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Abstract
This article is concerned with the decay and blow-up properties of a nonlinear
viscoelastic wave equation with strong damping. We first show a local existence
theorem. Then, we prove the global existence of solutions and establish a general
decay rate estimate. Finally, we show the finite time blow-up result for some solutions
with negative initial energy and positive initial energy.
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1 Introduction
In this work we investigate the decay and blow-up properties of the nonlinear viscoelastic
wave equation of the form:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

0 g(t – τ )�u(τ ) dτ – �ut + ut = u|u|p–2, in � × (0,∞),

u(x, t) = 0, on ∂� × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in �,

(1.1)

where � ⊂R
n is bounded domains with smooth boundary ∂�. Problems of this type have

been investigated by many authors, and some results in connection with existence and
nonexistence have been established. For example, Berrimi and Messaoudi [1] studied the
following viscoelastic equation:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

0 g(t – τ )�u(τ ) dτ = u|u|γ , in � × (0,∞),

u(x, t) = 0, on ∂� × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in �,

where γ > 0. The authors established the local existence and global existence theorems and
showed that the solution energy exponentially or polynomially decays. Later, Messaoudi
[17] improved the results of [1], he established a general decay result. Inspired by the ideas
of Messaoudi [17] and [18], Han and Wang [10] investigated a nonlinear viscoelastic equa-
tion with the dispersive term �utt by modifying the perturbed energy functional; they also
obtained that the solution energy is general decay. Recently, Guesmia et al. [8] combined
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the techniques given in [17] with the character of Kirchhoff equation and obtained the
optimal decay rate estimate of solution energy. For the case of wave equation with non-
linear boundary damping and source terms, Vitillaro [21] established the local and global
existence of solutions under reasonable conditions on the initial data. In [3], Cavalcanti et
al. obtained both well-posedness and the optimal decay rate estimate for solutions.

In article [6], Gazzola and Squassina discussed the following viscoelastic equation with
strong damping term �ut :

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u – ω�ut + μut = u|u|p–2, in � × (0,∞),

u(x, t) = 0, on ∂� × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in �,

(1.2)

where p > 2, ω,μ > 0. The authors established the global existence theorem and proved
that the global solution is uniformly bounded. They also constructed the finite time blow-
up of solutions for low initial energy or arbitrarily high initial energy. When the linear
damping term is replaced by nonlinear damping term in equation (1.2), Chen and Liu [5]
obtained a global existence theorem, uniform decay rate estimate, and exponential growth
for the solutions.

In paper [2], Cavalcanti et al. dealt with the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

|ut|ρutt – �u – �utt +
∫ t

0 g(t – τ )�u(τ ) dτ – γ�ut = 0, in � × (0,∞),

u(x, t) = 0, on ∂� × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in �,

(1.3)

under reasonable conditions on g and γ , the authors established the global existence result
for γ ≥ 0 and the exponential decay result for γ > 0. Cavalcanti et al. [4] discussed equation
(1.3) for ρ ≥ 0, γ ≥ 0 and obtained that the energy decays to zero with the decay rate which
is dominated by the solutions of the ODE quantifying the conduct of g(t).

For the finite time blow-up, Messaoudi [15] studied the following problem:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

0 g(t – τ )�u(τ ) dτ + aut|ut|m–2 = bu|u|p–2, in � × (0,∞),

u(x, t) = 0, on ∂� × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in �.

(1.4)

He showed that the solution blows up in finite time when the initial energy is negative and
p > m and the solution exists globally for m ≥ p. In [16], Messaoudi extended the blow-up
result to certain situations in which the initial energy is positive. Later, Song [19] proved
the finite time blow-up of solutions whose initial data have arbitrarily high initial energy.
It is worth mentioning some other literatures concerning existence and nonexistence of
wave equation, namely [7, 9, 11, 13, 14, 20] and the references therein.

At the present time, less results are investigated for the wave equation with strong damp-
ing term and many problems are unsolved (see [6]). So, in this paper, we study a nonlinear
viscoelastic wave equation with strong damping. We first show a local existence theorem.
Then, we prove the global existence of solutions and establish a general decay rate es-
timate. Finally, we show the finite time blow-up result for some solutions with negative
initial energy and positive initial energy.
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This article is organized as follows. In Sect. 2, we give some preliminaries. In Sect. 3, we
prove the local existence and uniqueness of solutions for problem (1.1). Then, the general
decay of the solutions is considered in Sect. 4. In the last section, we discuss the blow-up
phenomenon for the equation.

2 Preliminaries
We begin with some materials needed in the proof of the main results. We first recall the
following assumptions as in [17]:

(H1) g : R+ → R+ is a nonincreasing and bounded C1 function satisfying

g(0) > 0, 1 –
∫ ∞

0
g(τ ) dτ = l > 0.

(H2) There exists a positive differentiable function ξ (t) such that

g ′(t) ≤ –ξ (t)g(t), t ≥ 0,

and
∣
∣
∣
∣
ξ ′(t)
ξ (t)

∣
∣
∣
∣ ≤ k, ξ (t) > 0, ξ ′(t) ≤ 0, ∀t > 0,

∫ +∞

0
ξ (t) dt = +∞.

(H3) For the nonlinear term, we let

2 < p ≤ 2n
n – 2

, if n ≥ 3; 2 < p < ∞, if n = 1, 2.

Remark 2.1 Since ξ is a nonincreasing function, then ξ (t) ≤ ξ (0) = M.

We will use the embedding H1
0 (�) ↪→ Ls(�) for 2 ≤ s ≤ 2n/(n–2) if n ≥ 3 or s ≥ 2 if n = 1, 2;

and Lr(�) ↪→ Ls(�) for s < r, and we will use the same embedding constant denoted by C∗
such that

‖u‖s ≤ C∗‖∇u‖2, ‖u‖s ≤ C∗‖u‖r . (2.1)

For our aim, we use the following functionals:

I(t) = I
(
u(t)

)
=

(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2 + (g ◦ ∇u)(t) –
∥
∥u(t)

∥
∥p

p,

J(t) = J
(
u(t)

)
=

1
2

(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2 +
1
2

(g ◦ ∇u)(t) –
1
p
∥
∥u(t)

∥
∥p

p, (2.2)

E(t) = E
(
u(t), ut(t)

)
= J(t) +

1
2
‖ut‖2

2,

where

(g ◦ v)(t) =
∫ t

0
g(t – τ )

∥
∥v(t) – v(τ )

∥
∥2

2 dτ .
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Lemma 2.2 If (H1), (H2), (H3) hold and (u0, u1) ∈ H1
0 (�)×L2(�), u is the solution of (1.1),

then the energy functional E(t) satisfies

E′(t) =
1
2
(
g ′ ◦ ∇u

)
(t) –

1
2

g(t)
∥
∥∇u(t)

∥
∥2

2 – ‖∇ut‖2
2 – ‖ut‖2

2 ≤ 0 (2.3)

for ∀t ∈ [0, T].

Proof Multiplying (1.1) by ut and integrating over �, we obtain

d
dt

{
1
2

∫

�

|ut|2 dx +
1
2

∫

�

|∇u|2 dx –
1
p

∫

�

|u|p dx
}

–
∫ t

0
g(t – τ )

∫

�

∇ut(t) · ∇u(τ ) dx dτ = –
∫

�

|∇ut|2 dx –
∫

�

|ut|2 dx. (2.4)

For the last term on the left-hand side of (2.4), we get

∫ t

0
g(t – τ )

∫

�

∇ut(t) · ∇u(τ ) dx dτ

=
∫ t

0
g(t – τ )

∫

�

∇ut(t) · [∇u(τ ) – ∇u(t)
]

dx dτ

+
∫ t

0
g(t – τ )

∫

�

∇ut(t) · ∇u(t) dx dτ

= –
1
2

∫ t

0
g(t – τ )

(
d
dt

∫

�

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx

)

dτ

+
∫ t

0
g(τ )

(
d
dt

1
2

∫

�

∣
∣∇u(t)

∣
∣2 dx

)

dτ

= –
1
2

d
dt

[∫ t

0
g(t – τ )

∫

�

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ

]

+
1
2

d
dt

[∫ t

0
g(τ )

∫

�

∣
∣∇u(t)

∣
∣2 dx dτ

]

+
1
2

∫ t

0
g ′(t – τ )

∫

�

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ

–
1
2

g(t)
∫

�

∣
∣∇u(t)

∣
∣2 dx. (2.5)

Inserting (2.5) into (2.4), we obtain

d
dt

{
1
2

∫

�

|ut|2 dx +
1
2

∫

�

|∇u|2 dx –
1
p

∫

�

|u|p dx
}

–
1
2

d
dt

[∫ t

0
g(τ ) dτ

∥
∥∇u(t)

∥
∥2

2

]

+
1
2

d
dt

[∫ t

0
g(t – τ )

∫

�

∣
∣∇u(τ ) – ∇u(t)

∣
∣2 dx dτ

]

= –
∫

�

|∇ut|2 dx –
∫

�

|ut|2 dx +
1
2
(
g ′ ◦ ∇u

)
(t) –

1
2

g(t)
∥
∥∇u(t)

∥
∥2

2 ≤ 0. (2.6)

�
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Lemma 2.3 If (H3) holds, then there exists a positive constant C > 1 such that

‖u‖s
p ≤ C

(‖∇u‖2
2 + ‖u‖p

p
)
, 2 ≤ s ≤ p, (2.7)

for any u being a solution of (1.1) on [0, T].

Proof If ‖u‖p ≤ 1, then ‖u‖s
p ≤ ‖u‖2

p ≤ C‖∇u‖2
2 by using Sobolev embedding theorems. If

‖u‖p > 1, then ‖u‖s
p ≤ ‖u‖p

p. Therefore (2.7) follows. �

We set

H(t) := –E(t),

and use C to denote a general positive constant depending on � only. As a result of (2.2)
and (2.7), we have the following.

Corollary 2.4 Let the assumption of the above lemma hold. Then we have the following:

‖u‖s
p ≤ C

(
H(t) + ‖ut‖2

2 + ‖∇u‖2
2 + (g ◦ ∇u)(t)

)
, ∀t ∈ [0, T], (2.8)

for any u ∈ H1
0 (�) and 2 ≤ s ≤ p.

Proof Using (H1) and (2.2) leads to

1
p
∥
∥u(t)

∥
∥p

p ≤ –E(t) +
1
2
‖ut‖2

2 +
1
2

(

1 –
∫ ∞

0
g(τ ) dτ

)

‖∇u‖2
2 +

1
2

(g ◦ ∇u)(t)

≤ H(t) +
1
2
‖ut‖2

2 +
1
2

(

1 –
∫ ∞

0
g(τ ) dτ

)

‖∇u‖2
2 +

1
2

(g ◦ ∇u)(t). (2.9)

Finally, a combination of (2.7) and (2.9) gives the needed result. �

3 Local existence
In this section, the aim is to establish the local existence result for (1.1). For this goal, we
first discuss a related linear problem. Then, by using the contraction mapping theorem, we
obtain the existence of solutions to the nonlinear problem. For v given, the related linear
problem is of the form:

⎧
⎪⎪⎨

⎪⎪⎩

utt – �u +
∫ t

0 g(t – τ )�u(τ ) dτ – �ut + ut = v|v|p–2, in � × (0,∞),

u(x, t) = 0, on ∂� × (0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), in �.

(3.1)

Similar to the proof in [12], we can get the following lemma.
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Lemma 3.1 Suppose v ∈ C([0, T]; C∞
0 (�)) and u0, u1 ∈ C∞

0 (�), then problem (3.1) has a
unique solution u satisfying

u ∈ L∞(
(0, T); H1

0 (�) ∩ H2(�)
)
,

ut ∈ L∞(
(0, T); H1

0 (�)
)
,

utt ∈ L∞(
(0, T); L2(�)

)
.

(3.2)

Next, we prove the existence of solutions to equation (3.1) when the initial data is less
regular.

Lemma 3.2 If (H3) holds, then given any (u0, u1) ∈ H1
0 (�) × L2(�) and v ∈ C([0, T];

H1
0 (�)), problem (3.1) has a unique weak solution

u ∈ C
(
[0, T]; H1

0 (�)
)
, ut ∈ C

(
[0, T]; L2(�)

)
. (3.3)

Proof We approximate u0, u1 by sequences (u0n), (u1n) in C∞
0 (�), and v by a sequence (vn)

in C([0, T]; C∞
0 (�)). Then from Lemma 3.1 we can obtain a solution (un) satisfying:

⎧
⎪⎪⎨

⎪⎪⎩

untt – �un +
∫ t

0 g(t – τ )�un(τ ) dτ – �unt + unt = vn|vn|p–2, in � × (0,∞),

un(x, t) = 0, on ∂� × (0,∞),

un(x, 0) = u0n(x), unt(x, 0) = u1n(x), in �,

(3.4)

and satisfying (3.2). Now we prove that the sequence (un) is Cauchy in

W :=
{

u : u ∈ C
(
[0, T]; H1

0 (�)
) ∩ C1([0, T]; L2(�)

)
, ut ∈ C

(
[0, T]; L2(�)

)}
,

with the defined norm

‖u‖2
W := max

0≤t≤T

1
2
(‖ut‖2

2 + l‖∇u‖2
2
)

+
∫ T

0
‖∇ut‖2

2 dτ +
∫ T

0
‖ut‖2

2 ≤ M2. (3.5)

For this purpose, we let U = un – un′ , V = vn – vn′ , then U satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Utt – �U +
∫ t

0 g(t – τ )�U(τ ) dτ – �Ut + Ut

= vn|vn|p–2 – vn′ |vn′ |p–2, x ∈ �, t > 0,

U(x, t) = 0, x ∈ ∂�, t ≥ 0,

U(x, 0) = U0(x) = u0n – u0n′ , Ut(x, 0) = U1(x) = u1n – u1n′ , x ∈ �.

(3.6)

Multiplying (3.6) by Ut and integrating over (0, t) × �, we obtain

1
2

[

‖Ut‖2
2 +

(

1 –
∫ t

0
g(τ ) dτ

)

‖∇U‖2
2

]

–
1
2

∫ t

0

(
g ′ ◦ ∇U

)
(τ ) dτ +

∫ t

0
‖∇Ut‖2

2 dτ

+
1
2

(g ◦ ∇U)(t) +
1
2

∫ t

0

∫

�

g(τ )
∣
∣∇U(τ )

∣
∣2 dx dτ +

∫ t

0
‖Ut‖2

2 dτ

=
1
2
(‖U1‖2

2 + ‖∇U0‖2
2
)

+
∫ t

0

∫

�

(
vn|vn|p–2 – vn′ |vn′ |p–2)Ut dx dτ . (3.7)
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We estimate the second term on the right-hand side of (3.7) as follows:

∫

�

(
vn|vn|p–2 – vn′ |vn′ |p–2)Ut dx

≤ C‖Ut‖2‖V‖ 2n
n–2

(‖vn‖p–2
n(p–2) + ‖vn′ ‖p–2

n(p–2)
)

≤ C‖Ut‖2‖∇V‖2
(‖∇vn‖p–2

2 + ‖∇vn′ ‖p–2
2

)
, (3.8)

where C is a constant. Using (H1), (H2) and the following fact:

–
1
2

∫ t

0

(
g ′ ◦ ∇U

)
(τ ) dτ +

1
2

(g ◦ ∇U)(t) +
1
2

∫ t

0

∫

�

g(τ )
∣
∣∇U(τ )

∣
∣2 dx dτ ≥ 0,

by estimating (3.7), we obtain

1
2
[‖Ut‖2

2 + l‖∇U‖2
2
]

+
∫ t

0
‖∇Ut‖2

2 dτ +
∫ t

0
‖Ut‖2

2 dτ

≤ 1
2
(‖U1‖2

2 + ‖∇U0‖2
2
)

+ C
∫ t

0
‖Ut‖2‖∇V‖2

(‖∇vn‖p–2
2 + ‖∇vn′ ‖p–2

2
)

dτ

≤ 1
2
(‖U1‖2

2 + ‖∇U0‖2
2
)

+ �

∫ t

0
‖Ut‖2‖∇V‖2 dτ , (3.9)

where � > 0 is a constant depending on �, l,γ and the radius of the ball in C([0, T]; H1
0 (�))

containing (vn) and (vn′ ). By employing Gronwall’s and Young’s inequalities to the second
term of (3.9), we can get

‖U‖2
W ≤ �

(‖U1‖2
2 + ‖∇U0‖2

2
)

+ �T‖V‖2
W . (3.10)

Since (u0n) is Cauchy in H1
0 (�), (u1n) is Cauchy in L2(�), and (vn) is Cauchy in C([0, T];

H1
0 (�)), we obtain that (un) is Cauchy in W , then un converges to a limit u in W . Now,

we prove that the limit u is a weak solution of (3.1). Multiplying equation (3.4) by θ ∈
H1

0 (�) ∩ L2(�), we obtain

d
dt

(unt , θ ) +
∫

�

∇un∇θ dx –
∫ t

0

∫

�

g(t – τ )∇un · ∇θ dτ dx +
∫

�

∇unt∇θ dx

+
∫

�

untθ dx =
∫

�

|vn|p–2vnθ dx. (3.11)

When n → ∞, we know that (∇un,∇θ ) → (∇u,∇θ ),
∫

�
|vn|p–2vnθ dx → ∫

�
|v|p–2vθ dx in

C[0, T], and
∫ t

0
∫

�
g(t – τ )∇un · ∇θ dτ dx → ∫ t

0
∫

�
g(t – τ )∇u · ∇θ dτ dx,

∫

�
∇unt∇θ dx →

∫

�
∇ut∇θ dx,

∫

�
untθ dx → ∫

�
utθ dx in L1(0, T), then (3.11) proves that lim

n→∞(unt , θ ) =
(ut , θ ) is an absolutely continuous function, so u is a weak solution. To show the uniqueness
property, we let v1, v2 and u1, u2 be the corresponding solution of (3.1). Take U = u1 – u2,
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we have

1
2
(‖Ut‖2

2 + l‖∇U‖2
2
)

–
1
2

∫ t

0

(
g ′ ◦ ∇U

)
(τ ) dτ +

∫ t

0
‖∇Ut‖2

2 dτ

+
1
2

(g ◦ ∇U)(t) +
1
2

∫ t

0

∫

�

g(τ )
∣
∣∇U(τ )

∣
∣2 dx dτ +

∫ t

0
‖Ut‖2

2 dτ

=
∫ t

0

∫

�

(
v1∣∣v1∣∣p–2 – v2∣∣v2∣∣p–2)Ut dx dτ . (3.12)

Assume v1 = v2, then (3.12) proves that U = 0 and the solution is unique. �

Next, we state and prove the local existence result theorem.

Theorem 3.3 If u0 ∈ H1
0 (�), u1 ∈ L2(�) and H(3) holds, then equation (1.1) has a unique

weak solution u ∈ W for T small enough.

Proof For M > 0 large and T > 0, we define a class of functions Z(M, T) consisting of all
functions w in W satisfying the initial data of (1.1) and ‖w‖W ≤ M2. We also define the
map f from Z(M, T) into W by u := f (w).

We will show that f is a contraction from Z(M, T) into itself. Multiplying (3.1) by ut and
integrating over (0, t) × �, we obtain

‖u‖2
W ≤ C

(‖u1‖2
2 + ‖∇u0‖2

2
)

+ CMp–1T‖u‖W , (3.13)

where C is independent of M. Choosing M large enough and T small enough, we get u
satisfying ‖u‖W ≤ M2, i.e., u ∈ Z(M, T). This proves that f maps Z(M, T) into itself.

Next, we prove that f is a contraction. For this aim, we let U = u – ū and V = v – v̄, where
u = f (v) and ū = f (v̄), then U satisfies

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Utt – �U +
∫ t

0 g(t – τ )�U(τ ) dτ – �Ut + Ut

= v|v|p–2 – v̄|v̄|p–2, x ∈ �, t > 0,

U(x, t) = 0, x ∈ ∂�, t ≥ 0,

U(x, 0) = Ut(x, 0) = 0, x ∈ �.

(3.14)

Similar to the proof of (3.9), we get

1
2
(‖Ut‖2

2 + l‖∇u‖2
2
)

+
∫ t

0
‖∇Ut‖2

2 dτ +
∫ t

0
‖Ut‖2

2 dτ

≤ C
∫ t

0
‖Ut‖2‖∇V‖2

(‖∇v‖p–2
2 + ‖∇ v̄‖p–2

2
)

dτ . (3.15)

Thus we get

‖U‖W ≤ CTMp–2‖V‖W . (3.16)

We let T small enough such that CTMp–2 ≤ 1
2 . Then from (3.16) we can get that f is a

contraction in Z(M, T). By using the contraction mapping principle, we can obtain that
there exists a unique u satisfying u = f (u). Then it is the solution of (1.1). �
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4 Decay of global solution
In this section we state and prove the general decay result for global solutions. Firstly, we
establish the global existence theorem.

Lemma 4.1 If (H1), (H2), (H3) hold and (u0, u1) ∈ H1
0 (�) × L2(�) such that

β =
Cp

∗
l

(
2p

l(p – 2)
E(0)

)(p–2)/2

< 1, I(u0) > 0, (4.1)

then I(u(t)) > 0 for ∀t > 0. Here C∗ is given in (2.1).

Proof For I(u0) > 0, then there is Tm < T such that I(u(t)) ≥ 0 for ∀t ∈ [0, Tm). So, we get

J(t) =
1
2

(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2 +
1
2

(g ◦ ∇u)(t) –
1
p
∥
∥u(t)

∥
∥p

p

=
p – 2

2p

(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2 +
p – 2

2p
(g ◦ ∇u)(t) +

1
p

I
(
u(t)

)

≥ p – 2
2p

{(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2 + (g ◦ ∇u)(t)
}

, ∀t ∈ [0, Tm). (4.2)

By using (H1), (2.2), (2.3), and (4.2), we arrive at

l
∥
∥∇u(t)

∥
∥2

2 ≤
(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2 ≤ 2p
p – 2

J(t)

≤ 2p
p – 2

E(t)

≤ 2p
p – 2

E(0), ∀t ∈ [0, Tm). (4.3)

By combining (H1), (2.1), (4.1) with (4.3), we get

∥
∥u(t)

∥
∥p

p ≤ Cp
∗
∥
∥∇u(t)

∥
∥p

2

≤ Cp
∗

l
∥
∥∇u(t)

∥
∥p–2

2 l
∥
∥∇u(t)

∥
∥2

2

≤ Cp
∗

l

[
2p

l(p – 2)
E(0)

](p–2)/2

l
∥
∥∇u(t)

∥
∥2

2

≤ βl
∥
∥∇u(t)

∥
∥2

2

<
(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2. (4.4)

Therefore,

I(t) =
(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥2

2 + (g ◦ ∇u)(t) –
∥
∥u(t)

∥
∥p

p > 0

for ∀t ∈ [0, Tm). Repeating the process and using the fact that

lim
t→Tm

Cp
∗

l

(
2p

l(p – 2)
E(0)

)(p–2)/2

≤ β < 1,
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Tm is extended to T . �

Theorem 4.2 If (u0, u1) ∈ H1
0 (�) × L2(�) and satisfies (4.1), and suppose (H1), (H2), (H3)

hold, then the solution is global and bounded.

Proof The aim is to show that

∥
∥∇u(t)

∥
∥2

2 +
∥
∥ut(t)

∥
∥2

2

is bounded independently of t. For this goal, we use Lemma 4.1 and (2.2) to obtain

E(0) ≥ E(t) = J(t) +
1
2
∥
∥ut(t)

∥
∥2

2

≥ p – 2
2p

{(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥2

2 + (g ◦ ∇u)(t)
}

+
1
p

I
(
u(t)

)
+

1
2
∥
∥ut(t)

∥
∥2

2

≥ p – 2
2p

{(

1 –
∫ t

0
g(s) ds

)
∥
∥∇u(t)

∥
∥2

2 + (g ◦ ∇u)(t)
}

+
1
2
∥
∥ut(t)

∥
∥2

2, (4.5)

since I(u(t)) ≥ 0 and (g ◦ ∇u)(t) are positive. Therefore

∥
∥∇u(t)

∥
∥2

2 +
∥
∥ut(t)

∥
∥2

2 ≤ CE(0),

where C is a positive constant. �

For establishing the general decay rate estimate, we use the following functional:

F(t) := E(t) + ε1�(t) + ε2�(t), (4.6)

where ε1 and ε2 are positive constants and

�(t) := ξ (t)
∫

�

uut dx,

�(t) := ξ (t)
∫

�

(�u – ut)
∫ t

0
g(t – τ )

(
u(t) – u(τ )

)
dτ dx.

Lemma 4.3 For ε1 and ε2 small enough, we have

α1F(t) ≤ E(t) ≤ α2F(t) (4.7)

holds, where α1 and α2 are positive constants.

Proof By straightforward computations, we obtain

F(t) ≤ E(t) +
ε1

2
ξ (t)

∫

�

|u|2 dx +
ε1

2
ξ (t)

∫

�

|ut|2 dx +
ε2

2
ξ (t)

∫

�

|ut|2 dx

+
ε2

2
C2

∗(1 – l)ξ (t)(g ◦ ∇u) +
ε2

2
ξ (t)

∫

�

|∇u|2 dx +
ε2

2
(1 – l)ξ (t)(g ◦ ∇u)

≤ E(t) +
1
2

(ε1 + ε2)ξ (t)
∫

�

|ut|2 dx +
1
2
(
ε1C2

∗ + ε2
)
ξ (t)

∫

�

|∇u|2 dx
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+
ε2

2
(
C2

∗ + 1
)
(1 – l)ξ (t)(g ◦ ∇u)(t)

≤ 1
2
[
1 + (ε1 + ε2)M

]‖ut‖2
2 +

1
2
[
l +

(
ε1C2

∗ + ε2
)
M

]‖∇u‖2
2

+
[

1
2

+
ε2

2
(
C2

∗ + 1
)
M(1 – l)

]

(g ◦ ∇u)(t) –
1
p
∥
∥u(t)

∥
∥p

p

≤ 1
α1

E(t).

Similarly, we have

F(t) ≥ E(t) –
1
2

(ε1 + ε2)ξ (t)
∫

�

|ut|2 dx –
1
2
(
ε1C2

∗ + ε2
)
ξ (t)

∫

�

|∇u|2 dx

–
ε2

2
(
C2

∗ + 1
)
(1 – l)ξ (t)(g ◦ ∇u)(t)

≥
[

l
2

–
1
2

M
(
ε1C2

∗ + ε2
)
]

‖∇u‖2
2 +

(
1
2

–
ε1 + ε2

2
M

)

‖ut‖2
2

+
[

1
2

–
ε2

2
M

(
C2

∗ + 1
)
(1 – l)

]

(g ◦ ∇u)(t) –
1
p
∥
∥u(t)

∥
∥p

p

≥ 1
α2

E(t)

for ε1 and ε2 small enough. �

Lemma 4.4 If (H1), (H2) hold and u is the solution of (1.1), let (u0, u1) ∈ H1
0 (�) × L2(�)

be given, then the functional

�(t) := ξ (t)
∫

�

uut dx (4.8)

satisfies

� ′(t) ≤
(

1 +
1 + k
4α

)

ξ (t)‖ut‖2
2 +

{

–
l
2

+
1

4α
+ (1 + k)αC2

∗

}

ξ (t)‖∇u‖2
2

+
1 – l

2l
ξ (t)(g ◦ ∇u)(t) + αξ (t)‖∇ut‖2

2 + ξ (t)‖u‖p
p. (4.9)

Proof Taking a time derivative of (4.8) and using equation (1.1), we have

� ′(t) = ξ (t)
∫

�

|ut|2 dx + ξ (t)
∫

�

uutt dx + ξ ′(t)
∫

�

uut dx

= ξ (t)
(

‖ut‖2
2 – ‖∇u‖2

2 +
∫

�

∇u(t)
∫ t

0
g(t – τ )∇u(τ ) dτ dx

–
∫

�

∇ut∇u dx –
∫

�

utu dx + ‖u‖p
p

)

+ ξ ′(t)
∫

�

uut dx. (4.10)
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Now, we estimate the third term on the right-hand side of (4.10) as follows:

∫

�

∇u(t)
∫ t

0
g(t – τ )∇u(τ ) dτ dx

≤ 1
2

∫

�

|∇u|2 dx +
1
2

∫

�

(∫ t

0
g(t – τ )

∣
∣∇u(τ )

∣
∣dτ

)2

dx

≤ 1
2

∫

�

|∇u|2 dx +
1
2

∫

�

(∫ t

0
g(t – τ )

(∣
∣∇u(τ ) – ∇u(t)

∣
∣ +

∣
∣∇u(t)

∣
∣
)

dτ

)2

dx. (4.11)

We then use Young’s inequality and (H1) to obtain, for ∀η > 0,

∫

�

(∫ t

0
g(t – τ )

(∣
∣∇u(τ ) – ∇u(t)

∣
∣ +

∣
∣∇u(t)

∣
∣
)

dτ

)2

dx

≤
∫

�

(∫ t

0
g(t – τ )

∣
∣∇u(τ ) – ∇u(t)

∣
∣dτ

)2

dx +
∫

�

(∫ t

0
g(t – τ )

∣
∣∇u(t)

∣
∣dτ

)2

dx

+ 2
∫

�

(∫ t

0
g(t – τ )

∣
∣∇u(τ ) – ∇u(t)

∣
∣dτ

)(∫ t

0
g(t – τ )

∣
∣∇u(t)

∣
∣dτ

)

dx

≤ (1 + η)
∫

�

(∫ t

0
g(t – τ )

∣
∣∇u(t)

∣
∣dτ

)2

dx

+
(

1 +
1
η

)∫

�

(∫ t

0
g(t – τ )

∣
∣∇u(τ ) – ∇u(t)

∣
∣dτ

)2

dx

≤
(

1 +
1
η

)

(1 – l)(g ◦ ∇u)(t) + (1 + η)(1 – l)2
∫

�

∣
∣∇u(t)

∣
∣2 dx. (4.12)

By using Young’s and Poincaré’s inequalities and for ∀α > 0, we have

∫

�

∇ut∇u dx ≤ α‖∇ut‖2
2 +

1
4α

‖∇u‖2
2, (4.13)

∫

�

utu dx ≤ αC2
∗‖∇u‖2

2 +
1

4α
‖ut‖2

2. (4.14)

Combining (4.10)–(4.14) yields

� ′(t) ≤
(

1 +
1

4α
+

∣
∣
∣
∣
ξ ′(t)
ξ (t)

∣
∣
∣
∣

1
4α

)

ξ (t)‖ut‖2
2

+
{

–
1
2

+
1
2

(1 + η)(1 – l)2 +
1

4α
+

(

1 +
∣
∣
∣
∣
ξ ′(t)
ξ (t)

∣
∣
∣
∣

)

αC2
∗

}

ξ (t)‖∇u‖2
2

+
1
2

(

1 +
1
η

)

(1 – l)ξ (t)(g ◦ ∇u)(t) + αξ (t)‖∇ut‖2
2 + ξ (t)‖u‖p

p. (4.15)

By choosing η = l/(1 – l) and using (H2), we can get (4.9). �

Lemma 4.5 Assume that (H1), (H2) hold and (u0, u1) ∈ H1
0 (�) × L2(�) is given. If u is the

solution of (1.1), then the functional

�(t) := ξ (t)
∫

�

(�u – ut)
∫ t

0
g(t – τ )

(
u(t) – u(τ )

)
dτ dx (4.16)
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satisfies

�′(t) ≤ δ

{

k + 2(1 – l)2 + 3 + C2(p–1)
∗

(
2p

l(p – 2)
E(0)

)p–2}

ξ (t)‖∇u‖2
2

+
{

δ(2 + k) –
∫ t

0
g(τ ) dτ

}

ξ (t)‖ut‖2
2 +

1
4δ

(1 – l)2ξ (t)‖∇ut‖2
2

+ (1 – l)
(

k
4δ

+
kC2∗
4δ

+
1

2δ
+ 2δ +

C2∗
2δ

)

ξ (t)(g ◦ ∇u)(t)

–
g(0)
4δ

(
1 + C2

∗
)
ξ (t)

(
g ′ ◦ ∇u

)
(t). (4.17)

Proof By taking a time derivative of (4.16) and using equation (1.1), we arrive at

�′(t) = –ξ ′(t)
∫

�

∇u
∫ t

0
g(t – τ )

(∇u(t) – ∇u(τ )
)

dτ dx

– ξ ′(t)
∫

�

ut

∫ t

0
g(t – τ )

(
u(t) – u(τ )

)
dτ dx

+ ξ (t)
∫

�

∇u
∫ t

0
g(t – τ )

(∇u(t) – ∇u(τ )
)

dτ dx

– ξ (t)
∫

�

∫ t

0
g(t – τ )∇u(τ ) dτ

∫ t

0
g(t – τ )

(∇u(t) – ∇u(τ )
)

dτ dx

+ ξ (t)
∫

�

ut

∫ t

0
g(t – τ )

(
u(t) – u(τ )

)
dτ dx

– ξ (t)
∫

�

u|u|p–2
∫ t

0
g(t – τ )

(
u(t) – u(τ )

)
dτ dx

– ξ (t)
∫

�

∇u
∫ t

0
g ′(t – τ )

(∇u(t) – ∇u(τ )
)

dτ dx

– ξ (t)
∫

�

ut

∫ t

0
g ′(t – τ )

(
u(t) – u(τ )

)
dτ dx

– ξ (t)
∫

�

∇u
∫ t

0
g(t – τ )∇ut dτ dx – ξ (t)

∫ t

0
g(τ ) dτ‖ut‖2

2

:= ξ (t)
(∣

∣
∣
∣
ξ ′(t)
ξ (t)

∣
∣
∣
∣I1 +

∣
∣
∣
∣
ξ ′(t)
ξ (t)

∣
∣
∣
∣I2 + I3 + I4 + I5 + I6

+ I7 + I8 + I9 –
∫ t

0
g(τ ) dτ‖ut‖2

2

)

. (4.18)

We will estimate Ij, j = 1, . . . , 9, on the right-hand side of (4.18). Using Young’s inequality,
Cauchy–Schwarz’s inequality, Poincaré’s inequality, (H1) and (H2), for ∀δ > 0, we have

I1 ≤ δ

∫

�

|∇u|2 dx +
1

4δ

∫

�

∣
∣
∣
∣

∫ t

0
g(t – τ )

(∇u(t) – ∇u(τ )
)

dτ

∣
∣
∣
∣

2

dx

≤ δ

∫

�

|∇u|2 dx +
1

4δ

∫

�

g(t – τ )
∫ t

0
g(t – τ )

(∇u(t) – ∇u(τ )
)2 dτ dx

≤ δ‖∇u‖2
2 +

1 – l
4δ

(g ◦ ∇u)(t). (4.19)
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I2 ≤ δ

∫

�

|ut|2 dx +
1
4δ

∫

�

∣
∣
∣
∣

∫ t

0
g(t – τ )

(
u(t) – u(τ )

)
dτ

∣
∣
∣
∣

2

dx

≤ δ‖ut‖2
2 +

1 – l
4δ

C2
∗(g ◦ ∇u)(t). (4.20)

I3 ≤ δ

∫

�

|∇u|2 dx +
1

4δ

∫

�

∣
∣
∣
∣

∫ t

0
g(t – τ )

(∇u(t) – ∇u(τ )
)

dτ

∣
∣
∣
∣

2

dx

≤ δ‖∇u‖2
2 +

1 – l
4δ

(g ◦ ∇u)(t). (4.21)

By taking η = 1 in (4.12), we can get I4 as follows:

I4 =
∫

�

∫ t

0
g(t – τ )∇u(τ ) dτ

∫ t

0
g(t – τ )

(∇u(t) – ∇u(τ )
)

dτ dx

≤ δ

∫

�

∣
∣
∣
∣

∫ t

0
g(t – τ )∇u(τ ) dτ

∣
∣
∣
∣

2

dx +
1
4δ

∫

�

∣
∣
∣
∣

∫ t

0
g(t – τ )

(∇u(t) – ∇u(τ )
)

dτ

∣
∣
∣
∣

2

dx

≤ 1
4δ

∫

�

∣
∣
∣
∣

∫ t

0
g(t – τ )

∣
∣∇u(t) – ∇u(τ )

∣
∣dτ

∣
∣
∣
∣

2

dx + 2δ(1 – l)2
∫

�

|∇u|2 dx

+ 2δ(1 – l)(g ◦ ∇u)(t)

≤ 2δ(1 – l)2‖∇u‖2
2 +

(

2δ +
1

4δ

)

(1 – l)(g ◦ ∇u)(t). (4.22)

I5 ≤ δ

∫

�

|ut|2 dx +
1
4δ

∫

�

∣
∣
∣
∣

∫ t

0
g(t – τ )

(
u(t) – u(τ )

)
dτ

∣
∣
∣
∣

2

dx

≤ δ‖ut‖2
2 +

1 – l
4δ

C2
∗(g ◦ ∇u)(t). (4.23)

With the help of the inequalities mentioned above and the Sobolev embedding theorem,
we infer that

I6 ≤ δ

∫

�

|u|2(p–1) dx +
1
4δ

∫

�

∣
∣
∣
∣

∫ t

0
g(t – τ )

(
u(t) – u(τ )

)
dτ

∣
∣
∣
∣

2

dx

≤ δ‖u‖2(p–1)
2(p–1) +

1 – l
4δ

C2
∗(g ◦ ∇u)(t)

≤ δC2(p–1)
∗

(
2p

l(p – 2)
E(0)

)p–2

‖∇u‖2
2 +

1 – l
4δ

C2
∗(g ◦ ∇u)(t). (4.24)

Similarly, using (H2), we obtain I7, I8, I9 as follows:

I7 ≤ δ

∫

�

|∇u|2 dx +
1

4δ

∫

�

∣
∣
∣
∣

∫ t

0
g ′(t – τ )

(∇u(t) – ∇u(τ )
)

dτ

∣
∣
∣
∣

2

dx

≤ δ

∫

�

|∇u|2 dx +
1

4δ

∫

�

g ′(t – τ )
∫ t

0
g ′(t – τ )

∣
∣∇u(t) – ∇u(τ )

∣
∣2 dτ dx

≤ δ‖∇u‖2
2 –

g(0)
4δ

(
g ′ ◦ ∇u

)
(t); (4.25)

I8 ≤ δ

∫

�

|ut|2 dx +
1
4δ

∫

�

∣
∣
∣
∣

∫ t

0
g ′(t – τ )

(
u(t) – u(τ )

)
dτ

∣
∣
∣
∣

2

dx

≤ δ‖ut‖2
2 –

g(0)
4δ

C2
∗
(
g ′ ◦ ∇u

)
(t); (4.26)
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I9 ≤ δ

∫

�

|∇u|2 dx +
1

4δ

∫

�

∣
∣
∣
∣

∫ t

0
g(t – τ )∇ut dτ

∣
∣
∣
∣

2

dx

≤ δ‖∇u‖2
2 +

1
4δ

(1 – l)2‖∇ut‖2
2. (4.27)

Combining (4.18)–(4.27), we get estimate (4.17). �

Theorem 4.6 Let (u0, u1) ∈ H1
0 (�) × L2(�) be given, satisfying (4.1). If (H1), (H2), and

(H3) hold, then, for each t0 > 0, there exist strictly positive constants K and λ such that the
solution of (1.1) satisfies

E(t) ≤ Ke–λ
∫ t

t0
ξ (t) ds, ∀t ≥ t0. (4.28)

Proof For g is positive and continuous, g(0) > 0, then for ∀t0 > 0 we get

∫ t

0
g(τ ) dτ ≥

∫ t0

0
g(τ ) dτ = g0 > 0, ∀t ≥ t0. (4.29)

Taking a time derivative of (4.6), using (2.3), (4.6), (4.9), (4.17), (4.29) and Remark 2.1, we
get, for ∀t ≥ t0,

F ′(t) ≤ –
{

ε2
[
g0 – δ(2 + k)

]
– ε1

(

1 +
1 + k
4α

)}

ξ (t)‖ut‖2
2

–
{

ε1

[
l
2

–
1

4α
– (1 + k)αC2

∗

]

– ε2δ

[

k + 2(1 – l)2 + 3

+ C2(p–1)
∗

(
2p

l(p – 2)
E(0)

)p–2]}

ξ (t)‖∇u‖2
2

+
{

ε1(1 – l)
2l

+ ε2(1 – l)
(

k
4δ

+
kC2∗
4δ

+
1

2δ
+ 2δ +

C2∗
2δ

)}

ξ (t)(g ◦ ∇u)(t)

+
(

1
2

–
g(0)
4δ

(
1 + C2

∗
)
ε2M

)
(
g ′ ◦ ∇u

)
(t)

–
(

1 – ε1αM –
ε2

4δ
(1 – l)2M

)

‖∇ut‖2
2 + ε1ξ (t)‖u‖p

p. (4.30)

At this point we choose δ small enough such that

g0 – δ(2 + k)
1 + 1+k

4α

>
1
2

g0,

δ[k + 2(1 – l)2 + 3 + C2(p–1)
∗ ( 2p

l(p–2) E(0))p–2]
l
2 – 1

4α
– (1 + k)αC2∗

<
1
4

g0.

When δ is fixed, we choose any two positive constants ε1 and ε2 satisfying

1
4

g0ε2 < ε1 <
1
2

g0ε2 (4.31)

will make

κ1 := ε2
[
g0 – δ(2 + k)

]
– ε1

(

1 +
1 + k
4α

)

> 0,
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κ2 := ε1

[
l
2

–
1

4α
– (1 + k)αC2

∗

]

– ε2δ

[

k + 2(1 – l)2 + 3 + C2(p–1)
∗

(
2p

l(p – 2)
E(0)

)p–2]

> 0.

We then pick ε1 and ε2 small enough such that (4.7) and (4.31) remain valid and

κ3 :=
(

1
2

–
g(0)
4δ

(
1 + C2

∗
)
ε2M

)

–
{

ε1(1 – l)
2l

+ ε2(1 – l)
(

k
4δ

+
kC2∗
4δ

+
1

2δ
+ 2δ +

C2∗
2δ

)}

> 0,

κ4 := 1 – ε1αM –
1
4δ

(1 – l)2ε2M < 0.

Hence
(

1
2

–
g(0)
4δ

(
1 + C2

∗
)
ε2M

)
(
g ′ ◦ ∇u

)
(t)

+
{

ε1(1 – l)
2l

+ ε2(1 – l)
(

k
4δ

+
kC2∗
4δ

+
1
2δ

+ 2δ +
C2∗
2δ

)}

ξ (t)(g ◦ ∇u)(t)

≤ –κ3ξ (t)(g ◦ ∇u)(t). (4.32)

For ξ (t) is nonincreasing. Therefore, by using (4.7) and (4.30), we arrive at

F ′(t) ≤ –γ ξ (t)E(t) ≤ –γα1ξ (t)F(t), ∀t ≥ t0. (4.33)

By integration of (4.33), we get

F(t) ≤ F(t0)e–γ α1
∫ t

t0
ξ (s) ds, ∀t ≥ t0. (4.34)

Thus (4.7) and (4.34) yield

E(t) ≤ α2F(t0)e–γ α1
∫ t

t0
ξ (s) ds = Ke–λ

∫ t
t0

ξ (s) ds, ∀t ≥ t0. (4.35)

�

Remark 4.7 We can obtain exponential decay if ξ (t) = a and polynomial decay if ξ (t) =
a(1 + t)–1, where a > 0 is a constant.

Remark 4.8 For the continuity and boundedness of E(t) and ξ (t), estimates of (4.34) are
also true for t ∈ [0, t0].

5 Blow-up phenomenon
In this section we state and prove the blow-up result.

Theorem 5.1 If (H1), (H2), (H3) hold, E(0) < 0 and
∫ ∞

0 g(τ ) dτ < (p/2)–1
p/2–1+(1/2p) , then the so-

lution of (1.1) blows up in finite time.
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Proof For the definition of H(t), we have

H ′(t) = –
1
2
(
g ′ ◦ ∇u

)
(t) +

1
2

g(t)
∥
∥∇u(t)

∥
∥2

2 + ‖∇ut‖2
2 + ‖ut‖2

2 ≥ 0

and

0 < H(0) ≤ H(t) ≤ 1
p
‖u‖p

p. (5.1)

Furthermore, we define

L(t) = H1–α(t) + ε

∫

�

uut dx, (5.2)

where ε is a small constant and will be chosen later, 0 < α < p–2
2p .

By taking a time derivative of (5.2), we get

L′(t) = (1 – α)H–α(t)H ′(t) + ε

∫

�

|ut|2 dx + ε

∫

�

uutt dx

= (1 – α)H–α(t)H ′(t) + ε

∫

�

|ut|2 dx – ε

∫

�

|∇u|2 dx – ε

∫

�

utu dx

+ ε

∫

�

∇u
∫ t

0
g(t – τ )∇u(τ ) dτ dx – ε

∫

�

∇u · ∇ut dx + ε

∫

�

|u|p dx. (5.3)

Using Young’s and Schwarz’s inequalities, we obtain

∫

�

∇u
∫ t

0
g(t – τ )∇u(τ ) dτ dx

=
∫

�

∇u
∫ t

0
g(t – τ )

(∇u(τ ) – ∇u(t)
)

dτ dx +
∫

�

∇u
∫ t

0
g(t – τ )∇u(t) dτ dx

≥ –δ‖∇u‖2
2 –

1
4δ

(∫ t

0
g(τ ) dτ

)

(g ◦ ∇u)(t) +
(∫ t

0
g(τ ) dτ

)

‖∇u‖2
2, (5.4)

∫

�

∇u · ∇ut dx ≥ –γ ‖∇ut‖2
2 –

1
4γ

‖∇u‖2
2, (5.5)

∫

�

utu dx ≥ –
δ2

2
‖u‖2

2 –
δ–2

2
‖ut‖2

2, (5.6)

where δ and γ are positive constants.
Inserting (5.4), (5.5), and (5.6) into (5.3), we deduce

L′(t) ≥ (1 – α)H–α(t)H ′(t) + ε

(

1 –
δ–2

2

)

‖ut‖2
2 – γ ε‖∇ut‖2

2

+ ε

(

–1 – δ +
∫ t

0
g(τ ) dτ –

1
4γ

)

‖∇u‖2
2 –

ε

4δ

∫ t

0
g(τ ) dτ (g ◦ ∇u)(t)

–
δ2

2
ε‖u‖2

2 + ε‖u‖p
p. (5.7)

From (2.3), we know that

–‖∇ut‖2
2 ≥ E′(t) = –H ′(t). (5.8)
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If we set δ2 = kHα(t), δ–2 = k–1H–α(t), where k > 0, then we have

–
δ2

2
ε‖u‖2

2 = –
ε

2
kHα(t)‖u‖2

2. (5.9)

Using (2.1) and (5.1), we obtain

Hα(t)‖u‖2
2 ≤ C

(
1
p

)α

‖u‖2+αp
p , (5.10)

where we let 2 ≤ 2 + αp ≤ p, then 0 < α ≤ p–2
p .

Using Corollary 2.4 and (2.2), inserting (5.10) and (5.8) into (5.7), we obtain

L′(t) ≥ [
(1 – α)H–α(t) – γ ε

]
H ′(t) + ε

(

p –
kC
2

(
1
p

)α)

H(t)

+ ε

{
p – 2

2

(

1 –
∫ t

0
g(τ ) dτ

)

– δ –
1

4γ
–

kC
2

(
1
p

)α}

‖∇u‖2
2

+ ε

{
p
2

–
1

4δ

∫ t

0
g(τ ) dτ –

kC
2

(
1
p

)α}

(g ◦ ∇u)(t)

+ ε

{
p + 2

2
–

1
2k

H–α(t) –
kC
2

(
1
p

)α}

‖ut‖2
2. (5.11)

By using the hypothesis in Theorem 5.1 and taking k,γ and δ suitable such that

p – 2
2

(

1 –
∫ t

0
g(τ ) dτ

)

– δ –
1

4γ
–

kC
2

(
1
p

)α

> 0,

p
2

–
1
4δ

∫ t

0
g(τ ) dτ –

kC
2

(
1
p

)α

> 0,

p + 2
2

–
1

2k
H–α(t) –

kC
2

(
1
p

)α

> 0.

When k,γ is fixed, we choose ε small enough such that

(1 – α)H–α(t) – γ ε > 0, L(0) = H1–α(0) + ε

∫

�

u0u1 dx > 0.

Then we can deduce that

L′(t) ≥ C
[
H(t) + ‖ut‖2

2 + ‖∇u‖2
2 + (g ◦ ∇u)(t)

]
.

By using Hölder’s and Young’s inequalities, we get

∣
∣
∣
∣

∫

�

uut dx
∣
∣
∣
∣

1/(1–α)

≤ ‖u‖1/(1–α)
2 ‖ut‖1/(1–α)

2

≤ C‖u‖1/(1–α)
p ‖ut‖1/(1–α)

2

≤ C
(‖u‖s

p + ‖ut‖2
2
)

≤ C
(
H(t) + ‖ut‖2

2 + (g ◦ ∇u)(t) + ‖∇u‖2
2
)
, (5.12)
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where 2 ≤ s := 2
1–2α

≤ p, then 0 < α < p–2
2p . Hence

L1/(1–α)(t) =
(

H1–α(t) + ε

∫

�

uut dx
)1/(1–α)

≤ 21/(1–α)
(

H(t) +
∣
∣
∣
∣

∫

�

uut dx
∣
∣
∣
∣

1/(1–α))

≤ C
(
H(t) + ‖ut‖2

2 + ‖∇u‖2
2 + (g ◦ ∇u)(t)

)
. (5.13)

Then we can get

L′(t) ≥ λL
1

1–α (t), t > 0.

Therefore

L(t) ≥
(

L
–α

1–α (0) +
–α

1 – α
λt

)– 1–α
α

.

So L(t) tends to infinity when t tends to (1 – α)/(αλL α
1–α (0)). �

To get another blow-up result, we first give the following lemma.

Lemma 5.2 If (H1), (H2) hold, assume further that

‖u0‖p > λ0 ≡ B
–2

p–2
0 , E(0) < E0 =

(
1
2

–
1
p

)

B
–2p
p–2
0 .

Then

‖u‖p > λ0, ‖∇u‖2 > B
–p

p–2
0 , ∀t ≥ 0,

where B0 = B
l1/2 for ‖u‖p ≤ B‖∇u‖2.

Proof By using (2.2) and the hypothesis, we obtain

E(t) =
1
2
∥
∥ut(t)

∥
∥2

2 +
1
2

(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2 +
1
2

(g ◦ ∇u)(t) –
1
p
∥
∥u(t)

∥
∥p

p

≥ 1
2

(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2 –
1
p
∥
∥u(t)

∥
∥p

p

≥ l
2
∥
∥∇u(t)

∥
∥2

2 –
1
p
∥
∥u(t)

∥
∥p

p

≥ 1
2B2

0

∥
∥u(t)

∥
∥2

p –
1
p
∥
∥u(t)

∥
∥p

p. (5.14)

We set h(ξ ) = 1
2B2

0
ξ 2 – 1

pξp, ξ > 0. Then h(ξ ) satisfies
• h(ξ ) is strictly increasing on [0,λ0);

• h(ξ ) takes its maximum value ( 1
2 – 1

p )B
–2p
p–2
0 at λ0;

• h(ξ ) is strictly decreasing on (λ0,∞).
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Since E0 > E(0) ≥ E(t) ≥ h(‖u‖p) for ∀t ≥ 0, there is no time t such that ‖u‖p = λ0. By the
continuity, we obtain

∥
∥u(·, t)

∥
∥

p > λ0 = B
–2

p–2
0 , ∀t ≥ 0.

Then

∥
∥∇u(·, t)

∥
∥

2 ≥ 1
l1/2B0

∥
∥u(·, t)

∥
∥

p >
1

l1/2 B
–p

p–2
0 > B

–p
p–2
0 .

This completes the proof. �

Theorem 5.3 If that (H1), (H2), and (H3) hold, suppose further that

∫ ∞

0
g(τ ) dτ <

(p/2) – 1
p/2 – 1 + (1/2p)

,

‖u0‖p > λ0 and E(0) ≤ E0. Then the solution of (1.1) blows up in finite time.

Proof Set G(t) = E0 + H(t), then

G′(t) = –
1
2
(
g ′ ◦ ∇u

)
(t) +

1
2

g(t)
∥
∥∇u(t)

∥
∥2

2 + ‖∇ut‖2
2 + ‖ut‖2

2 ≥ 0,

from which we obtain

0 < G(t) = E0 + H(t)

=
(

1
2

–
1
p

)

B
–2p
p–2
0 + H(t)

≤
(

1
2

–
1
p

)

‖∇u‖2
2 + H(t)

≤ C
(‖∇u‖2

2 + H(t)
)
.

By using Lemma 5.2, we have

0 < G(t)

= E0 –
1
2
‖ut‖2

2 –
1
2

(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2

–
1
2

(g ◦ ∇u)(t) +
1
p
∥
∥u(t)

∥
∥p

p

≤ E0 –
1
2

(

1 –
∫ t

0
g(τ ) dτ

)
∥
∥∇u(t)

∥
∥2

2 +
1
p
∥
∥u(t)

∥
∥p

p

≤
(

1
2

–
1
p

)

B
–2p
p–2
0 –

l
2

(
1

l1/2

)2

B
–2p
p–2
0 +

1
p
∥
∥u(t)

∥
∥p

p

≤ 1
p
∥
∥u(t)

∥
∥p

p.



Li and He Boundary Value Problems  (2018) 2018:153 Page 21 of 22

Let

Q(t) = G1–α(t) + ε

∫

�

uut dx,

with ε small to be chosen later and 0 < α < p–2
2p .

By the same computations as in the proof of Theorem 5.1, we can deduce that

Q′(t) ≥ C
[
H(t) + ‖ut‖2

2 + ‖∇u‖2
2 + (g ◦ ∇u)(t)

]
.

Observing (5.13), we see that

Q1/(1–α)(t) =
(

G1–α(t) + ε

∫

�

uut dx
)1/(1–α)

≤ 21/(1–α)
(

G(t) +
∣
∣
∣
∣

∫

�

uut dx
∣
∣
∣
∣

1/(1–α))

≤ C
(
H(t) + ‖ut‖2

2 + ‖∇u‖2
2 + (g ◦ ∇u)(t)

)
. (5.15)

Then we can obtain

Q′(t) ≥ λQ
1

1–α (t), t > 0. (5.16)

Therefore, we get

Q(t) ≥
(

Q
–α

1–α (0) +
–α

1 – α
λt

)– 1–α
α

, t > 0.

So Q(t) tends to infinity when t tends to (1 – α)/(αλQ α
1–α (0)). �
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