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1 Introduction and main results
The aim of this paper is to derive the existence and multiplicity of nontrivial solutions for
the following one-parameter perturbed nonlocal problem:

⎧
⎨

⎩

(–�)su + v(x)u = λf (x)|u|q–2u – h(x)g(x, u) in �,

u = 0 in R
N \ �,

(Pλ)

where λ ∈ R, 0 < s < 1, � ⊂ R
N is a bounded domain with Lipschitz boundary, N > 2s.

Here (–�)s is the fractional Laplacian operator defined, up to a normalization factor, by

(–�)su(x) = –
1
2

∫

RN

u(x + y) + u(x – y) – 2u(x)
|y|N+2s dy, x ∈R

N ,

along any rapidly decaying function u of class C∞(RN ); see [2]. Such operators arise in a
quite natural way in many different contexts, such as the thin obstacle problem, optimiza-
tion, finance, probability, and materials science (see [3–6]).

In recent years, great attention has been focused on the study of the problems involving
fractional operators, both for pure mathematical research and for concrete applications.
Here we only collect some results for problems with two competing nonlinear terms. Lo-
cal problems with combined effect of convex and concave nonlinearities have been widely
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investigated in the past decades; see, for example, [7–12]. In particular, Alama and Taran-
tello [10] considered the convex–concave Dirichlet problem

⎧
⎪⎪⎨

⎪⎪⎩

–�u = λu + f (x)uq–1 – h(x)ur–1 in �,

u > 0 in �,

u = 0 on ∂�,

where 2 < q < r, and f and h are nonnegative weights. They first proved that the existence
and multiplicity of solutions depend both on λ and the integrability of a certain ratio of f
to h. Related problems with a perturbed term in the whole space were treated by Autuori
and Pucci [12], who studied the following quasilinear equation:

– div
(|∇u|p–2∇u

)
+ a(x)|u|p–2u = λf (x)|u|q–2u – h(x)|u|r–2u in R

N ,

where max{2, p} < q < min{r, pN
N–p }, and the weights f and h are related by the integrability

condition ( f r

hq )
1

r–q ∈ L1(RN ). After that, in [13], they extended these results to a nonlo-
cal problem involving the fractional Laplacian and indicated that it is still an open prob-
lem when the integrability condition on f and h is replaced by the weaker assumption
( f r–2

hq–2 )
1

r–q ∈ L N
2s (RN ). Xiang et al. [1] gave a positive answer to this open problem in the set-

ting of fractional p-Laplacian in R
N . In these papers, to obtain the existence of solutions,

the authors assume that perturbed weights a(x) are bounded below by positive constants
or positive functions.

All these problems involve convex–concave nonlinearities. Rǎdulescu and Repovš [11]
dealt with the concave–concave Dirichlet problem without perturbed term in a bounded
domain:

⎧
⎪⎪⎨

⎪⎪⎩

–�u = λf (x)uq–1 – h(x)ur–1 in �,

u > 0 in �,

u = 0 on ∂�.

(1.1)

Assuming that 1 < q < 2 < r < 2N
N–2 and f , h ∈ L∞ are such that ess infx∈� f (x) > 0 and

ess infx∈� h(x) > 0, they proved the nonexistence and multiplicity of solutions with respect
to the different range of λ. When f (x) ≡ 1 in �, a nonlocal version of problem (1.1) in-
volving the square root of Laplacian (s = 1

2 ) was studied in [14] with 1 < q < r < 2∗
s = 2N

N–2s ,
h ∈ L

q
q–r (�), and h ∈ Lσ (�), σ > 2∗

s
2∗

s –r .
The equation considered in problem (Pλ) is in spirit of the previous papers, even if most

of them deal with problem not directly comparable to ours. The nonlinear terms in (Pλ)
are related to the main elliptic part by requesting that:

(H1) g is a Carathéodory function, and there exist two positive constants b1 and b2 such
that

b1|t|r ≤ g(x, t)t ≤ b2|t|r for a.e. x ∈ � and all t ∈R, (1.2)

where 1 < q < r < 2∗
s , and 2∗

s = 2N
N–2s is the Sobolev fractional critical exponent;
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(H2) f , h : � → R+ are positive weights satisfying f ∈ L
2∗s

2∗s –q (�) and h ∈ L
2∗s

2∗s –r (�). More-
over, f (x) and h(x) are related by the condition

(
f r

hq

) 1
r–q

∈ L1(�); (1.3)

(H3) v : � → R is a perturbed weight such that v(x) ≥ 0 for a.e. x ∈ �.
We now state our main results. Our first result covers both convex–concave and

concave–concave cases.

Theorem 1.1 Suppose that assumptions (H1)–(H3) are satisfied. Then there exist three
numbers λ∗ ≥ λ∗ ≥ λ0 ≥ 0 such that problem (Pλ) has

(i) only the trivial solution if λ < λ0;
(ii) at least one nontrivial solution of definite sign if λ > λ∗;

(iii) at least two nontrivial solutions if λ > λ∗; one them is positive, and one is negative.

As q > 2, we replace (1.3) by the assumption

(
f r–2

hq–2

) 1
r–q

∈ L
N
2s (�). (1.4)

Note that thanks to q < 2∗
s , by the Hölder’s inequality we have

∥
∥
∥
∥

(
f r–2

hq–2

) 1
r–q

∥
∥
∥
∥

L
N
2s (�)

≤ ‖f ‖
2
q

L
2∗s

2∗s –q (�)

∥
∥
∥
∥

(
f r

hq

) 1
r–q

∥
∥
∥
∥

1– 2
q

L1(�)
,

which means that requirement (1.4) is weaker than (1.3) (see also [1, 13]). In this situation,
we relabel (H2) as (H′

2). We state some improved results as follows.

Theorem 1.2 Let 2 < q < r < 2∗
s and suppose that (1.2), (H′

2), and (H3) hold. Then
(i) the results of Theorem 1.1 still hold, and the number λ0 > 0;

(ii) if λ = λ0, then problem (Pλ) has at least one nontrivial solution; if λ = λ∗, then
problem (Pλ) has at least one nontrivial solution of definite sign; if λ = λ∗, then
problem (Pλ) has at least two nontrivial solutions; one of them is positive, and one is
negative;

(iii) there exist a number λ̃ ≥ λ∗ such that problem (Pλ) has at least four nontrivial
solutions for every λ ≥ λ̃; two of them are positive, and two are negative.

Our work are an extension of problems studied in [14], where s = 1
2 , f (x) ≡ 1, and

v(x) ≡ 0. Even in this case, our assumptions on h(x) are weaker than those in [14] since

h ∈ L
2∗s

2∗s –r (�), which is allowed to satisfy condition (1.4) here. On the other hand, the prob-
lem studied in this paper covers both convex–concave and concave–concave cases, and
owing to the different approach used here, the assumptions on perturbed weight can be
relaxed to be nonnegative. From this point, our results extend some results of [1]. In addi-
tion, using variational methods, we present more complete results in the convex–concave
case by describing the problem at all threshold values λ0, λ∗, λ∗, and λ̃.
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Many other types of fractional and nonlocal problems are also actively studied in recent
years. For example, we refer to [15–21] for fractional Kirchhof-type problems. Studies of
fractional Schrödinger problems can be found in [22–24]. Fractional problems with special
nonlinearities have been considered in [25–27]. Results on the Brézis–Nirenberg problem
for a fractional operator were presented in [28, 29].

The remaining of this paper is organized as follows. In Sect. 2, we recall some prelim-
inary results and main embedding results for fractional Sobolev spaces. In Sect. 3 and 4,
we prove Theorems 1.1 and 1.2, respectively.

2 Preliminaries
In this section, we recall some necessary definitions and properties of the fractional Lapla-
cian operator. For further details, we refer to [2, 30, 31] and references therein.

We denote by Hs(RN ) the classical fractional Sobolev space with the Gagliardo norm

‖u‖Hs(RN ) = ‖u‖L2(RN ) +
(∫∫

R2N

|u(x) – u(y)|2
|x – y|N+2s dx dy

) 1
2

.

For a detailed account on the properties of Hs(RN ), we refer to [2]. In this paper, we con-
sider the closed linear subspace

Xs
0(�) =

{
u ∈ Hs(

R
N)

: u(x) = 0 for a.e. x ∈R
N \ �

}

with the norm

‖u‖Xs
0(�) =

(∫∫

R2N

|u(x) – u(y)|2
|x – y|N+2s dx dy

) 1
2

,

which is equivalent to its general norm (see [2], Theorem 7.1). Then Xs
0(�) is a Hilbert

space. Let the space E denote the completion of C∞
0 (�) with respect to the norm

‖u‖E =
(

‖u‖2
Xs

0(�) +
∫

�

v(x)
∣
∣u(x)

∣
∣2 dx

) 1
2

.

It is readily seen that E is a convex Banach space with scalar product

〈u,ϕ〉E =
∫∫

R2N

(u(x) – u(y))(ϕ(x) – ϕ(y))
|x – y|N+2s dx dy +

∫

�

v(x)u(x)ϕ(x) dx

and has the following embedding property.

Lemma 2.1 Let 1 ≤ θ ≤ 2∗
s . Then we have the continuous embedding

E ↪→ Lθ (�),

and there exists constants Cθ such that

‖u‖θ ≤ Cθ‖u‖E for all u ∈ E.

In particular, for θ ∈ [1, 2∗
s ), the embedding is compact.
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Proof It is easy to see that the embedding E ↪→ Xs
0(�) is continuous with ‖u‖Xs

0(�) ≤ ‖u‖E .
By Theorem 7.1 in [2] the embedding Xs

0(�) ↪→ Lθ (�) is continuous for all 1 ≤ θ ≤ 2∗
s with

‖u‖θ ≤ Cθ‖u‖Xs
0(�),

where Cθ is a positive constant. Moreover, the embedding is compact when θ ∈ [1, 2∗
s ). So,

we get the claim. �

On the other hand, for any r, q ≥ 1, we introduce the Banach spaces

Lq
f (�) =

{

u ∈ L1
loc(�) :

∫

�

f (x)|u|q dx < ∞
}

equipped with the norms

‖u‖f ,q =
(∫

�

f (x)|u|q dx
) 1

q

and

Lr
h(�) =

{

u ∈ L1
loc(�) :

∫

�

h(x)|u|r dx < ∞
}

equipped with the norm

‖u‖h,r =
(∫

�

h(x)|u|r dx
) 1

r
.

Lemma 2.2 Assume that 1 ≤ r, q < 2∗
s , f ∈ L

2∗s
2∗s –q (�), and h ∈ L

2∗s
2∗s –r (�). Then we have the

compact embeddings

E ↪→ Lr
h(�)

and

E ↪→ Lq
f (�),

and there exist constants Ch and Cf such that

‖u‖h,r ≤ Ch‖u‖E

and

‖u‖f ,q ≤ Cf ‖u‖E .

The lemma can be proved similarly as Theorem 2.1 in [1], which we will not repeat here.
Now, in view of the previous considerations, we have the definition of weak solution to

problem (Pλ).
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Definition 2.1 We say that u ∈ E is a weak solution to problem (Pλ) if

∫∫

R2N

(u(x) – u(y))(ϕ(x) – ϕ(y))
|x – y|N+2s dx dy +

∫

�

v(x)u(x)ϕ(x) dx

= λ

∫

�

f (x)|u|q–2uϕ dx –
∫

�

h(x)g(x, u)ϕ dx (2.1)

for every ϕ ∈ E.

Finally, let us recall an inequality that we will use afterward.

Lemma 2.3 (see [1]) For any k1 > 0, k2 > 0, and 0 < η < β , we have

k1|t|η – k2|t|β ≤ k1

(
k1

k2

) η
β–η

for all t ∈R. (2.2)

3 Proof of Theorem 1.1
The weak solutions of (Pλ) correspond to the critical points of the energy functional � :
E →R given by

�(u) =
1
2

∫∫

R2N

|u(x) – u(y)|2
|x – y|N+2s dx dy +

1
2

∫

�

v(x)u2 dx

–
λ

q

∫

�

f (x)|u|q dx +
∫

�

h(x)G(x, u) dx, (3.1)

where

G(x, t) =
∫ t

0
g(x, τ ) dτ .

By condition (H1) we deduce

b1

r
|t|r ≤ G(x, t) ≤ b2

r
|t|r for a.e. x ∈ � and all t ∈R. (3.2)

3.1 Nonexistence of solutions
Let λ0 = inf{λ ∈R : problem (Pλ) admits at least a nontrivial solution}. Then λ0 exists (see
Sect. 3.2), and λ0 ≥ 0. Indeed, assuming that u ∈ E is a nontrivial solution of problem (Pλ)
and taking the test function ϕ = u in (2.1), we have

0 < ‖u‖2
E +

∫

�

h(x)g(x, u)u dx = λ

∫

�

f (x)|u|q dx,

which implies λ > 0. Thus λ0 ≥ 0, and the proof of (i) is completed.

3.2 Existence of solutions
From now on, assume that λ > 0 and denote u+ = max{u, 0} and u– = max{–u, 0}. We con-
sider the following “positive” and “negative” truncations of the functional � :

�+(u) =
1
2
‖u‖2

E –
λ

q

∫

�

f (x)
∣
∣u+∣

∣q dx +
∫

�

h(x)G
(
x, u+)

dx
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and

�–(u) =
1
2
‖u‖2

E –
λ

q

∫

�

f (x)
∣
∣u–∣

∣q dx +
∫

�

h(x)G
(
x, –u–)

dx

for u ∈ E.
Obviously, if u is a critical point of functional �+, then for all ϕ ∈ E, we have

〈u,ϕ〉E – λ

∫

�

f (x)
∣
∣u+∣

∣q–2u+ϕ dx +
∫

�

h(x)g
(
x, u+)

ϕ dx = 0, (3.3)

whereas if u is a critical point of �–, then for all ϕ ∈ E, we have

〈u,ϕ〉E – λ

∫

�

f (x)
∣
∣u–∣

∣q–2(–u–)
ϕ dx +

∫

�

h(x)g
(
x, –u–)

ϕ dx = 0. (3.4)

Step 1. We prove that there exist a nonnegative critical point u1 for the functional �+

and a nonpositive critical point u2 for the functional �–.
Let us first focus on the functional �+. We have the following lemma.

Lemma 3.1 The functional �+ is coercive and weakly lower semicontinuous in E.

Proof For any u ∈ E, from (3.2) we have that

�+(u) ≥ 1
2
‖u‖2

E –
λ

q

∫

�

f (x)
∣
∣u+∣

∣q dx +
b1

r

∫

�

h(x)
∣
∣u+∣

∣r dx. (3.5)

Taking k1 = λf (x)
q , k2 = b1h(x)

r , η = q, β = r, and t = u+ in Lemma 2.3 and integrating over �,
we obtain

∫

�

(
λf (x)

q
∣
∣u+∣

∣q –
b1h(x)

r
∣
∣u+∣

∣r
)

dx ≤
(

λ

q

) r
r–q

(
r

b1

) q
r–q

∫

�

(
f r

hq

) 1
r–q

dx.

It follows from (1.3) that

λ

q
∥
∥u+∥

∥q
f ,q –

b1

r
∥
∥u+∥

∥r
h,r ≤ C1,

where C1 = C1(λ, r, q, f , h) is a constant. Hence �+(u) ≥ 1
2‖u‖2

E – C1, that is, �+ is coercive
in E.

On the other hand, let {un} ⊂ E and u ∈ E satisfy un → u in E as n → ∞. The compact
embeddings E ↪→ Lq

f (�), Lr
h(�) and (3.2) yield

∫

�

f (x)
∣
∣u+

n
∣
∣q dx →

∫

�

f (x)
∣
∣u+∣

∣q dx

and
∫

�

h(x)G
(
x, u+

n
)

dx →
∫

�

h(x)G
(
x, u+)

dx
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as n → ∞, which imply that �+ is a continuous functional from E to R. The convexity of
�+ is trivial. Therefore �+ is weakly lower semicontinuous in E. �

By the Weierstrass theorem we deduce that the functional �+ has a global minimizer in
E, say u1, that is,

�+(u1) = inf
u∈E

�+(u).

Then, u1 satisfies the definition of weak solution (3.3). Choosing u–
1 ∈ E as a test function,

we find
∫∫

R2N

(u1(x) – u1(y))(u–
1 (x) – u–

1 (y))
|x – y|N+2s dx dy +

∫

�

v(x)u1(x)u–
1 (x) dx

– λ

∫

�

f (x)
∣
∣u+

1
∣
∣q–2u+

1 u–
1 dx –

∫

�

h(x)g
(
x, u+

1
)
u–

1 dx = 0. (3.6)

By the elementary inequality

(a – b)
(
a– – b–) ≤ –

(
a– – b–)2,

from (3.6) we have that
∫∫

R2N

(u–
1 (x) – u–

1 (y))2

|x – y|N+2s dx dy +
∫

�

v(x)
∣
∣u–

1
∣
∣2 dx ≤ 0,

which implies that u–
1 = 0, that is, u1 ≥ 0 a.e. in �. Hence u1 is a weak solution of (Pλ).

We may apply similar arguments to prove that the functional �– has a minimizer in E,
that is, that there exists u2 ∈ E such that �–(u2) = infu∈E �–(u). Moreover, we can proceed
with ϕ = u+

2 similarly as in (3.4). Noting that (a – b)(a+ – b+) ≥ (a+ – b+)2, we get that u2 ≤ 0
a.e. in � and that u2 is also a weak solution of (Pλ).

Step 2. We show that if λ is large enough, then u1 and u2 are nontrivial with �(u1) < 0
and �(u2) < 0.

Define

λ+ = inf
u∈E‖u+‖f ,q=1

{
q
2
‖u‖2

E + q
∫

�

h(x)G
(
x, u+)

dx
}

.

Let λ > λ+. Then there exists a function u0 ∈ E with ‖u+
0‖f ,q = 1 such that

λ
∥
∥u+

0
∥
∥q

f ,q = λ >
q
2
‖u0‖2

E + q
∫

�

h(x)G
(
x, u+

0
)

dx ≥ λ+.

This inequality implies that

�+(u0) =
1
2
‖u0‖2

E –
λ

q

∫

�

f (x)
∣
∣u+

0
∣
∣q dx +

∫

�

h(x)G
(
x, u+

0
)

dx < 0,

and consequently

�(u1) = �+(u1) = inf
u∈E

�+(u) < 0;

in other words, u1 is nontrivial.
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In the same way, define

λ– = inf
u∈E‖u–‖f ,q=1

{
q
2
‖u‖2

E + q
∫

�

h(x)G
(
x, –u–)

dx
}

.

If λ > λ–, then it follows that u2 is nontrivial with �(u2) = �–(u2) < 0. So far, by the previous
steps, we have showed that, for any λ > λ+, problem (Pλ) has a nontrivial positive solution
u1, whereas for any λ > λ–, problem (Pλ) has a nontrivial negative solution u2.

Step 3. Now, let

λ∗
+ = inf

{
λ ∈R : problem (Pλ) has at least one nontrivial positive solution

}
.

Clearly, 0 ≤ λ∗
+ ≤ λ+.

Lemma 3.2 For any λ > λ∗
+, (Pλ) admits at least one nontrivial positive solution.

Proof Fix λ > λ∗
+. By the definition of λ∗

+, there exists μ ∈ (λ∗
+,λ) such that (Pμ) has a non-

trivial solution uμ ∈ E with uμ > 0 in �. Obviously, uμ is a sub-solution of (Pλ).
On the other hand, consider the minimization problem

inf
u∈K (uμ)

�(u),

where K(uμ) = {u ∈ E : u ≥ uμ}. Note that K(uμ) is closed and convex and in turn also
weakly closed. By Theorem 6.11 of [32], �(u) attains its infimum in K(uμ), that is, there
exists ũ ≥ uμ such that �(ũ) = infu∈K (uμ) �(u), which also solves the variational inequality

⎧
⎨

⎩

ũ ∈ K(uμ),

� ′(ũ)(ζ – ũ) ≥ 0 for all ζ ∈ K(uμ).

Choosing ζ = ũ + ϕ with ϕ ≥ 0 in E, we obtain

〈ũ,ϕ〉E ≥ λ

∫

�

f (x)|ũ|q–2ũϕ dx –
∫

�

h(x)g(x, ũ)ϕ dx,

that is, ũ is a supersolution to problem (Pλ) that dominates uμ.
Thus by the maximum principle (see [33], Lemma 5.2) we get the existence of a nontrivial

positive solution u of (Pλ) with uμ ≤ u ≤ ũ. �

Let

λ∗
– = inf

{
λ ∈R : problem (Pλ) has at least one nontrivial negative solution

}
.

We can proceed similarly to prove that, for any λ > λ∗
–, (Pλ) admits at least one nontrivial

negative solution.
Now, set

λ∗ = min
{
λ∗

+,λ∗
–
}
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and

λ∗ = max
{
λ∗

+,λ∗
–
}

.

We can see that λ0 exists and λ∗ ≥ λ∗ ≥ λ0 ≥ 0, which completes the proof of the last two
statements.

4 Proof of Theorem 1.2
4.1 The proof of statement (i)
First, if q > 2, under the weaker assumption (H′

2), the number λ0 > 0. In fact, if u ∈ E is a
nontrivial solution of problem (Pλ), then taking ϕ = u in (2.1), from (1.2) we have that

‖u‖2
E = λ

∫

�

f (x)|u|q dx –
∫

�

h(x)g(x, u)u dx

≤ λ

∫

�

f (x)|u|q dx – b1

∫

�

h(x)|u|r dx. (4.1)

Letting k1 = λf (x), k2 = b1h(x), η = q – 2, β = r – 2, and t = u in Lemma 2.3, we get that

λf (x)|u|q–2 – b1h(x)|u|r–2 ≤ λ
r–2
r–q

(
1
b1

) q–2
r–q

(
f r–2

hq–2

) 1
r–q

. (4.2)

Then it follows from (4.1), (4.2), and Lemma 2.1 that

‖u‖2
E ≤ λ

r–2
r–q

(
1
b1

) q–2
r–q

∫

�

(
f r–2

hq–2

) 1
r–q

|u|2 dx

≤ C2
2∗

s
λ

r–2
r–q b

2–q
r–q
1

∥
∥
∥
∥

f
r–2
r–q

h
q–2
r–q

∥
∥
∥
∥

L
N
2s (�)

‖u‖2
E .

Thus

(

1 – C2
2∗

s
λ

r–2
r–q b

2–q
r–q
1

∥
∥
∥
∥

f
r–2
r–q

h
q–2
r–q

∥
∥
∥
∥

L
N
2s (�)

)

‖u‖2
E ≤ 0,

which implies that

λ ≥
(

C2
2∗

s
b

2–q
r–q
1

∥
∥
∥
∥

f
r–2
r–q

h
q–2
r–q

∥
∥
∥
∥

L
N
2s (�)

) q–r
r–2

= M0 > 0.

Then λ0 ≥ M0 > 0.
In addition, since (H2) is replaced by a weaker assumption (H′

2), the proof of Theorem 1.1
becomes more complicated. The treatment of coercivity of the functional �± has to be
adapted. Indeed, for any δ > 0 and M > 0, we can decompose � = X ∪ Y ∪ Z with measur-
able sets X, Y , Z defined as follows:

⎧
⎪⎪⎨

⎪⎪⎩

X = {x ∈ � : f (x) < M and h(x) > δ},
Y = {x ∈ � : f (x) < M and h(x) ≤ δ},
Z = {x ∈ � : f (x) ≥ M}.



Tian and Zhao Boundary Value Problems  (2018) 2018:154 Page 11 of 16

In Lemma 2.3, setting t = u+, k1 = λf (x)
q , k2 = b1h(x)

r , η = q, and β = r and integrating over X,
we have

∫

X

(
λf (x)

q
∣
∣u+∣

∣q –
b1h(x)

r
∣
∣u+∣

∣r
)

dx ≤
(

λ

q

) r
r–q

(
r

b1

) q
r–q

∫

X

(
f (x)r

h(x)q

) 1
r–q

dx

≤ C2, (4.3)

where C2 = C2(M, δ,�,λ) is a constant.
Meanwhile, we apply (2.2) with η = q – 2 and β = r – 2 and integrate over Y ∪ Z to derive

∫

Y∪Z

(
λf (x)

q
∣
∣u+∣

∣q –
b1h(x)

r
∣
∣u+∣

∣r
)

dx

≤
(

λ

q

) r–2
r–q

(
r

b1

) q–2
r–q

∫

Y∪Z

(
f r–2

hq–2

) 1
r–q ∣

∣u+∣
∣2 dx

≤ C2
2∗

s

(
λ

q

) r–2
r–q

(
r

b1

) q–2
r–q

∥
∥
∥
∥

f
r–2
r–q

h
q–2
r–q

∥
∥
∥
∥

L
N
2s (Y∪Z)

∥
∥u+∥

∥2
E . (4.4)

Since f , h ∈ L1
loc(�), this results in that |Z| → 0 as M → ∞ and, for fixed M, |Y | → 0 as

δ → 0. Thus, for any ε > 0, we can choose M sufficiently large and then δ sufficiently small
such that

C2
2∗

s

(
λ

q

) r–2
r–q

(
r

b1

) q–2
r–q

∥
∥
∥
∥

f
r–2
r–q

h
q–2
r–q

∥
∥
∥
∥

L
N
2s (Y∪Z)

< ε. (4.5)

Combining (4.3)–(4.5), we have

∫

�

(
λf (x)

q
∣
∣u+∣

∣q –
b1h(x)

r
∣
∣u+∣

∣r
)

dx ≤ C2 + ε
∥
∥u+∥

∥2
E . (4.6)

Since u+ = |u|+u
2 , we get

∫∫

�

|u+(x) – u+(y)|2
|x – y|N+2s dx dy

=
∫∫

�

||u(x)| – |u(y)| + u(x) – u(y)|2
22|x – y|N+2s dx dy

≤
∫∫

�

|u(x) – u(y)|2
|x – y|N+2s dx dy.

Furthermore, since
∫

�
v(x)|u+(x)|2 dx ≤ ∫

�
v(x)|u(x)|2 dx, it follows that

∥
∥u+∥

∥2
E ≤ ‖u‖2

E . (4.7)

Taking ε = 1
4 in (4.6) and using (4.7), we obtain

�+(u) ≥ 1
4
‖u‖2

E – C2.

Thus �+(u) is coercive in E. In the same way, �–(u) is also coercive in E.
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So far, all the necessary conditions are satisfied, and we can follow the same lines as in
Sect. 3 to get the results of Theorem 1.1.

4.2 The cases λ = λ0,λ∗,λ∗

For λ = λ0, let {λn} be a decreasing sequence converging to λ0, and let {un} be a corre-
sponding sequence of solutions to problems {Pλn}. By (4.6) we get

λn

q

∫

�

f (x)|un|q dx –
b1

r

∫

�

h(x)|un|r dx ≤ C2n + ε‖un‖2
E ,

where C2n = C2(M, δ,�,λn) > 0. Then

‖un‖2
E ≤ λn

∫

�

f (x)|un|q dx – b1

∫

�

h(x)|un|r dx

≤ b1q
r

∫

�

h(x)|un|r dx + qC2n + qε‖un‖2
E – b1

∫

�

h(x)|un|r dx

=
b1(q – r)

r

∫

�

h(x)|un|r dx + qC2n + qε‖un‖2
E

≤ qC2n + qε‖un‖2
E .

Setting ε = 1
2q , we obtain

‖un‖2
E ≤ 2qC2n.

Since {λn} is bounded, it follows that C2n is bounded by a constant independent of n. Thus
by Lemma 2.1 and 2.2, there exist a subsequence of {un}, still denoted by {un}, and uλ0 ∈ E
such that

un
weakly
–––––⇀ uλ0 in E,

un → uλ0 in Lq
f (�),

un → uλ0 in Lr
h(�).

Since un are solutions of (Pλn ), for all ϕ ∈ E, we have

〈un,ϕ〉E – λn

∫

�

f (x)|un|q–2unϕ dx –
∫

�

h(x)g(x, un)ϕ dx = 0.

Passing to the limit as n → ∞, we deduce that uλ0 solves problem (Pλ0 ).
We finally claim that uλ0 �≡ 0. Indeed, taking ϕ = uλ0 in the definition of weak solution

for uλ0 , we have from (1.2) and Lemma 2.2 that

‖uλ0‖2
E ≤ λ0‖uλ0‖q

f – b1‖uλ0‖r
h

≤ λ0‖uλ0‖q
f ≤ λ0Cf ‖uλ0‖q

E .

Taking into account that q > 2, we obtain

‖uλ0‖E ≥
(

1
λ0Cf

) 1
q–2

> 0,

which implies uλ0 �≡ 0. Hence problem (Pλ0 ) admits at least one nontrivial solution.
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For λ = λ∗, without loss of generality, we can assume that λ∗ = λ∗
+ < λ∗

–. Then there also
exists a decreasing sequence {λn} converging to λ∗. Let un ∈ E be a nontrivial positive
solution of problem (Pλn ). It suffices to repeat the previous arguments to conclude that
(Pλ∗ ) has at least one nontrivial positive solution.

For λ = λ∗, assuming that λ∗ = λ∗
+ > λ∗

–, {Pλ∗} admits at least one nontrivial positive so-
lution. Furthermore, since λ∗ > λ∗

–, we deduce that {Pλ∗} also admits a nontrivial negative
solution. So, the second statement of Theorem 1.2 follows.

4.3 The case λ ≥ λ̃

Let

λ̃ = max{λ+,λ–}.

For λ > λ̃, we already know that � has two nontrivial critical points u1 ≥ 0 and u2 ≤ 0.
Now let us show that if q > 2, then (Pλ) has two additional nontrivial solutions.

Lemma 4.1 There exist ρ ∈ (0,‖u1‖E) and α > 0 such that �+(u) ≥ α for all u ∈ E with
‖u‖E = ρ .

Proof Since h(x)G(x, ·) ≥ 0 in �, we have

�+(u) =
1
2
‖u‖2

E –
λ

q

∫

�

f (x)
∣
∣u+∣

∣q dx +
∫

�

h(x)G
(
x, u+)

dx

≥ 1
2
‖u‖2

E –
λ

q
∥
∥u+∥

∥q
f ,q

≥ 1
2
‖u‖2

E –
λ

q
‖u‖q

f ,q.

From Lemma 2.2 we see that

�+(u) ≥ 1
2
‖u‖2

E –
λ

q
Cf ‖u‖q

E

= ‖u‖2
E

(
1
2

–
λ

q
Cf ‖u‖q–2

E

)

= ρ2
(

1
2

–
λ

q
Cf ρ

q–2
)

.

Take 0 < ρ < min{‖u1‖E , ( q
2Cf λ

)
1

q–2 }. Then

α = ρ2
(

1
2

–
λ

q
Cf ρ

q–2
)

> 0

satisfies the statement. �

Next, we prove that the Palais–Smale condition holds for every sequence {un} ⊂ E.

Lemma 4.2 Assume that a sequence {un} ⊂ E such that {�+(un)} is bounded and
� ′

+(un) → 0 in E∗ as n → ∞. Then {un} has a convergent subsequence in E.
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Proof Since �+ is coercive, we have that {un} is bounded in E. It is possible to extract
a sequence, still relabeled by {un}, such that {un} converges weakly to some u in E. By
Lemma 2.2 we obtain

un → u in Lq
f (�) and un → u in Lr

h(�). (4.8)

Then {un} is bounded in Lq
f (�) and Lr

h(�) with ‖un‖f ,q ≤ C3 and ‖un‖h,r ≤ C4. Observe
that

� ′
+(un)(un – u) = 〈un, un – u〉E –

∫

�

j
(
x, u+

n
)
(un – u) dx

= 〈un, un〉E – 〈un, u〉E –
∫

�

j
(
x, u+

n
)
(un – u) dx, (4.9)

where j(x, u+
n) = λf (x)|u+

n|q–2u+
n – h(x)g(x, u+

n). First, note that

〈un, u〉E → 〈u, u〉E .

In addition, using Hölder’s inequality and claim (4.8), we have

∣
∣
∣
∣

∫

�

j
(
x, u+

n
)
(un – u) dx

∣
∣
∣
∣ ≤ λCq–1

3 ‖un – u‖f ,q + b2Cr–1
4 ‖un – u‖h,r

→ 0 as n → ∞.

Since � ′
+(un)(un – u) → 0 as n → ∞, passing to the limit in (4.9), we obtain ‖un‖E → ‖u‖E

as n → ∞. Therefore

‖un – u‖2
E

= ‖un‖2
E + ‖u‖2

E – 2
∫∫

R2N

(un(x) – un(y))(u(x) – u(y))
|x – y|N+2s dx dy

– 2
∫

�

v(x)un(x)u(x) dx

→ 2‖u‖2
E – 2‖u‖2

E = 0

as n → ∞. Then the Palais–Smale condition holds. �

As a consequence, the mountain pass theorem guarantees the existence of a critical
point u3 for �+ with �+(u3) ≥ α > 0, which implies that u3 is nontrivial and different from
u1 and u2. Moreover, working as we did for u1, we can show that u3 ≥ 0. So, u3 is a critical
point of � . The third nontrivial solution of problem (Pλ) is obtained.

Similarly, we apply the mountain pass theorem to �– to prove the existence of the fourth
nontrivial weak solution of problem (Pλ) having negative sign and different from the pre-
vious ones. Thus, when λ > λ̃, four nontrivial solutions have been obtained.

If λ = λ̃, then we can assume that λ̃ = λ+ > λ–. Let λn = λ̃ + 1
n . Then λn → λ̃ as n → ∞

and λn > λ̃ for n ∈N+. So, for every n ∈N+, there exist two nontrivial positive solutions un1

and un2 of problem (Pλn ) with �(un1 ) < 0 and �(un2 ) ≥ α > 0. Proceeding as in Sect. 4.2,
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we get that there exist uλ̃1
≥ 0 and uλ̃2

≥ 0 such that un1 ⇀ uλ̃1
in E and un2 ⇀ uλ̃2

in E.
Furthermore, we can verify that uλ̃1

and uλ̃2
are two weak solutions of problem (Pλ̃) with

�(uλ̃1
) < 0 and �(uλ̃2

) ≥ α > 0, which implies that uλ̃1
�= uλ̃2

. On the other hand, since
λ̃ > λ–, (Pλ̃) admits two different nontrivial negative solutions. Thus, for λ = λ̃, (Pλ̃) has at
least four nontrivial solutions.
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