϕ) – ϑ

)
. (3.6)
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Let z1, z2 ∈ B2, z1 = (φ1
0 ,φ1

1 , u1
0) and z2 = (φ2

0 ,φ2
1 , u2

0) be initial data for two solutions
(φ1, u1) and (φ2, u2) of (1.1), respectively.

We set (φ(t),φt(t), u(t)) = Sε(t)z1 – Sε(t)z2, φ̃0 = φ1
0 – φ2

0 , φ̃1 = φ1
1 – φ2

1 and ũ0 = u1
0 – u2

0.
Furthermore, we perform the splitting

(
φ(t),φt(t), u(t)

)
=

(
χ (t),χt(t),ϑ(t)

)
+

(
�(t),�t(t),υ(t)

)
,

where Kε(z1, z2) = (χ (t),χt(t),ϑ(t)) and Lε(z1, z2) = (�(t),�t(t),υ(t)) respectively solve the
problems:

⎧
⎪⎪⎨

⎪⎪⎩

εχtt + χt – �χt + χ + g(φ1) – g(φ2) – ϑ = 0,

ϑt + χt – �ϑ = 0,

χ |t=0 = 0, χt|t=0 = 0, ϑ |t=0 = 0

(3.7)

and

⎧
⎪⎪⎨

⎪⎪⎩

ε�tt + �t – �� + � – υ = 0,

υt + �t – �υ = 0,

�|t=0 = φ̃0, �t|t=0 = φ̃1, υ|t=0 = ũ0.

(3.8)

Proposition 3.1 There exist c, c′, c1 > 0 independent of ε such that

∥
∥Lε(z1, z2)

∥
∥
H1,ε

≤ ce–c1t‖z1 – z2‖H1,ε , ∀t ≥ 0, and (3.9)
∥
∥Kε(z1, z2)

∥
∥
H2,ε

≤ cec′t‖z1 – z2‖2
H1,ε , ∀t ≥ 0. (3.10)

Proof Firstly, we multiply (3.8)1 by �t and (3.8)2 by υ , integrate over �, then add the re-
sulting equations to get

1
2

d
dt

(‖∇�‖2 + ‖�‖2 + ε‖�t‖2 + ‖υ‖2) + ‖�t‖2 + ‖∇υ‖2 = 0. (3.11)

Next, we multiply (3.8)1 by � to obtain

1
2

d
dt

[‖�‖2 + 2ε(� ,�t)
]

– ε‖�t‖2 + ‖∇�‖2 + ‖�‖2 – (υ,�) = 0,

and then deduce that

1
2

d
dt

[‖�‖2 + 2ε(� ,�t)
]

+ ‖∇�‖2 +
1
2
‖�‖2 + 2ε(�t ,�) ≤ 5ε‖�t‖2 + c‖∇υ‖2. (3.12)

Summing (3.11) and κ (3.12), for some κ ∈ (0, 1) small enough, we get

1
2

d
dt

(‖∇�‖2 + (1 + κ)‖�‖2 + ε‖�t‖2 + ‖υ‖2 + 2κε(� ,�t)
)

+ κ‖∇�‖2 +
κ

2
‖�‖2

+ ε(1 – 5κ)‖�t‖2 + (1 – cκ)‖∇υ‖2 + 2κε(� ,�t) ≤ 0.
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Hence, there exists a c1 > 0 (independent of ε) such that

d
dt

E2(t) + c1E2(t) ≤ 0,

where E2(t) = ‖∇�‖2 + (1 + κ)‖�‖2 + ε‖�t‖2 + ‖υ‖2 + 2κε(� ,�t). Simple integration over
(0, t) gives

E2(t) ≤ e–c1tE2(0), ∀t ≥ 0. (3.13)

Clearly, by Young’s inequality, there exist b3, b4 > 0 (independent of ε) such that

b3
∥
∥(� ,�t ,υ)

∥
∥2
H1,ε

≤ E2(t) ≤ b4
∥
∥(� ,�t ,υ)

∥
∥2
H1,ε

. (3.14)

It follows from (3.13) and (3.14) that

∥
∥(� ,�t ,υ)

∥
∥2
H1,ε

≤ e–c1t∥∥(φ̃0, φ̃1, ũ0)
∥
∥2
H1,ε

, ∀t ≥ 0.

Hence (3.9) follows.
Secondly, we multiply (3.7)1 by χt and (3.7)2 by ϑ , integrate over �, then add the result-

ing equations to get

1
2

d
dt

(‖∇χ‖2 + ‖χ‖2 + ε‖χt‖2 + ‖ϑ‖2) + ‖χt‖2 + ‖∇ϑ‖2 = –
(
g
(
φ1) – g

(
φ2),χt

)
.

We have that ‖g(φ1) – g(φ2)‖ ≤ ‖g ′(θφ1 + (1 – θ )φ2)‖L∞(�)‖φ‖, where θ ∈ [0, 1]. It follows
that

1
2

d
dt

(‖∇χ‖2 + ‖χ‖2 + ε‖χt‖2 + ‖ϑ‖2) +
1
2
‖χt‖2 + ‖∇ϑ‖2 ≤ ‖φ‖2. (3.15)

Integrating (3.15) over (0, t) and then accounting for (2.6), we deduce that

‖χ‖2
1 + ε‖χt‖2 + ‖ϑ‖2 ≤ cec′t∥∥(φ̃0, φ̃1, ũ0)

∥
∥2
H1,ε

, ∀t ≥ 0. (3.16)

Next, we multiply (3.7)1 by –�χt and (3.7)2 by Nϑ , integrate over �, then add the resulting
equations to get

1
2

d
dt

(‖�χ‖2 + ‖∇χ‖2 + ε‖∇χt‖2 + ‖∇ϑ‖2) + ‖∇χt‖2 + ‖�ϑ‖2

= –
(∇(

g
(
φ1) – g

(
φ2)),∇χt

)
.

We have that ‖∇(g(φ1) – g(φ2))‖ ≤ c‖φ‖1. It follows that

1
2

d
dt

(‖�χ‖2 + ‖∇χ‖2 + ε‖∇χt‖2 + ‖∇ϑ‖2) +
1
2
‖∇χt‖2 + ‖�ϑ‖2 ≤ c‖φ‖2

1. (3.17)

Integrating (3.17) over (0, t) and taking into account (2.6), we deduce that

‖�χ‖2 + ‖∇χ‖2 + ε‖∇χt‖2 + ‖∇ϑ‖2 ≤ cec′t∥∥(φ̃0, φ̃1, ũ0)
∥
∥2
H1,ε

, ∀t ≥ 0. (3.18)
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On account of (3.16) and (3.18), we obtain that

∥
∥(χ ,χt ,ϑ)

∥
∥2
H2,ε

≤ cec′t∥∥(φ̃0, φ̃1, ũ0)
∥
∥2
H1,ε

, ∀t ≥ 0.

Hence (3.10) follows. �

We prove the following result.

Theorem 3.2 For every ε ∈ (0, 1], the semigroup Sε(t) possesses an exponential attractor
Eε (with dimension independent of ε) in H1,ε .

Proof Let t ∈ [t∗, 2t∗] and set (φ(t),φt(t), u(u)) = Sε(t)z01 – Sε(t)z02 = (φ1(t),φ1
t (t), u1(t)) –

(φ2(t),φ2
t (t), u2(t)). Therefore, the triplet (φ(t),φt(t), u(u)) is a solution to the problem

⎧
⎪⎪⎨

⎪⎪⎩

εφtt + φt – �φ + φ + g(φ1) – g(φ2) – u = 0,

ut + φt – �u = 0,

φ|t=0 = φ01 – φ02, φt|t=0 = φ01
1 – φ02

1 , u|t=0 = u01 – u02.

(3.19)

On account of (2.6) we obtain

∥
∥Sε(t)z01 – Sε(t)z02

∥
∥
H1,ε

≤ c
(
t∗)‖z01 – z02‖H1,ε , t ≤ 2t∗, (3.20)

where c(t∗) > 0 is independent of ε. Now, we multiply (1.1)1 and (1.1)2 by –�φt and –�u,
respectively, integrate over � then add the resulting equations, and deduce

d
dt

(‖�φ‖2 + ‖∇φ‖2 + ε‖∇φt‖2 + ‖∇u‖2) + ‖∇φt‖2 + ‖�u‖2

≤ 1
2
∥
∥g ′(φ)

∥
∥2

L∞(�)‖∇φ‖2

≤ c‖∇φ‖2.

Integrating over (0, t) and recalling (2.2), we get

‖�φ‖2 + ‖∇φ‖2 + ε‖∇φt‖2 + ‖∇u‖2 +
∫ t

0

(∥
∥∇φt(s)

∥
∥2 +

∥
∥�u(s)

∥
∥2)ds

≤ c(t + 1), ∀t ≥ 0. (3.21)

It then follows from (2.3) and (3.21) that

∫ t

0

(∥
∥φt(s)

∥
∥2

1 +
∥
∥�u(s)

∥
∥2)ds ≤ c(t + 1), ∀t ≥ 0. (3.22)

Next, from (1.1)1, we deduce that

ε2
∫ t

0

∥
∥φtt(s)

∥
∥2 ds ≤

∫ t

0

(∥
∥φt(s)

∥
∥2 +

∥
∥�φ(s)

∥
∥2 +

∥
∥φ(s)

∥
∥2 +

∥
∥g

(
φ(s)

)∥
∥2 +

∥
∥u(s)

∥
∥2)ds,
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then from (2.2), (3.21) and (3.22) it follows that

∫ t

0
ε
∥
∥φtt(s)

∥
∥2 ≤ c

ε
(t + 1), ∀t ≥ 0. (3.23)

Also, from (1.1)2 and (3.22), we deduce that

∫ t

0

∥
∥ut(s)

∥
∥2 ds ≤ c

∫ t

0

(∥
∥φt(s)

∥
∥2 +

∥
∥�u(s)

∥
∥2)ds

≤ c(t + 1), ∀t ≥ 0. (3.24)

Finally, we have that

∥
∥Sε(t)z01 – Sε

(
t′)z02

∥
∥
H1,ε

≤ ∥
∥Sε(t)z01 – Sε

(
t′)z01

∥
∥
H1,ε

+
∥
∥Sε

(
t′)z01 – Sε

(
t′)z02

∥
∥
H1,ε

, ∀t, t′ ∈ [
t∗, 2t∗].

Indeed, on the one hand, from (3.23) and (3.24), we have

∥
∥Sε(t)z01 – Sε

(
t′)z01

∥
∥
H1,ε

≤ c
(∥
∥φ(t) – φ

(
t′)∥∥

1 +
√

ε
∥
∥φt(t) – φt

(
t′)∥∥ +

∥
∥u(t) – u

(
t′)∥∥)

≤ c
∫ t′

t

(∥
∥φt(s)

∥
∥

1 +
√

ε
∥
∥φtt(s)

∥
∥ +

∥
∥ut(s)

∥
∥
)

ds

≤ c
(
ε, t∗)∣∣t′ – t

∣
∣1/2.

On the other hand, it follows from (3.20) that

∥
∥Sε

(
t′)z01 – Sε

(
t′)z02

∥
∥
H1,ε

≤ c
(
t∗)‖z01 – z02‖H1,ε , ∀t′ ≥ 0. (3.25)

Hence, we conclude with

∥
∥Sε(t)z01 – Sε

(
t′)z02

∥
∥
H1,ε

≤ c
(
ε, t∗)(∣∣t′ – t

∣
∣1/2 + ‖z01 – z02‖H1,ε

)
. (3.26)

We now apply Theorem 3.1. We will only need to check Assumptions 2, 4 and 5, for the
existence of a family of exponential attractors Eε that satisfy (3.1) and (3.2). Assumption
2 follows from estimates (3.9) and (3.10) of Proposition 3.1. Assumptions 4 and 5 follow
from (2.6) and (3.26), respectively. This shows the existence of a family of exponential
attractors Eε in H1,ε with dimension independent of ε. �

4 Robust family of exponential attractors
We start by showing the existence of an absorbing set in H3,ε .

Proposition 4.1 The semigroup Sε(t) possesses an exponentially attracting bounded ab-
sorbing set B3 in H3,ε .
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Proof Let B ⊂ H3,ε be a bounded set, and let (φ0,φ1, u0) ∈ B. Hence, since H3,ε ⊂ H2,ε ,
there exists a t(B) > 0 such that (φ(t),φt(t), u(t)) ∈ B2, ∀t ≥ t(B). That is,

∥
∥φ(t)

∥
∥2

2 + ε
∥
∥φt(t)

∥
∥2

1 +
∥
∥u(t)

∥
∥2

1 ≤ r2, ∀t ≥ t(B). (4.1)

The following estimates hold true:

(
�g(φ),�φt

) ≤ ∥
∥g ′(φ)

∥
∥

L∞(�)‖�φ‖‖�φt‖ +
∥
∥g ′′(φ)

∥
∥

L∞(�)‖∇φ‖2
L4�

‖�φt‖

≤ c
(∥
∥g ′(φ)

∥
∥2

L∞(�)‖�φ‖2 +
∥
∥g ′′(φ)

∥
∥2

L∞(�)‖∇φ‖4
1
)

+
1
2
‖�φt‖2, (4.2)

(
g(φ),�2φ

) ≤ ∥
∥g ′(φ)

∥
∥

L∞(�)‖∇φ‖‖∇�φ‖

≤ ∥
∥g ′(φ)

∥
∥2

L∞(�)‖∇φ‖2 +
1
4
‖∇�φ‖2, (4.3)

(
u,�2φ

) ≤ ‖∇u‖2 +
1
4
‖∇�φ‖2, (4.4)

ε(�φ,�φt) ≤ 1
2
‖�φ‖2 + ε‖�φt‖2. (4.5)

Multiply (1.1)1 by �2φt and κ�2φ with 0 < κ ≤ 1
8 , then multiply (1.1)2 by �2u, and inte-

grate over �. Adding the resulting equations gives, on account of (4.2)–(4.5),

1
2

d
dt

[‖∇�φ‖2 + (1 + κ)‖�φ‖2 + ε‖�φt‖2 + ‖�u‖2 + 2κε(�φ,�φt)
]

+
κ

2
‖∇�φ|2 +

κ

2
‖�φ‖2 + ε

(
1
2

– 2κ

)

‖�φt‖2 + εκ(�φ,�φt)

≤ c
(∥
∥g ′(φ)

∥
∥2

L∞(�)‖�φ‖2 +
∥
∥g ′′(φ)

∥
∥2

L∞(�)‖∇φ‖4
1 + ‖∇u‖2).

Hence from (4.1), there exists a constant �1 > 0 independent of ε such that

d
dt

E3(t) + �1E3(t) ≤ c(r2), (4.6)

where

E3(t) = ‖∇�φ‖2 + (1 + � )‖�φ‖2 + ε‖�φt‖2 + ‖�u‖2 + 2�ε(�φ,�φt).

Clearly, by Hölder’s and Young’s inequalities, there exist constants �2,�3 > 0, indepen-
dent of ε such that

�2
(‖∇�φ‖2 + ‖�φ‖2 + ε‖�φt‖2 + ‖�u‖2)

≤ E3(t)

≤ �3
(‖∇�φ‖2 + ‖�φ‖2 + ε‖�φt‖2 + ‖�u‖2). (4.7)

Applying the generalized Gronwall’s lemma to (4.6) and using (4.7), we obtain

∥
∥
(
φ(t),φt(t), u(t)

)∥
∥2
H3,ε

≤ c(B)e–�1t + c(r2), ∀t ≥ 0. (4.8)
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Hence, we have that

B3 =
{

(ϕ,ψ , v) ∈H3,ε ,
∥
∥(ϕ,ψ , v)

∥
∥
H3,ε

≤ √
2c(r2)/�1 = r3

}

is an exponentially attracting absorbing set for Sε(t) on H3.,ε . �

We prove the following result.

Proposition 4.2 For every ε ∈ (0, 1], there exists a c > 0, independent of ε, such that for
any z ∈ B3,

∥
∥Sε(t)z

∥
∥
H2,0

≤ c, ∀t ≥ 1. (4.9)

Proof Let z0 = (φ0,φ1, u0) ∈ B3. We set (φ(t),φt(t), u(t)) = Sε(t)(φ0,φ1, u0), ∀t ≥ 0. There
exists a c > 0, independent of ε, such that

∥
∥φ(t)

∥
∥2

3 + ε
∥
∥φt(t)

∥
∥2

2 +
∥
∥u(t)

∥
∥2

2 ≤ c, ∀t ≥ 0. (4.10)

Multiplying the first equation of (1.1) by Γ φt , where Γ = I – �, then integrating over �,
we obtain

ε

2
d
dt

‖φt‖2
1 + ‖φt‖2

1 + (–�φ,Γ φt) + (φ,Γ φt) +
(
g(φ),Γ φt

)
– (u,Γ φt) = 0.

Hence, we deduce due to (4.10), that

ε
d
dt

‖φt‖2
1 + ‖φt‖2

1 ≤ c. (4.11)

First, we multiply (4.11) by ect/ε and integrate between τ and t + 1, for any τ ≤ t + 1. This
yields

ε
∥
∥φt(t + 1)

∥
∥2

1ec(t+1)/ε ≤ cε
∥
∥φt(τ )

∥
∥2

1ecs/ε + cε
(
ec(t+1)/ε – ecτ /ε). (4.12)

Now, integrating (4.12) between t and t + 1 with respect to τ , we deduce

∥
∥φt(t)

∥
∥2

1 ≤ c, ∀t ≥ 1, (4.13)

hence the estimate (4.9) holds. �

The following estimate holds for difference of two solutions.

Proposition 4.3 There exist t� > 0, c and c′ > 0 all independent of ε such that

∥
∥Sε(t)(φ0,φ1, u0) – LS(t)(φ0, u0)

∥
∥2
H1,ε

≤ c 4√εec′t , ∀t ≥ t�, (4.14)

for any (φ0,φ1, u0) ∈ B3, and

∥
∥Sε(t)(φ0,φ1, u0) – LS(t)(φ0, u0)

∥
∥2
H1,0

≤ c 4√εec′t , ∀t ≥ t�, (4.15)
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for any (φ0,φ1, u0) ∈ Sε(1)B3, and any ε ∈ (0, 1], where L(ψ(t),υ(t)) = (ψ(t),L(ψ(t),
υ(t)),υ(t)).

Proof Let (φ0,φ1, u0) ∈ B3. We set (φε(t),φε
t (t), uε(t)) = Sε(t)(φ0,φ1, u0), and (φ(t),φt(t),

u(t)) = LS(t)(φ0, u0).
We have that

∥
∥φε(t)

∥
∥2

3 + ε
∥
∥φε

t (t)
∥
∥2

2 +
∥
∥uε(t)

∥
∥2

2 ≤ c, ∀t ≥ 0, (4.16)
∥
∥φ(t)

∥
∥2

3 +
∥
∥u(t)

∥
∥2

2 ≤ c, ∀t ≥ 0. (4.17)

We set P = φε – φ and R = uε – u, then the pair (P, R) solves the problem:

⎧
⎪⎪⎨

⎪⎪⎩

εPtt + Pt – �P + P + g(φε) – g(φ) – R = –εφtt ,

Rt + Pt – �R = 0,

P|t=0 = 0, Pt|t=0 = φ1 – L(φ0, u0), R|t=0 = 0.

(4.18)

We multiply (4.18)1 and (4.18)1 by Pt and R, respectively, then integrate over �. Adding
the resulting equations, we obtain

1
2

d
dt

(‖P‖2
1 + ε‖Pt‖2 + ‖R‖2) + ‖Pt‖ + ‖∇R‖2 = –

(
g
(
φε

)
– g(φ), Pt

)
– ε(φtt , Pt).

We deduce that

d
dt

(‖P‖2
1 + ε‖Pt‖2 + ‖R‖2) + ‖Pt‖2 + ‖∇R‖2 ≤ c′‖P‖2 + 2ε2‖φtt‖2. (4.19)

The following holds true:

∫ t

0

∥
∥φtt(s)

∥
∥2 ds ≤ ceνt , ∀t ≥ 0. (4.20)

We integrate (4.19) over (0, t), and on account of (4.20) we obtain

∥
∥P(t)

∥
∥2

1 + ε
∥
∥Pt(t)

∥
∥2 +

∥
∥R(t)

∥
∥2 ≤ c

(
ε
∥
∥φ1 – L(φ0, u0)

∥
∥2 + ε2)ec′t , ∀t ≥ 0. (4.21)

Similarly, we multiply (4.18)1 and (4.18)1 by –�Pt and –�R, respectively, then integrate
over �. Adding the resulting equations and proceeding like in the proof of estimate (4.21)
above, we obtain

∥
∥P(t)

∥
∥2

2 + ε
∥
∥∇Pt(t)

∥
∥2 +

∥
∥R(t)

∥
∥2

1 ≤ c
(
ε
∥
∥φ1 – L(φ0, u0)

∥
∥2

1 + ε2)ec′t , ∀t ≥ 0. (4.22)

Now, integrating (4.19) between 0 and t, we obtain

∫ t

0

(∥
∥Pt(s)

∥
∥2 +

∥
∥R(s)

∥
∥2

1

)
ds ≤ c

(
ε
∥
∥φ1 – L(φ0, u0)

∥
∥2 + ε2)ec′t , ∀t ≥ 0, (4.23)
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due to (4.20) and (4.21). Next, we multiply (4.18)1 by Pt and integrate over � to deduce

d
dt

ε‖Pt‖2 + ‖Pt‖2 ≤ c
(‖P‖2

2 + ‖R‖2 + ε2‖φtt‖2). (4.24)

We multiply (4.24) by t to get

d
dt

(
εt‖Pt‖2et/ε) ≤ ε‖Pt‖2et/ε +

[
ct

(‖P‖2 + ‖R‖2 + ε2‖φtt‖2)]et/ε . (4.25)

Integrating (4.25) between 0 and t, due to (4.20), (4.21), (4.22) and (4.23), we obtain

εt
∥
∥Pt(t)

∥
∥2 ≤ ε

∫ t

0

∥
∥Pt(s)

∥
∥2 ds + cεt

(
ε
∥
∥φ1 – L(φ0, u0)

∥
∥2

1 + ε2)ec′t

+ cε2t
∫ t

0

∥
∥φtt(s)

∥
∥2 ds

≤ cε
(
ε2 + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2)ec′t + ctε

(
ε2 + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2

1

)
ec′t

+ ctε2ec′t , ∀t ≥ 0.

Hence

ε
∥
∥Pt(t)

∥
∥2 ≤ cεt–1(ε2 + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2)ec′t

+ cε
(
ε + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2

1

)
ec′t , ∀t ≥ 0.

Therefore, we have

ε
∥
∥Pt(

√
ε)

∥
∥2 ≤ c

√
ε
(
ε2 + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2) + cε

(
ε + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2

1

)
. (4.26)

Using the interpolation inequality, (4.22) and (4.23), we deduce

∥
∥P(t)

∥
∥2

1 ≤ c
∥
∥P(t)

∥
∥
∥
∥P(t)

∥
∥

2

≤ c
√

t
(
ε2 + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2

1

)
ec′t , ∀t ≥ 0.

Therefore,

∥
∥P(

√
ε)

∥
∥2

1 ≤ c 4√ε
(
ε2 + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2

1

)
. (4.27)

From (4.18)2 and (4.23), we deduce

∫ t

0

∥
∥Rt(s)

∥
∥2

–1 ds ≤ c
∫ t

0

(∥
∥Pt(s)

∥
∥2 +

∥
∥∇R(s)

∥
∥2)ds

≤ c
(
ε2 + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2)ec′t , ∀t ≥ 0. (4.28)

Again, by interpolation inequality, (4.22) and (4.28), we have

∥
∥R(t)

∥
∥2 ≤ c

∥
∥R(t)

∥
∥

–1

∥
∥R(t)

∥
∥

1

≤ c
√

t
(
ε2 + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2

1

)
ec′t , ∀t ≥ 0,



Enyi Boundary Value Problems  (2018) 2018:146 Page 15 of 17

so that

∥
∥R(

√
ε)

∥
∥2 ≤ c 4√ε

(
ε2 + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2

1

)
. (4.29)

We now apply Gronwall’s lemma to (4.19) between
√

ε and t +
√

ε. We find

(‖P‖2
1 + ε‖Pt‖2 + ‖R‖2)(t +

√
ε) ≤ c

[(‖P‖2
1 + ε‖Pt‖2 + ‖R‖2)(

√
ε) + ε2]ec′t , (4.30)

for every t ≥ 0.
Due to (4.26), (4.27) and (4.29), from (4.30) it follows that

(‖P‖2
1 + ε‖Pt‖2 + ‖R‖2)(t +

√
ε) ≤ c 4√ε

(
ε + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2

1

)
ec′t , ∀t ≥ 0. (4.31)

Again, integrating (4.19) between s and t, we arrive at the following estimate:

∥
∥P(t)

∥
∥2

1 + ε
∥
∥Pt(t)

∥
∥2 +

∥
∥R(t)

∥
∥2 ≤ c

(∥
∥P(s)

∥
∥2

1 + ε
∥
∥Pt(s)

∥
∥2 +

∥
∥R(s)

∥
∥2 + ε2)ec′t ,

for any given s ≥ 0 and any t > s. Let t� > 0, independent of ε, be such that t� >
√

ε. This
latter estimate, with s =

√
ε, in combination with (4.31) gives

∥
∥P(t)

∥
∥2

1 + ε
∥
∥Pt(t)

∥
∥2 +

∥
∥R(t)

∥
∥2 ≤ c 4√ε

(
ε + ε

∥
∥φ1 – L(φ0, u0)

∥
∥2

1

)
ec′t , ∀t >

√
ε. (4.32)

Finally, estimate (4.14) follows from (4.32) while estimate (4.15) follows from (4.9) and
(4.32). �

We have the following corollary of Proposition 4.3.

Corollary 4.1

∥
∥�εSε(t)(φ0,φ1, u0) – S(t)(φ0, u0)

∥
∥2
H1,0

≤ c 4√εec′t , ∀t ≥ t�, (4.33)

where �ε(X × Y × Z) = X × Z, i.e., ‖φε(t) – φ(t)‖2
1 + ‖uε(t) – u(t)‖2 ≤ c 4√εec′t , ∀t ≥ t�.

The semigroup S(t) for the variable (φ, u) alone possesses an exponential attractor E0 on
H1,0, see Theorem 9.14 in [11]. We set B̃3 = Sε(t∗)B3, where t∗ > 0 is independent of ε.

Theorem 4.1 There exist �1,�2 ∈ (0, 1
2 ] and M1, M2 > 0, all independent of ε, and a fam-

ily of exponential attractors Eε enjoying all the properties of Theorem 3.2 and such that

distsym
H1,ε

(Eε ,E) ≤ M1ε
�1 , (4.34)

distH1,0 (Eε ,E) ≤ M2ε
�2 , and (4.35)

lim
ε→0

distH1,0 (E ,Eε) = 0, (4.36)

where E = LE0 = {(ϕ,L(ϕ,ϑ),ϑ), (ϕ,ϑ) ∈ E0}.
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Proof On account of Theorem 3.1, we let Eε = H1,ε , Vε = H2,ε , Wε = H3,ε , Bε = B̃4 and we
check all Assumptions 1–5. To verify Assumption 1, using the interpolation inequality,
there exists a constant c such that for some θ ∈ [0, 1] we have

∥
∥L(ϕ,ϑ) – L(ψ , v)

∥
∥ ≤ ∥

∥�(ϕ – ψ)
∥
∥ + ‖ϕ – ψ‖ +

∥
∥g(ϕ) – g(ψ)

∥
∥ + ‖ϑ – v‖

≤ c
(‖ϕ – ψ‖1/2 + ‖ϕ – ψ‖1/2

3
)‖ϕ – ψ‖1/2

1 + ‖ϑ – v‖
≤ c

(‖ϕ – ψ‖1/2
1 + ‖ϑ – v‖1/2), (4.37)

for any (ϕ,ϑ) and (ψ , v) in B.
Assumptions 2, 4 and 5 were checked in Theorem 3.2. Assumption 3 follows from (4.14)

and (4.15). This shows the existence of exponential attractors in H1,0 that satisfy (4.34),
(4.35) and (4.36). �

We also state the following theorem, which is a direct consequence of Corollary 4.33.

Theorem 4.2 For every ε ∈ (0, 1], there exists a constant M1 > 0 independent of ε such that
the family of exponential attractors Eε of the semigroup Sε(t) on H1,ε satisfies

distsym
H1,0

(�εEε ,E0) ≤ M1
4√ε. (4.38)

5 Conclusion
In this work, we considered a parabolic–hyperbolic phase-field system, a model which
describes phase separation in material sciences. An example is melting and solidification
processes. We constructed a robust family of exponential attractors, which are both upper
and lower semicontinuous at the parameter ε = 0. A consequence of this is the existence
of fractal dimensional global attractor and, moreover, the dynamics of the global attrac-
tor converges to that of the well known Cagilnap phase-field system. Most interestingly,
estimates were obtained in norms which are independent of the parameter ε.
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