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1 Introduction
In this paper, we study the existence of multiple positive radial solutions to the following
nonlocal boundary value system with boundary parameters on an exterior domain:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u + K1(|x|)f1(u(x), v(x)) = 0, x ∈ �e,

�v + K2(|x|)f2(u(x), v(x)) = 0, x ∈ �e,

u(x) → 0, v(x) → 0 as |x| → ∞,

u(x) –
∫

�e
l1(|y|)v(y) dy = λ if |x| = r0,

v(x) –
∫

�e
l2(|y|)u(y) dy = μ if |x| = r0,

(1)

where �e = {x ∈ (–∞,∞)N : |x| ≥ r0 for r0 > 0, N ≥ 3}, λ and μ are positive parameters,
Ki ∈ C((r0,∞), (0,∞)) is such that

∫ ∞
r0

rνKi(r) dr < ∞ for some ν > 1, fi ∈ C([0,∞)2, [0,∞)),
and li ∈ L1((r0,∞)) are nonnegative functions satisfying 0 < wN rN–2

0
∫ ∞

r0
rli(r) dr < 1 for

i = 1, 2, where wN is the surface area of the unit sphere in (–∞,∞)N .
Differential equations with integral boundary conditions arise in various areas of ap-

plied mathematics and physics like heat conduction, chemical engineering, underground
water flow, and thermo-elasticity and plasma phenomena. For integral boundary value
problems, we refer to [1, 5, 6, 8, 10–13], and the references therein.
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Note that the change of variables r = |x| and t = ( r
r0

)2–N transforms (1) into

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′(t) + a1(t)f1(u(t), v(t)) = 0, t ∈ (0, 1),

v′′(t) + a2(t)f2(u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = 0 = v(0),

u(1) –
∫ 1

0 g1(s)v(s) ds = λ,

v(1) –
∫ 1

0 g2(s)u(s) ds = μ,

(2)

with

ai(t) =
(

1
N – 2

)2

r2
0t

–2(N–1)
N–2 Ki

(
r0t

–1
N–2

)
,

gi(t) = wN

(
1

N – 2

)

rN
0 t

–2(N–1)
N–2 li

(
r0t

–1
N–2

)
,

where ai ∈ C((0, 1), [0,∞)) are such that
∫ 1

0 sα(1 – s)βai(s) ds < ∞ for some α,β ∈ (0, 1),
and nonnegative functions gi ∈ L1(0, 1) are such that 0 <

∫ 1
0 sgi(s) ds < 1 for i = 1, 2. We

further assume that there exists a closed interval J ⊂ (0, 1) of positive measure such that
ai(t) > 0 for all t ∈ J and i = 1, 2. Note that the existence of positive solutions of system (2)
guarantees the existence of positive radial solutions of (1). Hence, to investigate solutions
of (1), we focus on system (2).

Such second-order ordinary differential systems with the coupled integral boundary
conditions were considered in [2, 3], and [4]. Most of those results are about the exis-
tence of a solution obtained mainly by using the fixed point theorem, the mixed monotone
method, and the monotone iterative method. In [4], the authors investigated the existence
and uniqueness of positive solutions by using the a priori estimate method and the max-
imum principle. To the best of our knowledge, the multiplicity of solutions of differential
systems with coupled integral boundary conditions has not been treated. In this paper,
we study the existence, nonexistence, and multiplicity of positive solutions to a nonlocal
boundary value system with integral boundary conditions when two positive multiparam-
eters vary on the boundary. We establish our results by sub- and supersolution arguments
and fixed point index theory.

In this paper, we assume the following hypotheses on fi for i = 1, 2.
(H) fi : [0,∞) × [0,∞) → [0,∞) is continuous and increasing in [0,∞) × [0,∞) for

i = 1, 2.
(H1) fi,0 := lim‖(u,v)‖→0

fi(u,v)
u+v = 0 for i = 1, 2.

(H2) fi,∞ := lim‖(u,v)‖→∞ fi(u,v)
u+v = ∞ for i = 1, 2.

Here ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞. Now we state our main result.

Theorem 1.1 There exists a continuous curve � separating [0,∞) × [0,∞) \ {(0, 0)} into
two disjoint sets 	1 and 	2, and there exists a subset 	 ⊂ 	1 such that (2) has at least two
positive solutions for (λ,μ) ∈ 	, at least one positive solution for (λ,μ) ∈ (	1 \ 	) ∪ �, and
no positive solution when (λ,μ) ∈ 	2. (See Figure 1.)

The structure of f1 and f2 near (0, 0) and near ∞, that is, conditions (H1) and (H2), plays
an important role in the construction of sub- and supersolutions when the parameters λ
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Figure 1 Separation of (λ,μ) ∈ [0,∞)2 at which (2)
results in the existence, nonexistence and multiplicity

and μ vary. Hence system (2) in which two parameters λ and μ involved with only the
boundary data is difficult for construction of sub- and supersolutions at the certain value
of (λ,μ). To overcome this issue, we manipulate (2) in such a way that the two parameters λ

and μ are related with f1 and f2 (see (4) in Sect. 2). Here we also emphasize that we consider
the case where system (2) satisfies the condition fi(0, 0) = 0 for i = 1, 2 and the boundary
condition u(0) = 0 = v(0) at the same time. This is a challenging case since these conditions
do not allow us to construct a proper open set, which is very crucial for applying the fixed
point index theory. Hence we perturb the boundary values of the manipulated system (4)
so that the fixed point index argument works well (see (5) in Sect. 2).

The paper is organized as follows. In the next section, we present a system equivalent
to (2) and introduce the sub- and supersolution theorem and fixed point index. Section 3
is devoted to the proof of the main result, Theorem 1.1. In Appendix, we prove the sub-
and supersolution theorem for (2).

2 Preliminaries
Let pλ,μ and qλ,μ be the solutions, respectively, of the following problems:

⎧
⎪⎪⎨

⎪⎪⎩

p′′(t) = 0, t ∈ (0, 1),

p(0) = 0,

p(1) –
∫ 1

0 g1(s)q(s) ds = λ,

and

⎧
⎪⎪⎨

⎪⎪⎩

q′′(t) = 0, t ∈ (0, 1),

q(0) = 0,

q(1) –
∫ 1

0 g2(s)p(s) ds = μ.

It is easy to see that

pλ,μ(t) = 1
1–σ1σ2

(λ + σ1μ)t, qλ,μ(t) = 1
1–σ1σ2

(σ2λ + μ)t, t ∈ [0, 1],
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where σ1 =
∫ 1

0 sg1(s) ds and σ2 =
∫ 1

0 sg2(s) ds. We denote

pλ,μ(t) = (ρλ + ρ1μ)t, qλ,μ(t) = (ρ2λ + ρμ)t, (3)

where ρ = 1
1–σ1σ2

, ρ1 = σ1
1–σ1σ2

, and ρ2 = σ2
1–σ1σ2

. Note that ρ , ρ1, and ρ2 are positive con-
stants.

Now if (w1, w2) is a solution of the system

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′′
1(t) + a1(t)f1(w1(t) + pλ,μ(t), w2(t) + qλ,μ(t)) = 0, t ∈ (0, 1),

w′′
2(t) + a2(t)f2(w1(t) + pλ,μ(t), w2(t) + qλ,μ(t)) = 0, t ∈ (0, 1),

w1(0) = 0 = w2(0),

w1(1) –
∫ 1

0 g1(s)w2(s) ds = 0,

w2(1) –
∫ 1

0 g2(s)w1(s) ds = 0,

(4)

then (w1 + pλ,μ, w2 + qλ,μ) is a solution of (2) since

⎧
⎪⎪⎨

⎪⎪⎩

(w1 + pλ,μ)′′(t) = w′′
1(t) = –a1(t)f1(w1 + pλ,μ, w2 + qλ,μ), t ∈ (0, 1),

(w1 + pλ,μ)(0) = 0,

(w1 + pλ,μ)(1) =
∫ 1

0 g1(s)(w2(s) + qλ,μ(s)) ds + λ,

and, similarly, w2 + qλ,μ satisfies (2). Hence, instead of studying system (2), we consider
system (4) to get the existence and multiplicity of positive solutions of (2). However, for
system (4) satisfying the conditions fi(0, 0) = 0 and wi(0) = 0, i = 1, 2, there is an obstacle in
using a fixed point index argument. To solve this issue, we employ the perturbed boundary
condition.

For a while, let us consider the following problem with more general boundary condi-
tions for 0 ≤ δ < δ̃ for sufficiently small δ̃ (δ̃ will be chosen in Lemma 3.3):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

w′′
1(t) + a1(t)f1(w1(t) + pλ,μ(t), w2(t) + qλ,μ(t)) = 0, t ∈ (0, 1),

w′′
2(t) + a2(t)f2(w1(t) + pλ,μ(t), w2(t) + qλ,μ(t)) = 0, t ∈ (0, 1),

w1(0) = δ = w2(0),

w1(1) –
∫ 1

0 g1(s)w2(s) ds = δ,

w2(1) –
∫ 1

0 g2(s)w1(s) ds = δ.

(5)

We set up an operator equation for problem (5). We define

Aλ,μ,δ(w1, w2)(t) := δ
[
1 + (ρν1 + ρ1ν2)t

]
+

∫ 1

0
H2(t, s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ)

+ K1(t, s)a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds,

Bλ,μ,δ(w1, w2)(t) := δ
[
1 + (ρν2 + ρ2ν1)t

]
+

∫ 1

0
K2(t, s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ)

+ H1(t, s)a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds,
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where
⎧
⎨

⎩

H1(t, s) = G(t, s) + ρ2t
∫ 1

0 G(τ , s)g1(τ ) dτ ,

H2(t, s) = G(t, s) + ρ1t
∫ 1

0 G(τ , s)g2(τ ) dτ ,

K1(t, s) = ρt
∫ 1

0
G(τ , s)g1(τ ) dτ , K2(t, s) = ρt

∫ 1

0
G(τ , s)g2(τ ) dτ ,

G(t, s) =

⎧
⎨

⎩

s(1 – t), 0 ≤ s ≤ t ≤ 1,

t(1 – s), 0 ≤ t ≤ s ≤ 1,

and

ν1 =
∫ 1

0
g1(s) ds, ν2 =

∫ 1

0
g2(s) ds.

Then (v1(t), v2(t)) = (Aλ,μ,δ(w1, w2)(t), Bλ,μ,δ(w1, w2)(t)) is a solution of

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

v′′
1(t) + a1(t)f1(w1(t) + pλ,μ(t), w2(t) + qλ,μ(t)) = 0, t ∈ (0, 1),

v′′
2(t) + a2(t)f2(w1(t) + pλ,μ(t), w2(t) + qλ,μ(t)) = 0, t ∈ (0, 1),

v1(0) = δ = v2(0),

v1(1) –
∫ 1

0 g1(s)v2(s) ds = δ,

v2(1) –
∫ 1

0 g2(s)v1(s) ds = δ.

(6)

Now we define

Tλ,μ,δ(w1, w2)(t) :=
(
Aλ,μ,δ(w1, w2)(t), Bλ,μ,δ(w1, w2)(t)

)
.

Let us denote X := C([0, 1], (–∞,∞)) × C([0, 1], (–∞,∞)). Then Tλ,μ,δ : X → X is well
defined on X, where X is the usual Banach space with the norm ‖(u, v)‖ = ‖u‖∞ + ‖v‖∞.
Notice that problem (5) is equivalent to

(w1, w2) = Tλ,μ,δ(w1, w2) on X. (7)

Let P = {(u, v) ∈ X : u(t) ≥ 0, v(t) ≥ 0 for all t ∈ [0, 1]}. Then P is a cone in X. It is clear that
Tλ,μ,δ(P) ⊂P and Tλ,μ,δ is completely continuous on X by a standard argument.

Now, we introduce a theorem on sub- and supersolutions to system (5). First, we state
the following definition of subsolution and supersolution of system (5).

Definition 2.1 We say that (ψ1,ψ2) is a subsolution of problem (5) if (ψ1,ψ2) ∈ C2(0, 1) ×
C2(0, 1) satisfies

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ ′′
1 (t) + a1(t)f1(ψ1(t) + pλ,μ(t),ψ2(t) + qλ,μ(t)) ≥ 0, t ∈ (0, 1),

ψ ′′
2 (t) + a2(t)f2(ψ1(t) + pλ,μ(t),ψ2(t) + qλ,μ(t)) ≥ 0, t ∈ (0, 1),

ψ1(0) ≤ δ, ψ2(0) ≤ δ,

ψ1(1) –
∫ 1

0 g1(s)ψ2(s) ds ≤ δ,

ψ2(1) –
∫ 1

0 g2(s)ψ1(s) ds ≤ δ.
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We also say that (ζ1, ζ2) is a supersolution of problem (5) if (ζ1, ζ2) ∈ C2(0, 1) × C2(0, 1)
satisfies the reverse inequalities.

Theorem 2.1 Assume that there exist a subsolution (ψ1,ψ2) and a supersolution (ζ1, ζ2)
of problem (5) such that (ψ1(t),ψ2(t)) ≤ (ζ1(t), ζ2(t)) for all t ∈ [0, 1]. Then (5) has at least
one solution (u, v) such that

(
ψ1(t),ψ2(t)

) ≤ (
u(t), v(t)

) ≤ (
ζ1(t), ζ2(t)

)
for all t ∈ [0, 1].

Proof See Appendix. �

To show the existence of a second positive solution of (4), we need the following lemmas
for the fixed point index argument in [7].

Lemma 2.1 Let X be a Banach space, let P be cone in X, and let � be a bounded open set
in X. Let 0 ∈ �, and let T : P∩�̄ → P be condensing. Suppose that Tx �= νx for all x ∈ P∩∂�

and all ν ≥ 1. Then

i(T , P ∩ �, P) = 1.

Lemma 2.2 Let X be a Banach space, and let P be a cone in X. For r > 0, define Pr = {x ∈
P : ‖x‖ < r}. Assume that T : P̄r → P is a compact map such that Tx �= x for all x ∈ ∂Pr . If
‖x‖ ≤ ‖Tx‖ for all x ∈ ∂Pr , then

i(T , Pr , P) = 0.

3 Existence of multiple positive solutions
We recall that J = [j∗, j∗] ⊂ (0, 1) is a closed interval of positive measure such that ai(t) > 0
for all t ∈ J and i = 1, 2. Let γ = min{j∗, 1 – j∗} > 0. Define the cone

K =
{

(w1, w2) ∈P : min
J

wi(t) ≥ γ ‖wi‖∞ for i = 1, 2
}

.

Then we have the following:

Lemma 3.1 For a given cone P in X, we have

Tλ,μ,δ(P) ⊂K. (8)

Proof For any (w1, w2) ∈P , we first find

Aλ,μ,δ(w1, w2)(t) ≤ δ(1 + ρν1 + ρ1ν2)

+
∫ 1

0
G(s, s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds

+ ρ1

∫ 1

0

(∫ 1

0
G(τ , s)g2(τ ) dτ

)

a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds

+ ρ

∫ 1

0

(∫ 1

0
G(τ , s)g1(τ ) dτ

)

a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds
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for all t ∈ [0, 1]. Thus we obtain

∥
∥Aλ,μ,δ(w1, w2)

∥
∥∞ ≤ δ(1 + ρν1 + ρ1ν2)

+
∫ 1

0
G(s, s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds + ρ1M1 + ρM2, (9)

where

M1 :=
∫ 1

0

(∫ 1

0
G(τ , s)g2(τ ) dτ

)

a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds

and

M2 :=
∫ 1

0

(∫ 1

0
G(τ , s)g1(τ ) dτ

)

a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds.

Similarly, we have

∥
∥Bλ,μ,δ(w1, w2)

∥
∥∞

≤ δ(1 + ρν2 + ρ2ν1)

+
∫ 1

0
G(s, s)a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds + ρ2M2 + ρM1. (10)

Then by (9) we find that, for all t ∈ J ,

Aλ,μ,δ(w1, w2)(t) = δ
[
1 + (ρν1 + ρ1ν2)t

]

+
∫ 1

0
G(t, s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds + tρ1M1 + tρM2

= δ
[
1 + (ρν1 + ρ1ν2)t

]
+

∫ t

0
s(1 – t)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds

+
∫ 1

t
t(1 – s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds + tρ1M1 + tρM2

≥ δ
[
1 + (ρν1 + ρ1ν2)j∗

]
+

(
1 – j∗

)
∫ t

0
sa1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds

+ j∗
∫ 1

t
(1 – s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds + j∗(ρ1M1 + ρM2)

≥ min
{

j∗, 1 – j∗
}
(

δ(1 + ρν1 + ρ1ν2)

+
∫ t

0
s(1 – s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds

+
∫ 1

t
s(1 – s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds + ρ1M1 + ρM2

)

= min
{

j∗, 1 – j∗
}
(

δ(1 + ρν1 + ρ1ν2)
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+
∫ 1

0
G(s, s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ) ds + ρ1M1 + ρM2

)

≥ γ
∥
∥Aλ,μ(w1, w2)

∥
∥∞.

By the same argument, using (10), we also have that Bλ,μ,δ(w1, w2)(t) ≥ γ ‖Bλ,μ(w1, w2)‖∞
for all t ∈ J . �

As a consequence of the lemma, note that if (w1, w2) is a solution of (5), then by (7) we
have

inf
t∈J

wi(t) ≥ γ ‖wi‖∞ for i = 1, 2. (11)

Lemma 3.2 Assume (H). If (5) has a positive solution at (λ̄, μ̄), then (5) also has a positive
solution at (λ,μ) for all (λ,μ) ≤ (λ̄, μ̄).

Proof Let (w̄1, w̄2) be a positive solution of (5) at (λ̄, μ̄), and let (λ,μ) ∈ [0,∞)2 \ {(0, 0)}
with (λ,μ) ≤ (λ̄, μ̄). Then (w̄1, w̄2) is a supersolution of (5) at (λ,μ) since pλ,μ(t) ≤ pλ̄,μ̄(t)
and qλ,μ(t) ≤ qλ̄,μ̄(t) for t ∈ (0, 1) and fi is increasing for each i = 1, 2. Clearly, (0, 0) is a
subsolution of (5). Notice that (0, 0) is not a solution of (5) since fi(pλ,μ(t), qλ,μ(t)) > 0 for
t ∈ (0, 1) and i = 1, 2. Since (w̄1, w̄2) �= (0, 0) and (w̄1, w̄2) ≥ (0, 0), by Theorem 2.1, (5) has a
positive solution at (λ,μ). �

Lemma 3.3 Assume (H) and (H1). Then there exists (λ̃, μ̃) > (0, 0) such that (5) has a pos-
itive solution for all (λ,μ) ≤ (λ̃, μ̃).

Proof Let (ψ1,ψ2) be the unique solution of the following system:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ ′′
1 (t) + a1(t) = 0 t ∈ (0, 1),

ψ ′′
2 (t) + a2(t) = 0 t ∈ (0, 1),

ψ1(0) = 0 = ψ2(0),

ψ1(1) –
∫ 1

0 g1(s)ψ2(s) ds = 0,

ψ2(1) –
∫ 1

0 g2(s)ψ1(s) ds = 0.

We recall that pλ,μ(t) = (ρλ + ρ1μ)t and qλ,μ(t) = (ρ2λ + ρμ)t and denote φ1(t) = 1 + (ρν1 +
ρ1ν2)t and φ2(t) = 1 + (ρν2 +ρ2ν1)t. Then let α = ‖ψ1‖∞ +‖ψ2‖∞ +ρ +ρ1 +ρ2 +ρν2 +ρ2ν1 +
ρν1 + ρ1ν2 + 2. By (H1) there exist λ̃ ≈ 0, μ̃ ≈ 0, and δ̃ ≈ 0, sufficiently small, such that

f1
(
(λ̃ + μ̃ + δ̃)‖ψ1‖∞ + pλ̃,μ̃(1) + δ̃φ1(1), (λ̃ + μ̃ + δ̃)‖ψ2‖∞ + qλ̃,μ̃(1) + δ̃φ2(1)

)

≤ 1
α

(
(λ̃ + μ̃ + δ̃)‖ψ1‖∞ + pλ̃,μ̃(1) + δ̃φ1(1)

+ (λ̃ + μ̃ + δ̃)‖ψ2‖∞ + qλ̃,μ̃(1) + δ̃φ2(1)
)
. (12)

Now we define Z1(t) = (λ̃ + μ̃ + δ̃)ψ1 + δ̃φ1(t) and Z2(t) = (λ̃ + μ̃ + δ̃)ψ2 + δ̃φ2(t). Then, from
(H) and (12) we have Z1(0) = δ̃,

Z′′
1 (t) + a1(t)f1

(
Z1(t) + pλ̃,μ̃(t), Z2(t) + qλ̃,μ̃(t)

)

= –(λ̃ + μ̃ + δ̃)a1(t) + a1(t)f1
(
Z1(t) + pλ̃,μ̃(t), Z2(t) + qλ̃,μ̃(t)

)
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≤ a1(t)
{

f1
(
(λ̃ + μ̃ + δ̃)‖ψ1‖∞ + pλ̃,μ̃(1) + δ̃φ1(1),

(λ̃ + μ̃ + δ̃)‖ψ2‖∞ + qλ̃,μ̃(1) + δ̃φ2(1)
)

– (λ̃ + μ̃ + δ̃)
}

≤ a1(t)
[

1
α

(
(λ̃ + μ̃ + δ̃)‖ψ1‖∞ + pλ̃,μ̃(1) + δ̃φ1(1)

+ (λ̃ + μ̃ + δ̃)‖ψ2‖∞ + qλ̃,μ̃(1) + δ̃φ2(1)
)

– (λ̃ + μ̃ + δ̃)
]

≤ 0,

and

Z1(1) –
∫ 1

0
g1(s)Z2(s) ds = δ̃φ1(1) – δ̃

∫ 1

0
g1(s)φ2(s) ds = δ̃ ≥ δ.

Similarly, we can show that Z2 satisfies the same inequalities. This shows that (Z1, Z2) is
a supersolution of (5) at (λ̃, μ̃). On the other hand, (0, 0) is a strict subsolution such that
(0, 0) ≤ (Z1, Z2) in [0, 1]. Hence, by Theorem 2.1, (5) has a positive solution at (λ̃, μ̃), and
then Lemma 3.2 completes the proof. �

Lemma 3.4 Assume (H2). There exists M > 0 such that ‖(w1, w2)‖ ≤ M for all possible
solutions (w1, w2) of (5).

Proof As (w1, w2) is a solution of (5), we find

‖w1‖∞ ≥ w1(j∗)

= δ
[
1 + (ρν1 + ρ1ν2)j∗

]

+
∫ 1

0

(

G(j∗, s) + ρ1j∗
∫ 1

0
G(τ , s)g2(τ ) dτ

)

a1(s)f1(w1 + pλ,μ, w2 + qλ,μ)

+
(

ρj∗
∫ 1

0
G(τ , s)g1(τ ) dτ

)

a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds

≥
∫ j∗

j∗

(

ρj∗
∫ j∗

j∗
G(τ , s)g1(τ ) dτ

)

a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds

≥ ρj∗
∫ j∗

j∗
g1(s)

(∫ s

j∗
τ (1 – s)a2(τ )f2(w1 + pλ,μ, w2 + qλ,μ) dτ

+
∫ j∗

s
s(1 – τ )a2(τ )f2(w1 + pλ,μ, w2 + qλ,μ) dτ

)

ds

≥ ρj∗
∫ j∗

j∗
g1(s)j∗

(
1 – j∗

)
(∫ j∗

j∗
a2(τ )f2(w1 + pλ,μ, w2 + qλ,μ) dτ

)

ds

≥ ρj2
∗
(
1 – j∗

)
(∫ j∗

j∗
g1(s) ds

)(∫ j∗

j∗
a2(s) ds

)

f2
(
γ ‖w1‖∞,γ ‖w2‖∞

)
.

Hence we obtain

‖w1‖∞ + ‖w2‖∞ ≥ γ 2ρj∗
(

∫ j∗
j∗ g1(s) ds

)(
∫ j∗

j∗ a2(s) ds
)

f2
(
γ ‖w1‖∞,γ ‖w2‖∞

)
,
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which implies that

(
γ 3ρj∗

)–1
(∫ j∗

j∗
g1(s) ds

)–1(∫ j∗

j∗
a2(s) ds

)–1

≥ f2(γ ‖w1‖∞,γ ‖w2‖∞)
γ ‖w1‖∞ + γ ‖w2‖∞

. (13)

If ‖w1‖∞ → ∞, then (13) contradict to (H2). Similarly, we can show that ‖w2‖∞ is
bounded. �

Define S = {(λ,μ) ∈ [0,∞)2 \ {(0, 0)} : (5) has a positive solution at (λ,μ)}. Then S �= ∅
by Lemma 3.3.

Lemma 3.5 Assume (H) and (H2). Then (S ,≤) is bounded above.

Proof We claim that there exist λ̄, μ̄ > 0 such that (5) has no solution for λ > λ̄ or μ > μ̄.
Suppose on the contrary that there exists a sequence (λn,μn) such that either λn → ∞
or μn → ∞ and (5) has a positive solution (w1n, w2n) at λ = λn and μ = μn. Without loss
of generality, we assume that λn → ∞. First, we observe from (H2) that there exists Rf2

sufficiently large such that

f2(u, v) ≥ u + v for all u + v ≥ Rf2 . (14)

Now we choose λn sufficiently large such that

γ
(‖w1n‖∞ + ‖w2n‖∞

)
+ j∗(ρ + ρ2)λn + j∗(ρ1 + ρ)μn ≥ Rf2 .

Then, for such λn, from (14) it follows that

f2
(
γ ‖w1n‖∞ + (ρλn + ρ1μn)j∗,γ ‖w2n‖∞ + (ρ2λn + ρμn)j∗

)

≥ γ
(‖w1n‖∞ + ‖w2n‖∞

)
+ j∗(ρ + ρ2)λn + j∗(ρ1 + ρ)μn. (15)

Since w1n is a solution of (5), using (3), (11), and (15), we have

‖w1n‖∞ ≥ w1n(j∗)

= δ
[
1 + (ρν1 + ρ1ν2)j∗

]

+
∫ 1

0
H2(j∗, s)a1(s)f1(w1n + pλn ,μn , w2n + qλn ,μn )

+ K1(j∗, s)a2(s)f2(w1n + pλn ,μn , w2n + qλn ,μn ) ds

≥
∫ j∗

j∗
K1(j∗, s)a2(s)f2

(
γ ‖w1n‖∞ + pλn ,μn (j∗),γ ‖w2n‖∞ + qλn ,μn (j∗)

)
ds

≥ (
γ
(‖w1n‖∞ + ‖w2n‖∞

)
+ j∗(ρ + ρ2)λn

+ j∗(ρ1 + ρ)μn
)
∫ j∗

j∗

(

ρj∗
∫ 1

0
G(τ , s)g1(τ ) dτ

)

a2(s) ds,

which implies that ‖w1n‖∞ → ∞, a contradiction to Lemma 3.4. Hence, we conclude that
there exist λ̄, μ̄ > 0 such that (5) has no solution for λ > λ̄ or μ > μ̄. �
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The following Lemmas 3.6, 3.7, and 3.8 can be proved by the same ideas as in Lemma 3.5,
Lemma 3.6, and Theorem 3.1 in [9], respectively.

Lemma 3.6 Assume (H) and (H2). Then every chain in S has a unique supremum in S .

Lemma 3.7 Assume (H) and (H2). Then there exists μ∗ ∈ [μ̃, μ̄] such that (5) has a positive
solution at (0,μ) for all 0 < μ ≤ μ∗ and no solution at (0,μ) for all μ > μ∗. Similarly, there
exists λ∗ ∈ [λ̃, λ̄] such that (5) has a positive solution at (λ, 0) for all 0 < λ ≤ λ∗ and no
solution at (λ, 0) for all λ > λ∗.

Lemma 3.8 Assume (H1) and (H2). Then there exists a continuous curve �δ splitting
[0,∞)2 \{(0, 0)} into two disjoint subsets 	δ,1 and 	δ,2 such that (5) has at least one positive
solution if (λ,μ) ∈ 	1 ∪ �δ and no positive solution if (λ,μ) ∈ 	δ,2.

Notice that by the sub- and supersolution theorem we can show that if 0 < δ̄ < δ, then
	δ,1 ∪ �δ ⊂ 	δ̄,1 ∪ �δ̄ . Let 	 =

⋃
δ>0(	δ,1 ∪ �δ). Then 	 ⊂ 	0,1. Now we prove our main

theorem, Theorem 1.1, by taking 	1 = 	0,1, 	2 = 	0,2, and � = �0 in Theorem 3.1.

Theorem 3.1 Assume (H), (H1), and (H2). Then there exists a continuous curve �0 split-
ting [0,∞)2 \ {(0, 0)} into two disjoint subsets 	0,1, 	0,2 and a subset 	 ⊂ 	0,1 such that
(4) has at least two positive solutions for (λ,μ) ∈ 	, at least one positive solution for
(λ,μ) ∈ (	0,1 \ 	) ∪ �0, and no positive solution for (λ,μ) ∈ 	0,2.

Proof We prove that (4) has a positive second solution for (λ,μ) ∈ 	. If (λ,μ) ∈ 	, then
there exists δ > 0 such that (λ,μ) ∈ (	δ,1 ∪�δ). Now we let (wδ,1, wδ,2) be a positive solution
of (5) at (λ,μ) and define � = {(w1, w2) ∈ X : –ε < w1(t) < wδ,1(t), –ε < w2(t) < wδ,2(t), t ∈
[0, 1]}. Then � is a bounded open set in X such that 0 ∈ �. Here we denote

(
Aλ,μ(w1, w2)(t), Bλ,μ(w1, w2)(t)

)
:=

(
Aλ,μ,0(w1, w2)(t), Bλ,μ,0(w1, w2)(t)

)

and

Tλ,μ(w1, w2)(t) := Tλ,μ,0(w1, w2)(t).

Then Tλ,μ : K ∩ �̄ →K is condensing. Let (w1, w2) ∈K ∩ ∂�. Then there exists t0 ∈ [0, 1]
such that either w1(t0) = wδ,1(t0) or w2(t0) = wδ,2(t0). Suppose that w1(t0) = wδ,1(t0). Then
by (H)

Aλ,μ(w1, w2)(t0) =
∫ 1

0
H2(t0, s)a1(s)f1(w1 + pλ,μ, w2 + qλ,μ)

+ K1(t0, s)a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds

< δ
[
1 + (ρν1 + ρ1ν2)t0

]

+
∫ 1

0
H2(t0, s)a1(s)f1(wδ,1 + pλ,μ, wδ,2 + qλ,μ)

+ K1(t0, s)a2(s)f2(wδ,1 + pλ,μ, wδ,2 + qλ,μ) ds
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= wδ,1(t0)

= w1(t0) ≤ νw1(t0)

for all ν ≥ 1. Thus Tλ,μ(w1, w2) �= ν(w1, w2) for all (w1, w2) ∈ K ∩ ∂� and ν ≥ 1. By
Lemma 2.1 we conclude

i(Tλ,μ,K ∩ �,K) = 1.

Next, we denote κ = minJ×J K1(t, s). By (H2) there exists Rf2 > 0 sufficiently large such
that

f2(u, v) ≥ η(u + v) for u + v ≥ Rf2 ,

where η > 0 can be chosen such that ηκγ
∫ j∗

j∗ a2(s) ds > 1. Let R = max{M + 1, 1
γ

Rf2}, where
M is defined in Lemma 3.4. Let KR = {(w1, w2) ∈K : ‖(w1, w2)‖ < R}. Then, by Lemma 3.4,
(w1, w2) �= Tλ,μ(w1, w2) for (w1, w2) ∈ ∂KR. Moreover, if (w1, w2) ∈ ∂KR, then

min
J

(
w1(t) + w2(t)

) ≥ γ
(‖w1‖∞ + ‖w2‖∞

) ≥ Rf2 ,

which implies that f2(w1(t), w2(t)) ≥ η(w1(t) + w2(t)) for all t ∈ J . Finally, we find that, for
(w1, w2) ∈ ∂KR,

Aλ,μ(w1, w2)(j∗) =
∫ 1

0
H2(j∗, s)a1(s)f1(w1 + pλ,μ, w2, qλ,μ)

+ K1(j∗, s)a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds

≥ κ

∫ j∗

j∗
a2(s)f2(w1 + pλ,μ, w2 + qλ,μ) ds

≥ κη

∫ j∗

j∗
a2(s)

(
w1(s) + w2(s)

)
ds

≥ κηγ
∥
∥(w1, w2)

∥
∥

∫ j∗

j∗
a2(s) ds

>
∥
∥(w1, w2)

∥
∥.

Therefore ‖Tλ,μ(w1, w2)‖ ≥ ‖Aλ,μ(w1, w2)‖∞ ≥ Aλ,μ(w1, w2)(j∗) > ‖(w1, w2)‖, and by
Lemma 2.2 we find

i(Tλ,μ,KR,K) = 0.

By the additivity of the fixed point index we obtain

0 = i(Tλ,μ,KR,K) = i(Tλ,μ,K ∩ �,K) + i(Tλ,μ,KR \K ∩ �,K).

Since i(Tλ,μ,K∩�,K) = 1, we find i(Tλ,μ,KR \K ∩ �,K) = –1, which implies that Tλ,μ has
a fixed point on K ∩ � and on KR \K ∩ �. Hence the proof is completed. �

Now, we give a simple example for the main results.
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Example 3.2 Consider N = 3 and r0 = 1 for system (1). Then �e = {x ∈ (–∞,∞)3 : |x| ≥
1}. Let Ki(r) = r–αi for r ∈ (1,∞), where αi > 2 for i = 1, 2. Then there exists ν such that
1 < ν < min{α1,α2} – 1, and hence we get that ν – αi < –1 and

∫ ∞
1 rνKi(r) dr =

∫ ∞
1 rν–αi dr <

∞ for i = 1, 2. Let li(r) = r–βi for r ∈ (1,∞), where βi > 4π + 2 (i = 1, 2). It is easy to see
that w3

∫ ∞
1 rli(r) dr = 4π

∫ ∞
1 r1–βi dr = 4π

βi–2 < 1 as w3 = 4π . Now, if f1(u, v) = u2 + v3 and
f2(u, v) = eu+v – (u + v), then (H), (H1), and (H2) hold for f1 and f2. Thus the conclusion of
Theorem 1.1 is valid. We note that, for the corresponding radial transformed problem (2)
of (1), the conclusion of Theorem 3.1 is also valid.

Appendix: sub- and supersolution theorem
In this subsection, we prove Theorem 2.1. We consider the system with more general
boundary conditions:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′(t) + a1(t)f1(u(t), v(t)) = 0, t ∈ (0, 1),

v′′(t) + a2(t)f2(u(t), v(t)) = 0, t ∈ (0, 1),

u(0) = a, v(0) = b,

u(1) –
∫ 1

0 g1(s)v(s) ds = λ,

v(1) –
∫ 1

0 g2(s)u(s) ds = μ,

(16)

where λ, μ, a, and b are constants.

Definition 4.1 We say that (ψ1,ψ2) ∈ C2(0, 1) × C2(0, 1) is a subsolution of problem (16)
if

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ψ ′′
1 (t) + a1(t)f1(ψ1(t),ψ2(t)) ≥ 0, t ∈ (0, 1),

ψ ′′
2 (t) + a2(t)f2(ψ1(t),ψ2(t)) ≥ 0, t ∈ (0, 1),

ψ1(0) ≤ a,ψ2(0) ≤ b,

ψ1(1) –
∫ 1

0 g1(s)ψ2(s) ds ≤ λ,

ψ2(1) –
∫ 1

0 g2(s)ψ1(s) ds ≤ μ.

We also say that (ζ1, ζ2) ∈ C2(0, 1) × C2(0, 1) is an supersolution of problem (16) if the
reverse inequalities are satisfied.

A theorem for sub- and supersolutions to problem (16) is as follows.

Theorem 4.1 Assume that f1(t, s) and f2(t, s) is quasimonotone increasing with respect to
s and t, respectively (i.e., f1(t, s1) ≤ f1(t, s2) for s1 ≤ s2 and f2(t1, s) ≤ f2(t2, s) for t1 ≤ t2) and
there exist a subsolution (ψ1,ψ2) and a supersolution (ζ1, ζ2) of problem (16) such that
(ψ1(t),ψ2(t)) ≤ (ζ1(t), ζ2(t)) for all t ∈ [0, 1]. Then problem (16) has at least one solution
(u, v) such that

(
ψ1(t),ψ2(t)

) ≤ (
u(t), v(t)

) ≤ (
ζ1(t), ζ2(t)

)
for all t ∈ [0, 1].
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Proof Define γi : [0, 1] × (–∞,∞) → [0,∞) for i = 1, 2 by

γi(t, s) :=

⎧
⎪⎪⎨

⎪⎪⎩

ζi(t), s ≥ ζi(t),

s, ψi(t) ≤ s ≤ ζi(t),

ψi(t), s ≤ ψi(t),

and consider the modified problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u′′(t) + a1(t)f1(γ1(t, u(t)),γ2(t, v(t))) = 0, t ∈ (0, 1),

v′′(t) + a2(t)f2(γ1(t, u(t)),γ2(t, v(t))) = 0, t ∈ (0, 1),

u(0) = a, v(0) = b,

u(1) –
∫ 1

0 g1(s)γ2(s, v(s)) ds = λ,

v(1) –
∫ 1

0 g2(s)γ1(s, u(s)) ds = μ.

(17)

For given (w, z) ∈ C[0, 1] × C[0, 1], define gw,z : (–∞,∞)2 → (–∞,∞)2 by

gw,z(x, y) :=
(∫ 1

0
g1(s)γ2

(
s, z(s) + ys + b

)
ds + λ – a,

∫ 1

0
g2(s)γ1

(
s, w(s) + xs + a

)
ds + μ – b

)

for (x, y) ∈ (–∞,∞)2. Since |γi(s, x) – γi(s, y)| ≤ |x – y| for any x, y ∈ (–∞,∞) and s ∈ [0, 1],
gw,z is a contraction mapping on (–∞,∞)2, and thus there exists a unique fixed point
(Aw,z, Bw,z) ∈ (–∞,∞)2 of gw,z , which satisfies

(Aw,z, Bw,z) =
(∫ 1

0
g1(s)γ2

(
s, z(s) + Bw,zs + b

)
ds + λ – a,

∫ 1

0
g2(s)γ1

(
s, w(s) + Aw,zs + a

)
ds + μ – b

)

.

If (w, z) is a solution of

⎧
⎪⎪⎨

⎪⎪⎩

w′′(t) + a1(t)f1(γ1(t, w(t) + Aw,zt + a),γ2(t, z(t) + Bw,zt + b)) = 0,

z′′(t) + a2(t)f2(γ1(t, w(t) + Aw,zt + a),γ2(t, z(t) + Bw,zt + b)) = 0,

w(0) = w(1) = z(0) = z(1) = 0,

(18)

then (u(t), v(t)) := (w(t) + Aw,zt + a, z(t) + Bw,zt + b) is a solution of (17).
Now, we define T : P →P by

T(w, z)(t) :=
(
T1(w, z)(t), T2(w, z)(t)

)
,

where

T1(w, z)(t) =
∫ 1

0
G(t, s)a1(s)f1

(
γ1

(
s, w(s) + Aw,zs + a

)
,γ2

(
s, z(s) + Bw,zs + b

))
ds,
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T2(w, z)(t) =
∫ 1

0
G(t, s)a2(s)f2

(
γ1

(
s, w(s) + Aw,zs + a

)
,γ2

(
s, z(s) + Bw,zs + b

))
ds.

Then (w, z) is a fixed point of T in P if and only if (w, z) is a nonnegative solution of (18).
Since Tγ is completely continuous on P and T(P) is bounded in C[0, 1] × C[0, 1], T has a
fixed point (w, z), and consequently (17) has a nonnegative solution (u, v). Now if we prove
that (ψ1(t),ψ2(t)) ≤ (u(t), v(t)) ≤ (ζ1(t), ζ2(t)) for t ∈ [0, 1], then, by the definition of γi, (16)
has a solution (u, v) such that (ψ1(t),ψ2(t)) ≤ (u(t), v(t)) ≤ (ζ1(t), ζ2(t)) for all t ∈ [0, 1], and
the proof is done.

To show that u(t) ≤ ζ1(t), we set X(t) := u(t) – ζ1(t). Note that

X(0) = u(0) – ζ1(0) ≤ 0,

X(1) = u(1) – ζ1(1) ≤
∫ 1

0
g1(s)

[
γ2

(
s, v(s)

)
– ζ2(s)

]
ds ≤ 0.

Now let us assume on the contrary that there is t0 ∈ (0, 1) such that X(t0) = u(t0)–ζ1(t0) > 0.
It is clear that there exists σ ∈ (0, 1) such that X(σ ) = maxt∈[0,1] X(t) > 0. Then X ′(σ ) = 0,
and there is a ∈ (σ , 1) such that X ′(t) < 0 and X(t) > 0 for t ∈ (σ , a], which means that

u′(σ ) = ζ ′
1(σ ), u′(t) < ζ ′

1(t), and u(t) > ζ1(t) for t ∈ (σ , a]. (19)

By the quasimonotonicity of f1(t, s) with respect to s and the definition of γi for i = 1, 2, we
obtain

–u′′(t) = a1(t)f1
(
γ1

(
t, u(t)

)
,γ2

(
t, v(t)

))

≤ a1(t)f1
(
ζ1(t), ζ2(t)

) ≤ –ζ ′′
1 (t) for t ∈ (σ , a].

Integrating this from σ to t ∈ (σ , a], we find

u′(t) ≥ ζ ′
1(t), for t ∈ (σ , a],

which contradicts to (19) Thus u(t) ≤ ζ1(t) for t ∈ [0, 1]. In a similar manner, we can prove
that ψ1(t) ≤ u(t), v(t) ≤ ζ2(t) and ψ2(t) ≤ v(t) for t ∈ [0, 1], and hence the proof is com-
plete. �
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